Spin Physics with sPHENIX Detector

A.Bazilevsky (BNL)

For **SPHENIX** Collaboration

23RD INTERNATIONAL SPIN SYMPOSIUM FERRARA - ITALY

> 10 - 14 SEPTEMBER 2018

sPHENIX

New detector for the RHIC facility at BNL (USA) New Collaboration formed >70 institutions and counting

For studies of the strongly interacting quark-gluon plasma using jet, photon and heavy-flavor observables.

Time line:

CD0 Review - Sep 2016 CD1/3a Review - May 2018 Installation complete - 2022 Running - 2023

RHIC with polarized proton beams plus sPHENIX => strong capabilities for Spin Physics measurements

2

Spin Physics with sPHENIX

Jet and h±

Excellent tracking: TPC: momentum measurements INTT: timing and pattern recognition MVTX: collision vertex

Good Calorimetry:

EMCal:
$$\frac{\sigma_E}{E} \approx \frac{15\%}{\sqrt{E}}$$

HCal: $\frac{\sigma_E}{E} \approx \frac{100\%}{\sqrt{E}}$

Photon / $\pi 0$

EMCal sector

Tungsten-scintillating fiber sampling EMCal: Approx. projective in η and ϕ 18 X₀, 1 λ $\Delta \eta \times \Delta \phi = 0.025 \times 0.025$ $\sigma_{\rm E}/{\rm E} \approx 15\%/\sqrt{\rm E}$

 $\pi 0$ eff. vs pT

Allows for $\gamma/\pi 0$ discrimination up to ~20 GeV/c The range of statistically significant measurements

Direct γ : S/B ~ 2 for pT=7-25 GeV/c

The main source of bg – merged $\pi 0$

Heavy Flavor

DCA

Counts tracks with DCA outside a cut relative to event vertex

Secondary Vertex

Secondary vertex within jet Direct reco of heavy meson decays

Gluon polarization ΔG

EIC White paper: arXiv:1212.1701

DIS+RHIC(≤2009) +EIC

With EIC data the dominant uncertainty to ΔG -integral will be coming from "RHIC region"

⇒ We should do our best to improve it before RHIC stops pp running

Brings us to era of high precision ΔG measurements:

Will crucially improve ΔG constraint at x>0.05

 Δ Gdx-integral at x>0.05 expected to be improved by a factor >4

Multiple channels with different theoretical and exp. uncertainites

Crucial syst. cross check

Complementary to the future EIC

Crucial universality test in the overlapping x-range

Transversity

STAR:

6

 $p_{T}^{\pi^{+}\pi}$ [GeV/c]

8

-0.02

First measurements in pp to access transversity:

Collins asymmetry (hadron within jet) TMD approach IFF asymmetry (di-hadron) Collinear approach

sPHENIX expects to contribute high precision data for these

As a dedicated jet detector with excellent tracking resolution and high DAQ bandwidth

Will allow for multi-dim binning

Will provide crucial tests for factorization and universality of distr. functions

Other measurements

Open HF A_N:

Sensitive to Twist-3 tri-gluon correlation fnct.

sPHENIX will considerably improve it Decay electron + DCA Or D reconstruction

K.Konazawa and Y.Koike: Phys. Lett. B 720, 161

Direct γA_N : Sensitive to Twist-3 quark-gluon correlation fnct.

Nobody yet measured it sPHENIX will do it!

Other measurements II

PHENIX: 1805.02450

Quarkonia polarization Sensitive to production mechanism

J/ψ photoproduction in UPC Access to GPD from pp! Evolution of non-perturbative kT and jT through correlation measurements Sensitive to TMD factorization breaking sPHENIX will provide high precision

measurements from jet-jet, γ -jet, h-h, γ -h, including correlations with spin

STAR: PLB 739, 180; PHENIX: PRD 82, 012001

Forward Upgrade Proposal

Solenoid 1.4T EMCal & HCal Tracking + Forward EMCal & Hcal+ Forward tracking

Forward Jet and h±

Good jet resolution for E, η , ϕ

Excellent charged track momentum resolution even in forward region

Momentum [GeV/c]

$\operatorname{Jet} A_N$

Tagging jets with the charge of leading hadron changes jet composition => ability to separate effects from u and d Sensitive to Sivers fnct.

Jet $A_N \sim 0 \Longrightarrow$ cancellation from u&d?

Hadron in Jet: Collins Asymmetry

Gives access to transversity Expands x-range to higher values => necessary for tensor charge

$$\delta q^{a} = \int_{0}^{1} \left(\delta q^{a}(x) - \delta \overline{q}^{a}(x) \right) dx$$

Calculable on lattice

Di-jet A_{LL} : $\Delta G(x)$ to lower x

If we run at $\sqrt{s}=500 \text{ GeV}$

fsPHENIX will considerably improve it Effective jet triggering and high DAQ rate Higher rapidity => Lower x (down to ~10⁻³)

Summary

Wide range of high precision spin measurements to be addressed by sPHENIX

sPHENIX – new collaboration with >70 institutions and is growing

Invite new collaborators:

- New physics ideas
- New instrumentation
- The possibility to evolve sPHENIX to a DIS detector at future EIC

Backup

The Tracking detectors

Functions:

- TPC momentum measurement
- MVTX precise track vertex
- **INTT** timing & pattern recognition

The Tracking Detectors (in GEANT 4)

- 90:10 Ne-CF4 gas low diffusion + high ion mobility
- Electron drift velocity 8 cm/ μ s 13.2 μ s maximum drift time
- Quad GEM electron multiplier + chevron readout pads
- 48 layer readout covering 30 78 cm radius
- R-φ resolution ~ 150 µm
- ∆p/p ~ 1% at 5 GeV/c

INTT - Silicon strips

- 4 layers 7 < R < 13 cm
- Pitch 78 µm, Z length 1.6-2 mm
- Fast can resolve one beam crossing

MVTX - 30 µm x 30 µm MAPS pixels

- 3 layers 2.3 < R < 3.9 cm
- Readout time window ± 5 μs
- $\bullet\,{\sim}\,5~\mu m$ space point precision

Average mass budget of inner detectors
MVTX ~ 0.3% / layer (1% total)
INTT ~ 1% / layer (4% total)

sPHENIX Collaboration

14

Calorimeters

EMCal Tungsten-scinti

Tungsten-scintillating fiber sampling calorimeter 18 X₀, 1 λ $\Delta \eta \ge \Delta \phi = 0.025 \ge 0.025$ Read out by silicon photomultipliers 2D projective geometry Small Moliere Radius, short radiation length Energy resolution $\leq 16\%/\sqrt{E} @ 5\%$

HCal

Sampling calorimeter Magnet steel plates / scintillator tiles 3.8 λ

$\Delta \eta \ge \Delta \phi = 0.1 \ge 0.1$

Read out by silicon photomultipliers Doubles as the flux return for the solenoid

Aschenauer, Sassot, Stratmann, PRD 92, 094030