Jet Physics at an EIC

Brian Page Brookhaven National Laboratory Spin 2018 – Ferrara

Outline

- Jets as parton surrogates
 - Accessing the (Un)polarized photon structure with dijets
 - Accessing ΔG with dijets
- Preliminary look at jet substructure at an EIC

Simulation Details / Particle Cuts

- Electron Proton events generated at Vs = 141 GeV using PYTHIA (Full energy eRHIC design 20x250 GeV electron x proton)
- Cut on inelasticity: $0.01 \le y \le 0.95$
- Jet Algorithm: Anti_k_T (R = 1.0)
- Jets found in Breit frame
- Particles used in jet finding:
 - Stable
 - p_T ≥ 250 MeV
 - η ≤ 4.5
 - Parent cannot originate from scattered electron

[GeV²]

Jets as Parton Surrogates

- Jets should approximate the energy and momentum of the partons from which they arise allowing the reconstruction of event kinematics such as x_γ (photon momentum fraction) and x_P (parton momentum fraction) among many other applications
- x_{γ} will allow tagging of direct vs resolved subprocesses which will be important for studies of photon structure (Phys. Rev. D 96, 074035) as well as alternative methods for accessing ΔG

QCD – Compton

Photon-Gluon Fusion

Spin 2018 - Ferrara

Subprocess Tagging and Kinematics

Reconstructed X_Gamma: Q2 = 10-100 GeV^2

Reco Vs True X_Proton (X_Gamma > 0.8): PGF: Q2 = 10-100 GeV^2

Reco Vs True X_Gamma: hQCD: Q2 = 10-100 GeV^2

- Use dijet energy and momentum to reconstruct x_v and x_P
- Cutting on x_{γ} can enhance or reduce resolved contribution (which becomes more prominent at low Q²) depending on the analysis needs
- Both x_v and x_P accurately reconstructed

Example: Photon Structure

Study the polarized and unpolarized hadronic structure of the photon

- In QCD, the photon can be considered a superposition of a bare photon state and a hadronic state
- Want to characterize the polarized and unpolarized structure of this hadronic state (photon PDFs)
- EIC cross section data will allow very precise extractions of these PDFs and give access to the polarized structure for the first time

Flavor Tagging

- Can tag the highest p_T hadron inside the jet associated with the photon to enhance certain flavors
- See π⁺ and π⁻ enhance u and u-bar fractions while kaons enhance u/u-bar and s/s-bar
- Take advantage of the excellent PID capabilities of the planned EIC detectors

- Would also like to look more differentially and constrain photon PDFs for different parton flavors
- See that the jet associated with the photon preferentially goes to lower pseudorapidities

Example: Accessing ΔG with Dijets

 Several observables are sensitive to ΔG in DIS but golden measurement at an EIC would be scaling violation of g₁(x,Q²)

$$\frac{dg_1(x,Q^2)}{dln(Q^2)} \approx -\Delta g(x,Q^2)$$

- Can also get access to ΔG by using dijets to tag the photon-gluon fusion process, providing a cross-check and allowing studies of the evolution of ΔG with respect to Q²
- Reconstruction of x_{γ} will facilitate rejection of resolved events x_{p} will help isolate PGF from the quark-induced QCD-Compton process

A_{LL} Vs Di-jet Mass

Dijet A, Vs Mass: QCDC+PGF

- Weight simulated events
 by product of the partonic
 asymmetry and the ratios
 of the polarized over
 unpolarized photon and
 proton PDFs to obtain
 realistic estimate of A_{LL}
- Plot the expected A_{LL} as a function of di-jet invariant mass for each sub-process separately as well as the combined sample
 - PGF asymmetry is nearly
 canceled out by QCDC
 asymmetry with opposite
 sign would like to reduce
 QCDC contribution

 10^{-3}

90

Dijet Mass

- Want to enhance PGF subprocess w.r.t. QCDC
- PGF events peaked to lower x_p values

Dijet Mass

Spin 2018 - Ferrara

Dijet Mass

- Selecting events with 0.005 < x_p < 0.03 enhances PGF asymmetry but restricts mass range
- Intermediate x_P values get more QCDC contribution
- Largest x_p values have roughly equal amounts of PGF and QCDC

Reco X Proton (X_Gamma >= 0.8): Q2 = 10-100

Jet Substructure: Angularity

- One goal of the EIC will be the exploration of cold nuclear matter, as well as the hadronization process, via electron-nucleus collisions
- Substructure observables quantify how energy is distributed within the jet modification
 of substructure in eA may be sensitive to details of hadronization in nuclear matter and
 possibly to certain properties of the matter
- First step: explore behavior of substructure observables at EIC energies focus on angularity

Photoproduction Cross Section

- Jet Radius = 0.8
- 0.2 < inelasticity < 0.8
- Lab Frame
- Cross sections shown for jet p_T > 4 and jet p_T > 10 GeV

- Carry out angularity studies in photoproduction region (10⁻⁵ < Q² < 1)
- Resolved and direct cross sections from PYTHIA in good agreement with theoretical expectations (F. Ringer, K. Lee)

Relationship to Jet Mass

- Angularity with a = 0 is equal to the square of jet mass divided by the square of jet p_T (plus higher order terms)
- We find the validity of this relationship depends strongly on how the jet mass is constructed
- Adding full particle 4-vectors leads to discrepancy while good agreement seen for 'massless' particles
- Jet p_Ts are small at an EIC, individual particle masses can by a non-negligible contribution
- Look at relationship for high p_T jets

Detector Considerations

Angularity Particle Effects

- In simulation, we can measure all particles exactly – what happens if some classes of particles are not measured or not measured well?
- Construct angularity excluding neutral hadrons (neutrons & K_L) and photons from pion decay
- Not measuring neutral hadrons results in a shift and slight shape change to angularity distribution
- Neglecting photons will significantly change distribution – electromagnetic calorimeter with good pointing resolution will be important

Quark / Gluon Discrimination

- Quarks and gluons are expected to shower in different ways with jets arising from gluons being 'fatter' than those from Quarks
- Can angularity differentiate between quark and gluon jets?
- See decent differentiation between light quarks and gluons for a = 0.5
- Next: explore correlations with other discriminating variables

Summary

- Dijets can be used to reconstruct partonic kinematics for the purpose of separating different subprocesses
- Isolating (or enhancing) the resolved or photon-gluon fusion subprocesses allow study of photon structure and gluon polarization, respectively
- Further applications of dijets include studies of the gluon Sivers function (Phys. Rev. D 98, 034011 2018, arXiv:1805.05290) and the WW distribution of linearly polarized gluons (arXiv:1809.02615)
- Several aspects of an angularity measurement at an EIC were discussed including the affect of particle masses and the need for good EM calorimetry
- Angularity shows some ability to differentiate between quark and gluon jets

Backup

Potential EIC Realizations

- Two designs are in active development:
 - eRHIC (BNL)
 - JLEIC (JLab)
- eRHIC utilizes the existing RHIC hadron facility and adds an electron ring and injector
- JLEIC utilizes CEBAF as an electron accelerator and adds a hadron source / booster and collider rings
- Broad tradeoff: eRHIC will start with lower luminosities but have larger center of mass energies while JLEIC will prioritize luminosity but with smaller collision energies

Relevant Subprocesses

QCD-Compton (QCDC)

Photon-Gluon Fusion (PGF)

DIS

Jets at an EIC: Points to Remember

- Lower center of mass energies will lead to lower jet / di-jet yields and more limited $p_{\rm T}$ / mass reach
- Will need largest available energies and high luminosity to accumulate reasonable statistics at high p_T / mass use $\sqrt{s} = 141$ GeV for all that follows

Jets at an EIC: Points to Remember

Number of Particles in Jet Vs Jet Pt

- Jets contain relatively few particles overall
- Events should be relatively clean with moderate underlying event
- Typical particle p_T is small -> precision tracking important for reducing jet energy scale uncertainties

- Lower center of mass energies will lead to lower jet / di-jet yields and more limited p_T / mass reach
- Will need largest available energies and high luminosity to accumulate reasonable statistics at high p_T / mass – use vs = 141 GeV for all that follows

Relationship to Jet Mass

Massive 4-vectors 1E ч, 10³ 0.9 0.8 0.7 10² 0.6 0.5 0.4 10 0.3 0.2F 0.1 Massless 4-vectors 0 0.1 0.2 0.3 0.5 0.6 0.7 8.0 0.9 0.4 1 m²/p_1 °4 0.9 10³ 0.8 0.7 0.6 10² 0.5 0.4 0.3 10 0.2 0.

0

'n

0.1

0.2

0.3

0.4

0.5

0.6

. . . .

1 m²/p²т

0.9

. . . .

0.7

0.8

Input Variables

Girth² =
$$\sum_{i} \frac{p_{Ti}}{p_{Tjet}} |r_i|^2$$

2 Point =
$$\frac{1}{p_{Tjet}^2} \sum_{i \neq j} p_{Ti} * p_{Tj} * |r_{ij}|^{\beta}$$

Spin 2018 - Ferrara