Electric Dipole Moment Searches using Storage Rings

Frank Rathmann
(JEDI collaboration)

Forschungszentrum Jülich

10.09.2018
Contents

1 Introduction

2 Progress toward storage ring EDM experiments

3 Technical challenges and developments
 - E/B deflector
 - Beam-position monitors
 - \(dC \) polarimetry data base
 - Beam polarimeter
 - Study of machine imperfections
 - Prototype EDM storage ring

4 Proof of principle EDM experiment using COSY
 - Model calculation
 - Technical realization of RF Wien filter
 - Measurements of EDM-like polarization buildup

5 Axion-EDM search using storage ring

6 Summary
Baryon asymmetry in the Universe

Carina Nebula: Largest-seen star-birth regions in the galaxy

<table>
<thead>
<tr>
<th>Observation and expectation from Standard Cosmological Model (SCM):</th>
<th>$\eta = (n_b - n_{\bar{b}})/n_\gamma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation</td>
<td>$(6.11^{+0.3}_{-0.2}) \times 10^{-10}$</td>
</tr>
<tr>
<td></td>
<td>$(5.53 - 6.76) \times 10^{-10}$</td>
</tr>
<tr>
<td>Expectation from SCM</td>
<td>$\sim 10^{-18}$</td>
</tr>
<tr>
<td></td>
<td>Bernreuther (2002) [3]</td>
</tr>
</tbody>
</table>
Precision frontier

EDMs possibly constitutes missing cornerstone

to explain surplus of matter over antimatter in the Universe:

- SCM gets it wrong by about 8 orders of magnitude.

Large worldwide effort to search for EDMs of fundamental particles:

- hadrons, solids, atoms and molecules.
- ~ 500 researchers (estimate by Harris, Kirch).
- Total of ≈ 20 talks at Spin 2018 on EDM related R&D.
Introduction

Precision frontier

EDMs possibly constitute missing cornerstone
to explain surplus of matter over antimatter in the Universe:
- SCM gets it wrong by about 8 orders of magnitude.

Large worldwide effort to search for EDMs of fundamental particles:
- hadrons, solids, atoms and molecules.
- \(\sim 500 \) researchers (estimate by Harris, Kirch).
- Total of \(\approx 20 \) talks at Spin 2018 on EDM related R&D.

Why search for charged particle EDMs using a storage ring?
So far, no direct measurement of charged hadron EDMs:
- potentially higher sensitivity than for neutrons:
 - longer lifetime,
 - more stored polarized protons/deuterons available than neutrons, and
 - one can apply larger electric fields in storage ring.
- Approach complimentary to neutron EDM searches.
- EDM of single particle not sufficient to identify \(CP \) violating source [4]
Naive estimate of scale of nucleon EDM

From Khriplovich & Lamoreux [5]:

- CP and P conserving magnetic moment \approx nuclear magneton μ_N.
 \[\mu_N = \frac{e}{2m_p} \sim 10^{-14} \text{ e cm}. \]

- A non-zero EDM requires:
 - P violation: price to pay is $\approx 10^{-7}$, and
 - CP violation (from K decays): price to pay is $\sim 10^{-3}$.

In summary:

\[|d_N| \sim 10^{-7} \times 10^{-3} \times \mu_N \sim 10^{-24} \text{ e cm} \]

In Standard model (without θ_{QCD} term):

\[|d_N| \sim 10^{-7} \times 10^{-24} \text{ e cm} \sim 10^{-31} \text{ e cm} \]
Naive estimate of scale of nucleon EDM

From Khriplovich & Lamoreux [5]:

- CP and P conserving magnetic moment \approx nuclear magneton μ_N.
 $$\mu_N = \frac{e}{2m_p} \sim 10^{-14} \text{ e cm}.$$

- A non-zero EDM requires:
 - P violation: price to pay is $\approx 10^{-7}$, and
 - CP violation (from K decays): price to pay is $\sim 10^{-3}$.

- In summary:
 $$|d_N| \sim 10^{-7} \times 10^{-3} \times \mu_N \sim 10^{-24} \text{ e cm}$$

- In Standard model (without θ_{QCD} term):
 $$|d_N| \sim 10^{-7} \times 10^{-24} \text{ e cm} \sim 10^{-31} \text{ e cm}$$

Region to search for BSM physics ($\theta_{QCD} = 0$) from nucleon EDMs:

$$10^{-24} \text{ e cm} > |d_N| > 10^{-31} \text{ e cm}.$$
Status of EDM searches I

EDM limits in units of [e cm]:

- Long-term goals for neutron, $^{199}_{80}$Hg, $^{129}_{54}$Xe, proton, and deuteron.
- Neutron equivalent values indicate value for neutron EDM d_n to provide same physics reach as indicated system:

<table>
<thead>
<tr>
<th>Particle</th>
<th>Current limit</th>
<th>Goal</th>
<th>d_n equivalent</th>
<th>date [ref]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron</td>
<td>$< 8.7 \times 10^{-29}$</td>
<td>$\approx 10^{-29}$</td>
<td></td>
<td>2014 [6]</td>
</tr>
<tr>
<td>Muon</td>
<td>$< 1.8 \times 10^{-19}$</td>
<td></td>
<td></td>
<td>2009 [7]</td>
</tr>
<tr>
<td>Tau</td>
<td>$< 1 \times 10^{-17}$</td>
<td></td>
<td></td>
<td>2003 [8]</td>
</tr>
<tr>
<td>Lambda</td>
<td>$< 3 \times 10^{-17}$</td>
<td></td>
<td></td>
<td>1981 [9]</td>
</tr>
<tr>
<td>Neutron</td>
<td>$(-0.21 \pm 1.82) \times 10^{-26}$</td>
<td>$\approx 10^{-28}$</td>
<td>10^{-28}</td>
<td>1981 [9]</td>
</tr>
<tr>
<td>$^{199}_{80}$Hg</td>
<td>$< 7.4 \times 10^{-30}$</td>
<td>10^{-30}</td>
<td>$< 1.6 \times 10^{-26}$ [11]</td>
<td>2015 [10]</td>
</tr>
<tr>
<td>$^{129}_{54}$Xe</td>
<td>$< 6.0 \times 10^{-27}$</td>
<td>$\approx 10^{-30}$ to 10^{-33}</td>
<td>$\approx 10^{-26}$ to 10^{-29}</td>
<td>2001 [13]</td>
</tr>
<tr>
<td>Proton</td>
<td>$< 2 \times 10^{-25}$</td>
<td>$\approx 10^{-29}$</td>
<td>10^{-29}</td>
<td>2016 [12]</td>
</tr>
<tr>
<td>Deuteron</td>
<td>not available yet</td>
<td>$\approx 10^{-29}$</td>
<td>$\approx 3 \times 10^{-29}$ to 5×10^{-31}</td>
<td>2016 [12]</td>
</tr>
</tbody>
</table>
Missing are *direct* EDM measurements:

- No direct measurements of electron: limit obtained from (ThO molecule).
- No direct measurements of proton: limit obtained from \({}^{199}_{80}\text{Hg} \).
- No measurement at all of deuteron EDM.
Experimental requirements for storage ring EDM searches

High precision, primarily electric storage ring

- Crucial role of alignment, stability, field homogeneity, and shielding from perturbing magnetic fields.
- High beam intensity: \(N = 4 \times 10^{10} \) particles per fill.
- High polarization of stored polarized hadrons: \(P = 0.8 \).
- Large electric fields: \(E = 10 \text{ MV/m} \).
- Long spin coherence time: \(\tau_{\text{SCT}} = 1000 \text{ s} \).
- Efficient polarimetry with
 - large analyzing power: \(A_y \approx 0.6 \),
 - and high efficiency detection \(f \approx 0.005 \).
High precision, primarily electric storage ring

- Crucial role of alignment, stability, field homogeneity, and shielding from perturbing magnetic fields.
- High beam intensity: \(N = 4 \times 10^{10} \) particles per fill.
- High polarization of stored polarized hadrons: \(P = 0.8 \).
- Large electric fields: \(E = 10 \text{ MV/m} \).
- Long spin coherence time: \(\tau_{\text{SCT}} = 1000 \text{ s} \).
- Efficient polarimetry with
 - large analyzing power: \(A_y \approx 0.6 \),
 - and high efficiency detection \(f \approx 0.005 \).

In terms of numbers given above:

- This implies:
 \[
 \sigma_{\text{stat}} = \frac{1}{\sqrt{N f \tau_{\text{SCT}} P A_y E}} \quad \Rightarrow \quad \sigma_{\text{stat}}(1 \text{ yr}) = 10^{-29} \text{ e cm}.
 \] (1)

- Experimentalist’s goal is to provide \(\sigma_{\text{syst}} \) to the same level.
Particles with magnetic and electric dipole moment

For particles with EDM \vec{d} and MDM $\vec{\mu}$ ($\propto \vec{s}$),

- **non-relativistic Hamiltonian:**
 \[
 H = -\vec{\mu} \cdot \vec{B} - \vec{d} \cdot \vec{E}.
 \]

- **Energy of magnetic dipole** invariant under P and T:
 \[
 P \text{ or } T \quad \Rightarrow \quad -\vec{\mu} \cdot \vec{B} \rightarrow -\vec{\mu} \cdot \vec{B},
 \]
 No other direction than spin $\Rightarrow \vec{d}$ parallel to $\vec{\mu}$ (\vec{s}).

- **Energy of electric dipole** $H = -\vec{d} \cdot \vec{E}$, includes term
 \[
 P \text{ or } T \quad \Rightarrow \quad \vec{s} \cdot \vec{E} \rightarrow -\vec{s} \cdot \vec{E},
 \]

- **Thus, EDMs violate both** P and T symmetry.
Introduction

Particles with magnetic and electric dipole moment

For particles with EDM \vec{d} and MDM $\vec{\mu}$ ($\propto \vec{s}$),

- **non-relativistic Hamiltonian:**

 $$H = -\vec{\mu} \cdot \vec{B} - \vec{d} \cdot \vec{E}.$$

- **Energy of magnetic dipole** invariant under P and T:

 $$\begin{align*}
 -\vec{\mu} \cdot \vec{B} &\stackrel{P \text{ or } T}{\rightarrow} -\vec{\mu} \cdot \vec{B}, \\
 \text{No other direction than spin } &\Rightarrow \vec{d} \text{ parallel to } \vec{\mu} (\vec{s}).
 \end{align*}$$

- **Energy of electric dipole** $H = -\vec{d} \cdot \vec{E}$, includes term

 $$\begin{align*}
 \vec{s} \cdot \vec{E} &\stackrel{P \text{ or } T}{\rightarrow} -\vec{s} \cdot \vec{E}, \\
 \text{Thus, EDMs violate both } P \text{ and } T \text{ symmetry.}
 \end{align*}$$

In rest frame of particle,

- **equation of motion for spin vector \vec{S}**:

 $$\frac{d\vec{S}}{dt} = \vec{\Omega} \times \vec{S} = \vec{\mu} \times \vec{B} + \vec{d} \times \vec{E}.$$

Electric Dipole Moment Searches using Storage Rings

Frank Rathmann (JEDI collaboration)
Frozen-spin

Spin precession frequency of particle relative to direction of flight:

\[
\vec{\Omega} = \vec{\Omega}_{\text{MDM}} - \vec{\Omega}_{\text{cyc}} \\
= -\frac{q}{\gamma m} \left[G \gamma \vec{B}_\perp + (1 + G) \vec{B}_\parallel - \left(G \gamma - \frac{\gamma}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right].
\] (5)

⇒ \(\vec{\Omega} = 0\) called frozen spin, because momentum and spin stay aligned.

- In the absence of magnetic fields \((B_\perp = B_\parallel = 0)\),

\[
\vec{\Omega} = 0, \text{ if } \left(G \gamma - \frac{\gamma}{\gamma^2 - 1} \right) = 0.
\] (6)

- Possible only for particles with \(G > 0\), such as proton \((G = 1.793)\) or electron \((G = 0.001)\).
Spin precession frequency of particle relative to direction of flight:

\[
\vec{\Omega} = \vec{\Omega}_{\text{MDM}} - \vec{\Omega}_{\text{cyc}} \\
= -\frac{q}{\gamma m} \left[G\gamma \vec{B}_\perp + (1 + G)\vec{B}_\parallel - \left(G\gamma - \frac{\gamma}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right].
\]

\[\Rightarrow \vec{\Omega} = 0 \text{ called frozen spin, because momentum and spin stay aligned.}\]

- In the absence of magnetic fields \((B_\perp = B_\parallel = 0)\),

\[
\vec{\Omega} = 0, \text{ if } \left(G\gamma - \frac{\gamma}{\gamma^2 - 1} \right) = 0.
\]

- Possible only for particles with \(G > 0\), such as proton \((G = 1.793)\) or electron \((G = 0.001)\).

For protons, \((6)\) leads to magic momentum:

\[
G - \frac{1}{\gamma^2 - 1} = 0 \iff G = \frac{m^2}{p^2} \iff p = \frac{m}{\sqrt{G}} = 700.740 \text{ MeV } c^{-1}
\]
Protons at magic momentum in pure electric ring:

Recipe to measure EDM of proton:

1. Place polarized particles in a storage ring.
2. Align spin along direction of flight at magic momentum. \[\Rightarrow \text{freeze horizontal spin precession.} \]
3. Search for time development of vertical polarization.

\[
\vec{\Omega} = 0 \quad \frac{d\vec{S}}{dt} = \vec{d} \times \vec{E}
\]
Protons at magic momentum in pure electric ring:

Recipe to measure EDM of proton:

1. Place polarized particles in a storage ring.
2. Align spin along direction of flight at magic momentum.
 \[\Rightarrow \text{freeze horizontal spin precession.} \]
3. Search for time development of vertical polarization.

\[\hat{\Omega} = 0 \]
\[\frac{d\vec{S}}{dt} = \vec{d} \times \vec{E} \]

New method to measure EDMs of charged particles:

- Magic rings with spin frozen along momentum of particle.
- Polarization buildup \(P_y(t) \propto d \).
For any sign of G, in *combined* electric and magnetic machine:

- Generalized solution for magic momentum

 $$E_r = \frac{GB_y c \beta \gamma^2}{1 - G \beta^2 \gamma^2},$$

 where E_r is radial, and B_y vertical field.

- Some configurations for circular machine with fixed radius $r = 25$ m:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>proton</td>
<td>1.793</td>
<td>701</td>
<td>232.8</td>
<td>16.789</td>
<td>0.000</td>
</tr>
<tr>
<td>deuteron</td>
<td>−0.143</td>
<td>1000</td>
<td>249.9</td>
<td>−3.983</td>
<td>0.160</td>
</tr>
<tr>
<td>helion</td>
<td>−4.184</td>
<td>1285</td>
<td>280.0</td>
<td>17.158</td>
<td>−0.051</td>
</tr>
</tbody>
</table>
Search for charged particle EDMs with frozen spins
Magic storage rings

For any sign of G, in *combined* electric and magnetic machine:

- Generalized solution for magic momentum
 \[E_r = \frac{G B_y c \beta \gamma^2}{1 - G \beta^2 \gamma^2}, \quad (8) \]
 where E_r is radial, and B_y vertical field.
- Some configurations for circular machine with fixed radius $r = 25$ m:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>proton</td>
<td>1.793</td>
<td>701</td>
<td>232.8</td>
<td>16.789</td>
<td>0.000</td>
</tr>
<tr>
<td>deuteron</td>
<td>-0.143</td>
<td>1000</td>
<td>249.9</td>
<td>-3.983</td>
<td>0.160</td>
</tr>
<tr>
<td>helion</td>
<td>-4.184</td>
<td>1285</td>
<td>280.0</td>
<td>17.158</td>
<td>-0.051</td>
</tr>
</tbody>
</table>

Offers possibility to determine

EDMs of protons, deuterons, and helions in one and the same machine.
Progress toward storage ring EDM experiments
Complementing the spin physics tool box

COoler SYnchrotron COSY

- Cooler and storage ring for (polarized) protons and deuterons.
- Momenta $p = 0.3 - 3.7\ \text{GeV}/c$.
- Phase-space cooled internal and extracted beams.
Progress toward storage ring EDM experiments
Complementing the spin physics tool box

COoler SYnchrotron COSY
- Cooler and storage ring for (polarized) protons and deuterons.
- Momenta \(p = 0.3 - 3.7 \text{ GeV/c} \).
- Phase-space cooled internal and extracted beams.

COSY formerly used as spin-physics machine for hadron physics:
- Provides an ideal starting point for srEDM related R&D.
- Will be used for a first direct measurement of deuteron EDM.
Progress toward storage ring EDM experiments

COSY Landscape

- WASA polarimeter
- EDDA polarimeter
- RF Wien filter equipped with Rogowski coils
- e-cooler
- Injection
Principle of spin-coherence time measurement

Measurement procedure:

1. Vertically polarized deuterons stored at $p \simeq 1$ GeV c$^{-1}$.
2. Polarization flipped into horizontal plane with RF solenoid (≈ 200 ms).
3. Beam extracted on Carbon target with ramped bump or by heating.
4. Horizontal (in-plane) polarization determined from $U - D$ asymmetry in polarimeter.
Measurement procedure:

1. Vertically polarized deuterons stored at $p \simeq 1 \text{ GeV} \text{ c}^{-1}$.
2. Polarization flipped into horizontal plane with RF solenoid ($\approx 200 \text{ ms}$).
3. Beam extracted on Carbon target with ramped bump or by heating.
4. Horizontal (in-plane) polarization determined from $U - D$ asymmetry in polarimeter.
Detector system: EDDA [14]

EDDA previously used to determine $\bar{p}p$ elastic polarization observables:

- Deuterons at $p = 1$ GeV c^{-1}, $\gamma = 1.13$, and $\nu_s = \gamma G \simeq -0.161$
- Spin-dependent differential cross section on unpolarized target:

$$N_{U,D} \propto 1 \pm \frac{3}{2} p_z A_y \sin(\nu_s f_{\text{rev}} t), \text{ where } f_{\text{rev}} = 781 \text{ kHz.}$$

(9)
Progress toward storage ring EDM experiments

Precision determination of the spin tune \([15, \text{JEDI 2015 PRL}]\)

- Time-stamping events accurately,
 - allows us to monitor phase of measured asymmetry with (assumed) fixed spin tune \(\nu_s\) in a 100 s cycle:

\[
\nu_s(n) = \nu_s^{\text{fix}} + \frac{1}{2\pi} \frac{d\phi}{dn} \quad (10)
\]

\[
= \nu_s^{\text{fix}} + \Delta \nu_s(n)
\]

- Experimental technique allows for:
 - Spin tune \(\nu_s\) determined to \(\approx 10^{-8}\) in 2 s time interval.
 - In a 100 s cycle at \(t \approx 38\) s, interpolated spin tune amounts to

\[
|\nu_s| = (16097540628.3 \pm 9.7) \times 10^{-11}, \text{ i.e., } \frac{\Delta \nu_s}{\nu_s} \approx 10^{-10}.
\]

\Rightarrow \text{new precision tool to study systematic effects in a storage ring.}
Spin tune as a precision tool for accelerator physics

Walk of spin tune ν_s [15].

Applications of new technique:

- Study long term stability of an accelerator.
- Feedback system to stabilize phase of spin precession relative to phase of RF devices (so-called phase-lock).
- Study of machine imperfections (see N.N. Nikolaev on Tu at 17:20).
Optimization of spin-coherence time: JEDI 2014 PRL [16]

2012: Observed experimental decay of asymmetry

\[\epsilon_{UD}(t) = \frac{N_D(t) - N_U(t)}{N_D(t) + N_U(t)}. \quad (11) \]
Progress toward storage ring EDM experiments

Optimization of spin-coherence time: JEDI 2014 PRL [16]

\[\tau_{\text{SCT}} \approx 20 \text{ s} \]

2012: Observed experimental decay of asymmetry

\[\epsilon_{\text{UD}}(t) = \frac{N_D(t) - N_U(t)}{N_D(t) + N_U(t)}. \quad (11) \]

\[\tau_{\text{SCT}} \approx 400 \text{ s} \]

2013: Using sextupole magnets, higher order effects are corrected, and spin coherence substantially increased.
More optimizations of spin-coherence time: JEDI 2016 PRL [18]

Recent progress on τ_{SCT}:

$\tau_{\text{SCT}} = (782 \pm 117) \text{ s}$

- Previously:
 $\tau_{\text{SCT}}(\text{VEPP}) \approx 0.5 \text{ s} [17]$
 ($\approx 10^7$ spin revolutions).
More optimizations of spin-coherence time: JEDI 2016 PRL [18]

Recent progress on τ_{SCT}:

$\tau_{SCT} = (782 \pm 117) \text{ s}$

- Previously:
 \[\tau_{SCT}^{\text{(VEPP)}} \approx 0.5 \text{ s} \] [17]
 \(\approx 10^7 \text{ spin revolutions} \).

Spring 2015: Way beyond anybody’s expectation:

- With about 10^9 stored deuterons.
- Long spin coherence time was one of main obstacles of srEDM experiments.
- Large value of τ_{SCT} of crucial importance (1), since $\sigma_{\text{stat}} \propto \frac{1}{\tau_{SCT}}$.
Progress toward storage ring EDM experiments

Phase locking spin precession in machine to device RF

At COSY, frozen spin is not possible

⇒ To achieve precision for EDM, phase-locking is next best thing to do.

Feedback system maintains

1. resonance frequency, and
2. phase between spin precession and device RF (solenoid or Wien filter)

Major achievement: Error of phase-locking

$\sigma_{\phi} = 0.21$ rad

JEDI 2017 PRL[19]
Progress toward storage ring EDM experiments

Phase locking spin precession in machine to device RF

At COSY, frozen spin is not possible

⇒ To achieve precision for EDM, phase-locking is next best thing to do.

Feedback system maintains

1. resonance frequency, and
2. phase between spin precession and device RF (solenoid or Wien filter)

Major achievement: Error of phase-lock $\sigma_\phi = 2.1$ rad

JEDI 2017 PRL [19]

![Diagram of feedback system and data plots](image)
Phase locking spin precession in machine to device RF

At COSY, frozen spin is not possible
⇒ To achieve precision for EDM, phase-locking is next best thing to do.

Feedback system maintains

1. resonance frequency, and
2. phase between spin precession and device RF (solenoid or Wien filter)

Major achievement: Error of phase-lock $\sigma_\phi = 0.21$ rad

JEDI 2017 PRL [19].
More technical challenges of storage ring EDM experiments

Overview

Charged particle EDM searches require development of new class of high-precision machines with mainly electric fields for bending and focussing:

Main issues:

- Large electric field gradients ~ 10 to $20\,\text{MV/m}$.
- Spin coherence time $\tau_{\text{SCT}} \sim 1000\,\text{s}$ [18].
- Continuous polarimetry with relative errors $< 1\,\text{ppm}$ [20].
- Beam position monitoring with precision of $10\,\text{nm}$.
- High-precision spin tracking.
- Alignment of ring elements, ground motion, ring imperfections.
- Magnetic shielding.
- For deuteron EDM with frozen spin: precise reversal of magnetic fields for CW and CCW beams required.
E/B Deflector development using small-scale lab setup

Kirill Grigoriev (IKP, RWTH Aachen and FZJ)

- Polished stainless steel
 - 240 MV/m reached at distance of 0.05 mm with half-sphere facing flat surface.
 - 17 MV/m with 1 kV at 1 mm with two small half-spheres.
- Polished aluminum
 - 30 MV/m measured at distance of 0.1 mm using two small half-spheres.
- TiN coating
 - Smaller breakdown voltage.
 - Zero dark current.
E/B deflector development using real-scale lab setup

Equipment:
- Dipole magnet $B_{\text{max}} = 1.6$ T
- Mass = 64 t
- Gap height = 200 mm
- Protection foil between chamber wall and deflector

Parameters:
- Electrode length = 1020 mm
- Electrode height = 90 mm
- Electrode spacing = 20 to 80 mm
- Max. electric field = ±200 MV
- Material: Aluminum coated by TiN
E/B deflector development using real-scale lab setup

Equipment:
- Dipole magnet $B_{\text{max}} = 1.6$ T
- Mass = 64 t
- Gap height = 200 mm
- Protection foil between chamber wall and deflector

Parameters:
- Electrode length = 1020 mm
- Electrode height = 90 mm
- Electrode spacing = 20 to 80 mm
- Max. electric field = ± 200 MV
- Material: Aluminum coated by TiN

Next steps:
Equipment ready for assembling. First test results expected before Christmas.
Beam position monitors for srEDM experiments

Compact new development based on segmented Rogowski coil

- Main advantage is short installation length of $\approx 1\,\text{cm}$ (along beam direction)

Conventional BPM
- Easy to manufacture
- length $= 20\,\text{cm}$
- resolution $\approx 10\,\mu\text{m}$

Rogowski BPM
- Excellent rf-signal response
- length $= 1\,\text{cm}$
- resolution $\approx 1.25\,\mu\text{m}$
Beam position monitors for srEDM experiments

Compact new development based on segmented Rogowski coil
- Main advantage is short installation length of ≈ 1 cm (along beam direction)

Conventional BPM
- Easy to manufacture
- Length = 20 cm
- Resolution ≈ 10 µm

Rogowski BPM
- Excellent rf-signal response
- Length = 1 cm
- Resolution ≈ 1.25 µm

- Two Rogowski coils already installed at entrance and exit of RF Wien filter
dC polarimetry data base I

Motivation: Optimize polarimetry for ongoing JEDI activities:
- Determine vector and tensor analyzing powers A_y, A_{yy}, and differential cross sections $d\sigma/d\Omega$ of dC elastic scattering at
 - deuteron kinetic energies $T = 170 - 380$ MeV.

Detector system: former WASA forward detector, modified
- Targets: C and CH2
- Full azimuthal coverage, scattering angle range $\theta = 4^\circ - 17^\circ$.

Diagram

- **Target position**
- **Window Counters**
 - Plastic scintillators
- **Proportional Chambers**
- **Range Hodoscopes**
 - Plastic scintillators
- **Trigger Hodoscope**
 - Plastic scintillator

Coordinates:
- 17°
- 4°
Preliminary results of elastic dC analyzing powers

- Analysis of differential dC cross sections in progress.
- JEDI just finished another similar data base run to provide pC data base.
Preliminary results of elastic dC analyzing powers

- Analysis of differential dC cross sections in progress.
- JEDI just finished another similar data base run to provide pC data base.

see talk by Fabian Müller on We at 17:20
High-precision beam polarimeter with internal C target

Based on LYSO Scintillation Material

- Saint-Gobain Ceramics & Plastics: Lu$_{1.8}$Y$_{2}$SiO$_{5}$:Ce
- Compared to NaI, LYSO provides
 - high density (7.1 vs 3.67 g/cm3),
 - very fast decay time (45 vs 250 ns).

After several runs with external beam:

- System ready for installation at COSY in 2019.
- Not yet ready: Ballistic diamond pellet target for homogeneous beam sampling.

see talk by Dito Shergelashvili on We at 17:00
Study of machine imperfections

JEDI developed a new method to investigate magnetic machine imperfections based on the highly accurate determination of the spin-tune Saleev PR AB 2017 [21].

Spin tune mapping

- Two cooler solenoids act as spin rotators ⇒ generate artificial imperfection fields.
- Measure spin tune shift vs spin kicks.

- Position of saddle point determines tilt of stable spin axis by magnetic imperfections.
- Control of background from MDM at level $\Delta c = 2.8 \times 10^{-6}$ rad.
- Systematics-limited sensitivity for deuteron EDM at COSY $\sigma_d \approx 10^{-20}$ e cm.

see talk of N.N. Nikolaev on Tu at 17:20.
Prototype EDM storage ring

Next step:
- Build **demonstrator for charged-particle EDM**.
- Project prepared by a new CPEDM collaboration (CERN + JEDI).
 - Physics Beyond Collider process (CERN), and the
 - European Strategy for Particle Physics Update.
- Possible host sites: COSY or CERN

Scope of the project
- 30 MeV protons, all-electric operation, CW-CCW beams, 100 m circumference

- Storage time
- CW/CCW operation
- Spin coherence time
- Polarimetry
- Magnetic moment effects
- (pEDM measurement)
- Stochastic cooling

Electric Dipole Moment Searches using Storage Rings

Frank Rathmann (JEDI collaboration)
Prototype EDM storage ring

Next step:

- Build **demonstrator for charged-particle EDM**.
- Project prepared by a new CPEDM collaboration (CERN + JEDI).
 - Physics Beyond Collider process (CERN), and the
 - European Strategy for Particle Physics Update.
- Possible host sites: COSY or CERN

Scope of the project

30 MeV protons, all-electric operation, CW-CCW beams, 100 m circumference

Subject discussed in detail by Sig Martin on We at 16:40

- Storage time
- Polarimetry
- Magnetic moment effects
- \(p\text{EDM} \) measurement
- Stochastic cooling
Highest EDM sensitivity shall be achieved with a new type of machine:

- An **electrostatic circular storage** ring, where
 - centripetal force produced primarily by electric fields.
 - E field couples to EDM and provides required sensitivity ($< 10^{-28}$ e cm).
 - In this environment, magnetic fields mean evil (since μ is large).
Proof of principle experiment using COSY

Precursor experiment

Highest EDM sensitivity shall be achieved with a new type of machine:

- An **electrostatic circular storage** ring, where
 - centripetal force produced primarily by electric fields.
 - E field couples to EDM and provides required sensitivity ($< 10^{-28} \text{ e cm}$).
 - In this environment, magnetic fields mean evil (since μ is large).

Idea behind proof-of-principle experiment with novel RF Wien filter ($\vec{E} \times \vec{B}$):

- In magnetic machine, particle spins (deuterons, protons) precess about stable spin axis (\simeq direction of magnetic fields in dipole magnets).
- Use RF device operating on some harmonic of the spin-precession frequency:
 - \Rightarrow Phase lock between spin precession and device RF.
 - \Rightarrow Allows one to accumulate EDM effect as function of time in cycle ($\sim 1000 \text{ s}$).
Proof of principle experiment using COSY

Precursor experiment

Highest EDM sensitivity shall be achieved with a new type of machine:

- An **electrostatic circular storage** ring, where
 - centripetal force produced primarily by electric fields.
 - E field couples to EDM and provides required sensitivity ($< 10^{-28}$ e cm).
 - In this environment, magnetic fields mean evil (since μ is large).

Idea behind proof-of-principle experiment with novel RF Wien filter ($\vec{E} \times \vec{B}$):

- In magnetic machine, particle spins (deuterons, protons) precess about stable spin axis (\simeq direction of magnetic fields in dipole magnets).
- Use RF device operating on some harmonic of the spin-precession frequency:
 - \Rightarrow Phase lock between spin precession and device RF.
 - \Rightarrow Allows one to accumulate EDM effect as function of time in cycle (~ 1000 s).

Goal of proof-of-principle experiment:

Show that conventional storage ring useable for first direct EDM measurement
RF Wien filter

A couple more aspects about the technique:

- RF Wien filter \((\vec{E} \times \vec{B})\) avoids coherent betatron oscillations in the beam:
 - Lorentz force \(\vec{F}_L = q(\vec{E} + \vec{v} \times \vec{B}) = 0\).
 - EDM measurement mode: \(\vec{B} = (0, B_y, 0)\) and \(\vec{E} = (E_x, 0, 0)\).

![Diagram of RF Wien filter with stored d and Polarimeter (dp elastic)]
RF Wien filter

A couple more aspects about the technique:

- RF Wien filter \((\vec{E} \times \vec{B})\) avoids coherent betatron oscillations in the beam:
 - Lorentz force \(\vec{F}_L = q(\vec{E} + \vec{v} \times \vec{B}) = 0\).
 - EDM measurement mode: \(\vec{B} = (0, B_y, 0)\) and \(\vec{E} = (E_x, 0, 0)\).

- Deuteron spins lie in machine plane.
- If \(d \neq 0\) \(\Rightarrow\) accumulation of vertical polarization \(P_y\), during spin coherence time \(\tau_{SCT} \sim 1000\) s.
RF Wien filter

A couple more aspects about the technique:

- RF Wien filter \((\vec{E} \times \vec{B})\) avoids coherent betatron oscillations in the beam:
 - Lorentz force \(\vec{F}_L = q(\vec{E} + \vec{v} \times \vec{B}) = 0\).
 - EDM measurement mode: \(\vec{B} = (0, B_y, 0)\) and \(\vec{E} = (E_x, 0, 0)\).

- Deuteron spins lie in machine plane.
- If \(d \neq 0\) ⇒ accumulation of vertical polarization \(P_y\), during spin coherence time \(\tau_{SCT} \sim 1000\) s.

Statistical sensitivity:

- in the range \(10^{-23}\) to \(10^{-24}\) e cm for \(d(\text{deuteron})\) possible.
- Systematic effects: Alignment of magnetic elements, magnet imperfections, imperfections of RF-Wien filter etc.
Model calculation of EDM buildup with RF Wien filter

Ideal COSY ring with deuterons at $p_d = 970$ MeV/c:

- $G = -0.143$, $\gamma = 1.126$, $f_s = |f_{\text{rev}}(\gamma G + K_{(=0)})| \approx 120.765$ kHz
- Electric RF field integral assumed $1000 \times \int E_{WF} \cdot d\ell \approx 2200$ kV (w/o ferrites)

Slim 2016 NIM [22].

EDM accumulates in $P_y(t) \propto d_{\text{EDM}}$ [21, 23, 24].
RF Wien filter

Overview

- RF Wien filter between PAX magnets.
RF Wien filter

Overview

- RF Wien filter between PAX magnets.
RF Wien filter

Overview

- RF Wien filter between PAX magnets. Upstream Rogowski coil;
RF Wien filter

Overview

- RF Wien filter between PAX magnets. Upstream Rogowski coil; racks with power amplifiers, each unit delivers up to 500 W;
RF Wien filter

Overview

- RF Wien filter between PAX magnets. Upstream Rogowski coil; racks with power amplifiers, each unit delivers up to 500 W; water-cooled 25 Ω resistor.
Design of RF Wien filter

Device developed at Jülich in cooperation with RWTH Aachen:

- Institute of High Frequency Technology, RWTH Aachen University:
 - Heberling, Hölscher, and PhD Student Jamal Slim, and ZEA-1 of Jülich.
- Waveguide provides $\vec{E} \times \vec{B}$ by design.
- Minimal \vec{F}_L by careful electromagnetic design of all components [22].
Strength of EDM resonance

EDM induced vertical polarization oscillations,

- can generally be described by
 \[p_y(t) = a \sin(\Omega_{py} t + \phi_{RF}) . \tag{12} \]

- Define **EDM resonance strength** \(\varepsilon_{\text{EDM}} \) as ratio of angular frequency \(\Omega_{py} \) relative to orbital angular frequency \(\Omega_{\text{rev}} \),
 \[\varepsilon_{\text{EDM}} = \frac{\Omega_{py}}{\Omega_{\text{rev}}}, \tag{13} \]

Alternatively, \(\varepsilon_{\text{EDM}} \) is determined from the measured initial slopes \(\dot{p}_y(t)|_{t=0} \)

- through variation of \(\phi_{RF} \)
 \[\varepsilon_{\text{EDM}} = \frac{\dot{p}_y(t)|_{t=0}}{a \cos \phi_{RF}} \cdot \frac{1}{\Omega_{\text{rev}}}. \tag{14} \]

- If \(|\vec{P}| = 1 \) \(\Rightarrow \dot{p}_y(t) = \dot{\alpha}(t) \)
First measurement of EDM-like buildup signals

Rate of out-of-plane rotation angle $\dot{\alpha}(t)|_{t=0}$ as function of Wien filter RF phase ϕ_{RF}

- B field of RF Wien filter normal to the ring plane.
- Wien filter operated at $f_{\text{WF}} = 871 \text{ kHz}$.
- Variations of $\phi_{\text{rot}}^{\text{WF}}$ and $\chi_{\text{rot}}^{\text{Sol1}}$ affect the pattern of observed initial slopes $\dot{\alpha}$.

\[\dot{\alpha} \text{ for } \phi_{\text{rot}}^{\text{WF}} = -1^\circ, 0^\circ, +1^\circ \text{ and } \chi_{\text{rot}}^{\text{Sol1}} = 0. \]

\[\dot{\alpha} \text{ for } \chi_{\text{rot}}^{\text{Sol1}} = -1, 0, +1^\circ \text{ and } \phi_{\text{rot}}^{\text{WF}} = 0. \]

Next steps:

- After commissioning, first EDM run scheduled for Nov-Dec/2018.
- see talk by Alexander Nass on Tu at 18:00
Axion-EDM search using storage ring

Motivation: Paper by Graham and Rajendran [25, 2011]

- Oscillating axion field is coupled with gluons and induces an oscillating EDM in hadronic particles.

Measurement principle:

- When oscillating EDM resonates with particle $g-2$ precession frequency in the storage ring, the EDM precession can be accumulated.
- Due to strong effective electric field ($\vec{v} \times \vec{B}$), sensitivity is improved significantly.

Coursey of Seongtae Park (IBS, Daejeon, ROK)
Limits for axion-gluon coupled to oscillating EDM

from Ref. [26]

Realization

- No new/additional equipment required!
- Can be done in magnetic storage ring (i.e., COSY)
- Proposal for test beam time accepted by CBAC.
- Experiment scheduled for I/2019.
Search for charged particle EDMs:

- New window to disentangle sources of CP violation, and to possibly explain matter-antimatter asymmetry of the Universe.

- JEDI is making steady progress in spin dynamics of relevance to future searches for EDM.
- COSY remains a unique facility for such studies.
- First direct JEDI deuteron EDM measurement at COSY well underway.
 - Run scheduled for Nov-Dec.
 - Sensitivity $10^{-19} - 10^{-20}$ e cm.

- Strong interest of high energy community in storage ring searches for EDM of protons and light nuclei as part of physics program of the post-LHC era.
- Proposal for prototype all-electric 30 MeV EDM storage ring being prepared (possible hosts: CERN or COSY).
- Crossed $\vec{E} \times \vec{B}$ field prototype EDM storage ring might be an option before going to a TDR for the ultimate EDM machine.
JEDI Collaboration

JEDI = Jülich Electric Dipole Moment Investigations

- ~ 140 members (Aachen, Daejeon, Dubna, Ferrara, Indiana, Ithaka, Jülich, Krakow, Michigan, Minsk, Novosibirsk, St Petersburg, Stockholm, Tbilisi, ...)
- http://collaborations.fz-juelich.de/ikp/jedi
Spares
Thomas-BMT equation with EDM and MDM

When particles orbit in an accelerator,

- Spin equation expressed in curvilinear laboratory reference frame.
- Solution called Thomas-BMT equation [27, 28] (historically ignoring EDM).
- Generalized form of Thomas-BMT equation, including EDMs [29]:

\[
\frac{d\vec{S}}{dt} = \vec{\Omega}_{MDM} \times \vec{S} + \vec{\Omega}_{EDM} \times \vec{S}, \quad \text{where}
\]

\[
\vec{\Omega}_{MDM} = -\frac{q}{m} \left[\left(G + \frac{1}{\gamma} \right) \vec{B} - \frac{G \gamma}{\gamma + 1} (\vec{\beta} \cdot \vec{B}) \vec{\beta} - \left(G + \frac{1}{\gamma + 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right],
\]

(15)

\[
\vec{\Omega}_{EDM} = -\frac{q}{mc} \frac{\eta_{EDM}}{2} \left[\vec{E} - \frac{\gamma}{\gamma + 1} (\vec{\beta} \cdot \vec{E}) \vec{\beta} + c \vec{\beta} \times \vec{B} \right].
\]

- \vec{S} given in particle rest frame, \vec{E} and \vec{B} in laboratory system.
- MDM and EDM defined via dimensionless quantities g and η_{EDM}:

\[
\vec{\mu} = g \frac{q}{2m} \vec{S}, \quad \text{and} \quad \vec{d} = \eta_{EDM} \frac{q}{2mc} \vec{S}, \quad \text{with} \quad G = \frac{g - 2}{2}.
\]

(16)
Another way to look at $\tilde{\Omega}_{\text{MDM}}$:

- Decomposing precession frequencies: $\tilde{\Omega}_{B\parallel}$, $\tilde{\Omega}_{B\perp}$, and $\tilde{\Omega}_{E\perp}$ leads to

$$
\tilde{\Omega}_{\text{MDM}} = \tilde{\Omega}_{B\parallel} + \tilde{\Omega}_{B\perp} + \tilde{\Omega}_{E\perp} = -\frac{q}{\gamma m} \left[(1 + G\gamma)\vec{B}_{\perp} + (1 + G)\vec{B}_{\parallel} - \left(G\gamma + \frac{\gamma}{\gamma + 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]
$$

- Including an electric field, cyclotron frequency becomes

$$
\tilde{\Omega}_{\text{cyc}} = -\frac{q}{\gamma m} \left(\vec{B}_{\perp} - \frac{\vec{\beta} \times \vec{E}}{\beta^2 c} \right), \quad \text{and}
$$

- Particle momentum vector \vec{p} rotates with

$$
\frac{d\vec{p}}{dt} = \tilde{\Omega}_{\text{cyc}} \times \vec{p}.
$$
Expectation for $d = 10^{-20}$ e cm in ideal COSY ring

(a) ε^{EDM} for $d = 10^{-20}$ e cm.

(b) Contour plot of (a).

Resonance strengths ε^{EDM} from Eq. (13) (≈ 175 random-points)

- $\phi^{\text{WF}}_{\text{rot}} = [-1^\circ, \ldots, +1^\circ]$,
- $\chi^{\text{Sol} 1}_{\text{rot}} = [-1^\circ, \ldots, +1^\circ]$ (100 keV cooler), and
- $\chi^{\text{Sol} 2}_{\text{rot}} = 0$ (2 MeV cooler).

- Each point from calculation with $n_{\text{turns}} = 50\,000$ and $n_{\text{points}} = 200$.
Expectation for $d = 10^{-18}$ e cm in ideal COSY ring

(c) ε^EDM for $d = 10^{-18}$ e cm.

(d) Contour plot of (c).

Resonance strengths ε^EDM from Eq. (13) (\approx 175 random-points)

- $\phi_{\text{rot}}^{WF} = [-0.1^\circ, \ldots, +0.1^\circ]$,
- $\chi_{\text{rot}}^{\text{Sol 1}} = [-0.1^\circ, \ldots, +0.1^\circ]$ (100 keV cooler), and
- $\chi_{\text{rot}}^{\text{Sol 2}} = 0$ (2 MeV cooler).

Each point from calculation with $n_{\text{turns}} = 200\,000$ and $n_{\text{points}} = 100$.
References I

References II

References III

