Spin-dependent PDFs from Lattice QCD

Fernanda Steffens University of Bonn

In collaboration with: Constantia Alexandrou (Univ. of Cyprus; Cyprus Institute), Krzysztof Cichy (Adam Mickiewicz, Poland) Martha Constantinou (Temple University) Karl Jansen (DESY – Zeuthen) Haralambos Panagopoulos (Uni. Of Cyprus) Aurora Scapellato (HPC-LEAP; Uni. Of Cyprus; Uni. of Wuppertal)

Quark distributions and quasi-distributions

Cross sections are measured

Cross sections written in terms of structure functions:

 $F_1(x,Q^2), F_2(x,Q^2), g_1(x,Q^2), g_2(x,Q^2), \cdots$

QCD + OPE:

$$dxx^{n-2}F_2(x,Q^2) = \sum_i a_n^{(i)}C_n^{(i)}(Q^2)$$

$$\langle P | \mathcal{O}_{\mu_1 \cdots \mu_n} | P \rangle = a_n P_{\mu_1} \cdots P_{\mu_2}$$

Moments of the parton distributions:

At leading order (LO) in pQCD:,

$$a_n = \int dx \; x^{n-1} q(x)$$

$$F_2(x, Q^2) = x \sum_q e_q^2 q(x, Q^2)$$

Parton distributions

Light-cone quark distributions

The most general form of the matrix element is:

 $\langle P|O^{\mu_1\mu_2\cdots\mu_n}|P\rangle=2a_n^{(0)}\Pi^{\mu_1\mu_2\cdots\mu_n}$

$$\Pi^{\mu_1\mu_2\cdots\mu_n} = \sum_{j=0}^k (-1)^j \frac{(2k-j)!}{2^j (2k)!} \{g\cdots gP\cdots P\}_{k,j} (P^2)^j$$

We use the following four-vectors

$$P = (P_0, 0, 0, P_3)$$
 $\lambda = (1, 0, 0, -1)/\sqrt{2}$ $\lambda \cdot P = (P_0 + P_3)/\sqrt{2} = P_+$

$$\lambda_{\mu_1} \lambda_{\mu_2} \left\langle P \left| O^{\mu_1 \, \mu_2} \right| P \right\rangle = 2a_n^{(0)} \left(P^+ P^+ - \lambda^2 \, \frac{M^2}{4} \right) = 2a_n^{(0)} P^+ P^+$$

In general, we have

Matrix elements projected on the light-cone are protected from target mass corrections

Taking the inverse Mellin transform

 $a_n^{(0)} = \langle P | O^{+\dots+} | P \rangle / 2 (P^+)^n$

$$a_n^{(0)} = \int dx \ x^{n-1}q(x) \qquad q(x) = \frac{1}{2\pi i} \int_{-i\infty}^{+i\infty} dn \ x^{-n} a_n^{(0)}$$

Using

$$q(x) = \int_{-\infty}^{+\infty} \frac{d\xi^{-}}{4\pi} e^{-ixP^{+}\xi^{-}} \langle P | \bar{\psi}(\xi^{-})\gamma^{+}W(\xi^{-},0)\psi(0) | P \rangle$$
$$W(\xi^{-},0) = e^{-ig\int_{0}^{\xi^{-}}A^{+}(\eta^{-})d\eta^{-}} \quad \text{(Wilson line)}$$

- Light cone correlations
- Equivalent to the distributions in the Infinite Momentum Frame
- Light cone dominated $\xi^2 = t^2 z^2 \sim 0$
- Not calculable on Euclidian lattice $t^2 + z^2 \sim 0$
- Moments, however, can be calculated

Moments of the distributions

- If a sufficient number of moments are calculated, one can reconstruct the *x* dependence of the distributions;
- Hard to simulate high order derivatives on the lattice;
- Nevertheless, the first few moments can be calculated

Extracting the moments

$$C^{2pt}(\vec{P}, t, t') = \frac{e^{-E_0(t-t')}}{2E_0} \langle \Omega|N(P)|0\rangle \langle 0|\bar{N}(P)|\Omega\rangle, \quad t \gg t' \quad \text{(the two point function)}$$

$$Nucleon \text{ mass}$$

$$C^{3pt}_{\Gamma}(t, \tau, t'; \vec{P}, \vec{P}) = \frac{Tr\left(\Gamma(\gamma_{\mu}P_0^{\mu} + m)\mathcal{O}_{00}(\gamma_{\mu}P_0^{\mu} + m)\right)}{2E Tr\left(\Gamma'(\gamma_{\mu}P_0^{\mu} + m)\right)}, \quad t \gg \tau \gg t'$$

$$Disconnected$$

$$N(x)$$

$$V(x)$$

$$N(x)$$

$$V(x)$$

Example: Proton spin decomposition

 $\left\langle N(p',s') \left| \mathcal{O}_A^{\mu,q} \right| N(p,s) \right\rangle = \bar{u}_N(p',s') g_A^q(Q^2) \gamma^\mu \gamma_5 u_N(p,s)$

$$\Delta \Sigma = g_A^{(0)} = \sum_q g_A^q(0) = \Delta u + \Delta d + \Delta s + \cdots$$

 $\langle x \rangle^q = A^q_{20}(0)$

Total helicity carried by quarks

 $\left\langle N(p',s') \left| \mathcal{O}_V^{\mu\nu} \right| N(p,s) \right\rangle = \bar{u}_N(p',s') \Lambda_q^{\mu\nu}(Q^2) u_N(p,s)$

$$\Lambda_{q}^{\mu\nu}(Q^{2}) = A_{20}^{q}(Q^{2})\gamma^{\{\mu}P^{\nu\}} + B_{20}^{q}(Q^{2})\frac{\sigma^{\{\mu\alpha}q_{\alpha}P^{\nu\}}}{2m} + C_{20}^{q}(Q^{2})\frac{Q^{\{\mu}Q^{\nu\}}}{m}$$

Average fraction x of the nucleon momentum carried by quark q

The total quark angular momentum is given by

$$J^{quark} = \frac{1}{2} \sum_{q} \left(A_{20}^{q}(0) + B_{20}^{q}(0) \right) = \frac{1}{2} \Delta \Sigma + L^{quarks}$$

Similar expression can be obtained for the total angular momentum of gluons, *J^{gluon}*

Orbital angular momentum carried by quarks

Results for $\mu = 2$ GeV

C. Alexandrou et al., arXiv: 1706.02973, PRL 119 (2017) 034503

Still, we need to go beyond the moments to a deeper understanding of the parton dynamics

 $\mathcal{O}(y)$

 $\star_{\mathcal{O}(y)}$

х О(у)

 $\langle x \rangle$

0.092(41)(0)

0.267(22)(27)

N(x)

N(x)

N(x)

Quasi Distributions

X. Ji, "Parton Physics on a Euclidean Lattice," PRL 110 (2013) 262002.

Suppose we project outside the light-cone:

$$\lambda = (0,0,0,-1)$$
 $P = (P_0,0,0,P_3)$ $\lambda \cdot P = P_3$

For example, for n=2

$$\langle P|O^{33}|P\rangle = 2\tilde{a}_n^{(0)}(P^3P^3 - \lambda^2P^2/4) = 2\tilde{a}_n^{(0)}((P^3)^2 + P^2/4)$$

Mass terms contribute

After the inverse Mellin transform,

$$\tilde{q}(x,P_3) = \int_{-\infty}^{+\infty} \frac{dz}{4\pi} e^{-izxP_3} \langle P | \bar{\psi}(z) \gamma^3 W(z,0) \psi(0) | P \rangle + \mathcal{O}\left(\frac{M^2}{P_3^2}, \frac{\Lambda_{QCD}^2}{P_3^2}\right)$$

 Nucleon moving with finite momentum in the z direction

Higher twist

- Pure spatial correlation
- Can be simulated on a lattice

The light cone distributions:

$$x = \frac{k^+}{P^+}$$
$$0 \le x \le 1$$

Distributions can be defined in the infinite momentum frame: $P_3, P^+ \rightarrow \infty$

Quasi distributions:

 P_3 large but finite

Usual partonic interpretation is lost

x < 0 or x > 1 is possible

But they can be related to each other!

Extracting quark distributions from quark quasi-distributions

Infrared region untouched when going from finite to infinite momentum

Infinite momentum:

 $p_3 \rightarrow \infty$

(before integrating over the quark transverse momentum k_T)

$$q(x,\mu) = q_{bare}(x) \left\{ 1 + \frac{\alpha_s}{2\pi} Z_F(\mu) \right\} + \frac{\alpha_s}{2\pi} \int_x^1 \Gamma\left(\frac{x}{y},\mu\right) q_{bare}(y) \frac{dy}{y} + \mathcal{O}(\alpha_s^2)$$

Finite momentum:

 p_3 fixed

$$\tilde{q}(x,P_3) = q_{bare}(x) \left\{ 1 + \frac{\alpha_s}{2\pi} \tilde{Z}_F(P_3) \right\} + \frac{\alpha_s}{2\pi} \int_{x/y_c}^1 \tilde{\Gamma}\left(\frac{x}{y}, P_3\right) q_{bare}(y) \frac{dy}{y} + \mathcal{O}(\alpha_s^2)$$

 $\tilde{q}(\pm y_c) = 0$

In principle, $y_c \to \infty$

Perturbative QCD in the continuum

$$q(x,\mu) = \tilde{q}(x,p_3) - \frac{\alpha_s}{2\pi} \tilde{q}(x,p_3) \delta Z_F\left(\frac{\mu}{p_3}, x_c\right) - \frac{\alpha_s}{2\pi} \int_{-x_c}^{-|x|/y_c} \delta \Gamma\left(y,\frac{\mu}{p_3}\right) \tilde{q}\left(\frac{x}{y}, p_3\right) \frac{dy}{|y|} - \frac{\alpha_s}{2\pi} \int_{+|x|/y_c}^{+x_c} \delta \Gamma\left(y,\frac{\mu}{p_3}\right) \tilde{q}\left(\frac{x}{y}, p_3\right) \frac{dy}{|y|}$$

 $\delta \Gamma = \tilde{\Gamma} - \Gamma$

Matching equation

$$\delta Z_F = \tilde{Z}_F - Z_F$$

X. Xiong, X. Ji, J. H. Zhang and Y. Zhao, PRD 90 014051 (2014)
C.Alexandrou, K.Cichy, V.Drach, E.Garcia-Ramos, K.Hadjiyiannakou, K.Jansen, F.Steffens and C.Wiese, PRD 92 014502 (2015)
W. Wang, S. Zhao and R. Zhu, Eur. Phys. J. C78 (2018) 147;
W. Stewart, Y. Zhao, PRD 97 054512 (2018)
T.Izubuchi, X.Ji, L.Jin, I.W.Stewart and Y.Zhao, arXiv:1801.03917
C.Alexandrou, K.Cichy, M.Constantinou, K.Jansen, A.Scapellato and F.Steffens, arXiv:1803.02685, to appear in PRL

Main steps of the procedure:

- 1. Compute the matrix elements between proton states with finite P_3 ;
- 2. Non-perturbative renormalization of the matrix elements;
- 3. Fourier transform to obtain the quasi-PDF $\tilde{q}(x, P_3, \mu)$;
- 4. Matching procedure to obtain the light-cone PDF $q(x, \mu)$;
- 5. Apply Target Mass Corrections (TMCs) to correct for the powers of M^2/P_3^2 .

Computation of matrix elements

$$\frac{C^{3pt}(T_s,\tau,0;P_3)}{C^{2pt}(T_s,0;P_3)} \propto \Delta h(P_3,z), \qquad 0 \ll \tau \ll T_s$$

With the 3 point function given by:

$$C^{3pt}(t,\tau,0) = \left\langle N_{\alpha}(\vec{P},t)\mathcal{O}(\tau)\overline{N_{\alpha}}(\vec{P},0) \right\rangle$$

And

$$\mathcal{O}(z,\tau,Q^2=0) = \sum_{\vec{y}} \bar{\psi}(y+z)\gamma^3\gamma^5 W(y+z,y)\psi(y)$$

Where the matrix elements (ME) are: $\Delta h(P_3, z) = \langle P | \bar{\psi}(z) \gamma^3 \gamma^5 W(z, 0) \psi(0) | P \rangle$

Setup:

$$N_f = 2,$$
 $\beta = \frac{6}{g_0^2} = 2.10,$ $a = 0.0938(3)(2) fm$
 $48^3 \times 96,$ $L = 4.5 fm,$ $m_\pi = 0.1304(4) \ GeV,$ $m_\pi L = 2.98(1)$

$$P_3 = \frac{6\pi}{L}, \frac{8\pi}{L}, \frac{10\pi}{L} = 0.84, 1.11, 1.38 \text{ GeV}$$

6 directions of Wilson line: $\pm x, \pm y, \pm z$

16 source positions

Separation $T_s \approx 1.1$ fm as the lowest safe choice

$P_3 = \frac{6\pi}{L}$			$P_3 = \frac{8\pi}{L}$			$P_3 = \frac{10\pi}{L}$		
Ins.	$N_{ m conf}$	$N_{\rm meas}$	Ins.	$N_{ m conf}$	$N_{\rm meas}$	Ins.	$N_{\rm conf}$	$N_{\rm meas}$
$\gamma_5\gamma_3$	65	6240	$\gamma_5\gamma_3$	425	38250	$\gamma_5\gamma_3$	655	58950

With these configurations, we compute the corresponding matrix elements

C. Alexandrou et al., 1803.02685

The bare matrix elements $\Delta h_{u-d}(P_3, z) = \langle P | \bar{\psi}(z) \gamma^3 \gamma^5 W(z, 0) \tau^3 \psi(0) | P \rangle$, however, contain divergences:

Next step: Renormalization!

Renormalization

$$\Delta h^{R,u-d} = Z_{\Delta h} M \Delta h^{u-d} = (Re[Z_{\Delta h}] + i Im[Z_{\Delta h}]) (Re[\Delta h^{u-d}] + i Im[\Delta h^{u-d}])$$

 $Z_{\Delta h}$ renormalizes both the usual log divergence and the linear divergence associated with the Wilson line

Nonperturbative renormalization using the RI'-MOM to remove both divergences

C. Alexandrou et al., NPB 923 (2017) 394 (Frontier Article) J-W. Chen et al., PRD 97 014505 (2018) C. Alexandrou et al., 1807.00232

Convert the ME from RI'-MOM to \overline{MS} using 1-loop perturbation theory

M. Constantinou, H. Panapaulos, PRD (2017)054506

We present results for the \overline{MS} scheme

Renormalization factor for helicity

RI'-MOM scheme at the scale $\bar{\mu}_0 = 3 \text{ GeV}$

Perturbative conversion to \overline{MS} scheme at the scale 2 GeV

$$\bar{\mu}_0 = 3 \text{GeV}$$

$$Z_q^{-1} Z_0 \frac{1}{12} Tr[v(p,z)(v^{Born}(p,z))^{-1}]|_{p^2 = \overline{\mu}_0^2} = 1$$
$$Z_q = \frac{1}{12} Tr[(S(p))^{-1} S^{Born}(p)]|_{p^2 = \overline{\mu}_0^2}$$

The vertex function ν contains the same divergences as the nucleon matrix elements

The factor Z_{O} subtracts both the linear and log divergences.

The linear divergence associated with the Wilson line makes Z_O to grow very fast for large z;

That makes the renormalized ME to have amplified errors at large z;

We thus apply smearing to the Wilson lines only in order to smooth the divergence;

In the end, if the procedure is consistent, the resulting renormalized ME should be the same, independent of the smearing applied

Renormalized ME for the helicity case

ME sit on top of each other after renormalization

Renormalization is doing its job!

The *x* dependence of $\Delta u(x) - \Delta d(x)$

Once we have the ME, we compute the qPDF:

$$\Delta \tilde{q}(x,\mu^2,P_3) = \int \frac{dz}{4\pi} e^{-ixP_3 z} \langle P | \bar{\psi}(z) \gamma^3 \gamma^5 W(z,0) \psi(0) | P \rangle$$

Continuum Euclidean qPDF = continuum Minkowski qPDF: Carlson, Freid, PRD 95 (2017) 094504 Briceño et al., PRD 96 (2017) 014502

And then apply the matching plus target mass corrections to obtain the light-cone PDF:

$$\Delta q(x,\mu) = \int_{-\infty}^{+\infty} \frac{d\xi}{\xi} C\left(\xi, \frac{\mu}{xP_3}\right) \Delta \tilde{q}\left(\frac{x}{\xi}, \mu, P_3\right)$$

Helicity iso-vector quark distribution

$$P_3 = \frac{10\pi}{L} \approx 1.38 \text{ GeV}$$

Helicity iso-vector quark distribution

C. Alexandrou et al., 1803.02685, to appear in PRL

Remarkable qualitative agreement

For the values of P_3 used here, the ME do not decay fast enough, that is, before e^{-ixP_3z} becomes negative

When doing the Fourier transform, unphysical oscillations appear, remarkably for x > 0.5, and an unphysical minimum at $x \approx -0.2$

Summary

Proton spin decomposition was presented at the physical pion mass. Spin and momentum sum rules are satisfied;

We have also shown an *ab initio* computation of the *x* dependence of the iso-vector PDF at the physical point;

No input nor any assumption on their functional dependence, this was unthinkable of just few years ago;

Enormous progress over the last couple of years:

a complete non-perturbative prescription for the ME has emerged

the matching equations relating the qPDFs to the light-cone PDFs have been improved

Still, many challenges remain:

How to go to higher values of P_3 ?

Unphysical oscillations

Discretization and volume effects

Higher twist

Physical point computation also presented in Huey-Wen Lin et all., 1807.07431

Quasi-PDFs are intrinsically related to pseudo-PDFs, see Radyushkin, PRD 96 (2017) 034025