

## Measurement of the analyzing powers in pd elastic and pn quasi-elastic scattering at small angles at ANKE-COSY

#### S. Dymov (Ferrara University, Italy, JINR, Dubna, Russia)

11 September 2018

SPIN 2018, Ferrara

### **MOTIVATION: Nucleon-Nucleon (NN) interaction**

Understand nuclear force in GeV region

 $\rightarrow$  pp and np-amplitudes

#### → Phase Shift Analysis\*

### <u>ANKE</u>

→ Spin observables

- → Small angle pp-elastic:  $A_v$  and 6
- → Charge-exchange deuteron breakup: 6,  $A_y$ ,  $A_{yy}$ ,  $C_{yy}$ ,  $C_{xx}$
- → Small angle pn, pd-elastic:  $A_{v}$

S.Dymov

\*SAID Group from Washington University: R.A. Arndt et al. Phys. Rev. C 62 (2000) 034005; R.A. Arndt et al. Phys. Rev. C 76 (2007) 025209

NNNSS

### **MOTIVATION: Where are we in pp elastic?**

160

140

120

100

40

20

- Wealth of data  $(35^{\circ} < \theta_{p} < 90^{\circ})$ 0.5<T₀≤2.5 GeV
- EDDA's large impact on PSA: significantly reduced ambiguities in phase shifts (I=1) 180 0 [degrees CM]

PRL 90, 142301 (2003) PRL 85, 1819 (2000)

No experimental data at smaller angles ( $\theta_{n}$ <35°) above  $T_p = 1.0 \text{ GeV}$ 

Source: http://nn-online.org/NN



### **MOTIVATION: Where are we in pn?**

**R. Arndt:** Gross misconception within the community that np amplitudes are known up to a couple of GeV. np data above 800 MeV is a DESERT for experimentalists."



180

160

140

120

np charge-exchange

9 [degree CM]

### **Experiment: ANKE at COSY**



S.Dymov



I. Lehmann et al., NIM A 530 (2004) 275

30

2.0

 $\Delta E$  (5mm) [MeV]

### **Beam polarization measurement by EDDA**

- Carbon fibre target (pC)
- Known effective pC analyzing power
- Scintillator semi-rings (φ asymmetry)

| Beam Energy<br>T_kin [MeV] | Av. Polarisation<br>P [%] | Statistical Error<br>P_er [%] |
|----------------------------|---------------------------|-------------------------------|
| 796                        | 55.4                      | 0.8                           |
| 1600                       | 50.4                      | 0.3                           |
| 1800                       | - 50.8                    | 1.1                           |
| 1965                       | - 42.9                    | 0.8                           |
| 2157                       | - 50.1                    | 1.0                           |
| 2368                       | 43.5                      | 1.5                           |

- LEP: P~90% at injection
- EDDA: P~50% at experiment energy
- ~1% statistic and 3% systematic error



## Analyzing power in pd elastic

Cross ratio method: Syst. errors suppressed in first order

$$\varepsilon = \frac{L-R}{L+R} = PA$$
  $L = \sqrt{L_1 L_2} = \sqrt{L \uparrow R \downarrow}$   $R = \sqrt{R_1 R_2} = \sqrt{L \downarrow R \uparrow}$ 



### Analyzing power in pn quasi-free elastic (1)

- Fast proton in FD in coincidence with spectator proton in STT
- No detector Left-Right symmetry cross ratio not applicable
- Must define ratio of luminosity with beam spin up and down: use ratio of deuterons from pd-elastic taken with STT-trigger (
  - $(L_d^{\uparrow} \cdot R_d^{\uparrow})/(L_d^{\downarrow} \cdot R_d^{\downarrow})$
- Very low and unpolarized background in Mx spectra, except 800 MeV, where deuterons from pd  $_{\rightarrow} d\pi^0 + p_{_{SDEC}}$  in FD suppressed by dE/dX
- Only the right STT was used to suppress quasi-free pp-elastic



### Analyzing power in pn quasi-free elastic (2): Results at 800 MeV



### Analyzing power in pn quasi-free elastic (3): Results at 1600 and 2200 MeV



### Summary

- Analyzing power  $A_y^{p}$  was measured in pd-elastic and pn quasielastic scattering in the forward angles at  $T_p=0.8$  -2.4 GeV
- In pd-elastic A<sup>p</sup><sub>y</sub> at 800 MeV consistent with LAMPF data. At 1.6 GeV A<sup>p</sup><sub>y</sub> is about 2 times smaller than at 800 MeV, and descreases with energy.
- Resuls on pn quasi-elastic coincide well with available data at 800 MeV and 2200 MeV, and with SAID SP07 solution at 800 MeV. Data at 1600 MeV agree with SAID AD14 solution.
- The energy dependence in pn quasi-elastic scattering is similar to that in pd-elastic.
- The results obtained will be used in the PSA.

# Thank you!



### np program: quasi-elastic pn



#### Compatible with existing data

SAID SP07 describes well at 796 MeV. Dedicated SAID solution at 1.6 GeV

Measurement of the analyzing powers in pd elastic and pn quasi-elastic scattering at small angles