

Neutron EDM comments & & The PanEDM Experiment

Peter Fierlinger

SPIN 2018 Conference, Ferrara, Italy

EDM Landscape

*) J.P. Archambault, A. Czarnecki, M. Pospelov, Phys.Rev. D70 (2004) 073006

πп

Mod. Phys. Lett. A11 (1996) 211, D. Ng, J.N. Ng P. Fierlinger – SPIN 2018

Different systems and effective parameters

- Paramagnetic atoms

$$d_{para} = \eta_{d_e} d_e + k_{C_S} \bar{C}_S$$

- Polar molecules

$$\Delta \omega_{para}^{PT} = \frac{-d_e E_{eff}}{\hbar} + k_{C_S}^{\omega} \bar{C}_S$$

- Diamagnetic atoms

$$d_{dia} = \kappa_S S(\bar{g}_{\pi}^{0,1}) + k_{C_T} C_T + \dots$$

- Nucleons

$$d_{n,p} = d_{n,p}^{lr}(\bar{g}_{\pi}^{0,1}) + d_{n,p}^{sr}(\tilde{d}_{u,d}, d_{u,d})$$

- Fundamental fermions

 $d_e, d_\mu, (d_ au)$

...Higher orders (199-Hg!) :

$$d_{A} = (k_{T}C_{T} + k_{S}C_{S}) + \eta_{e}d_{e} + \kappa_{S}S + h.o.$$
(MQM)

Illustration: combined analyses

Measured limits (note: 'sole-source' analysis)

System	Result	95% u.l.					
Paramagnetic systems							
Xe^m							
Cs	$d_A = (-1.8 \pm 6.9) \times 10^{-24}$ e-cm	1.4×10^{-23}					
	$d_e = (-1.5 \pm 5.6) \times 10^{-26} \text{ e-cm}$	1.2×10^{-25}					
Tl	$d_A = (-4.0 \pm 4.3) \times 10^{-25}$ e-cm	1.1×10^{-24}					
	$d_e = (-6.9 \pm 7.4) \times 10^{-28} \text{ e-cm}$	$ 1.9 \times 10^{-27} $					
YbF	$d_e = (-2.4 \pm 5.9) \times 10^{-28} \text{ e-cm}$	1.2×10^{-27}					
ThO	$\omega^{\mathcal{N}E} = 2.6 \pm 5.8 \; \mathrm{mrad/s}$						
	$d_e = (-2.1 \pm 4.5) \times 10^{-29}$ e-cm	9.7×10^{-29}					
	$C_S = (-1.3 \pm 3.0) \times 10^{-9}$	6.4×10^{-9}					
	Diamagnetic systems						
199 Hg	$d_A = (2.2 \pm 3.1) \times 10^{-30} ext{ e-cm}$	7.4×10^{-30}					
¹²⁹ Xe	$d_A = (0.7 \pm 3) \times 10^{-27}$ e-cm	6.6×10^{-27}					
225 Ra	$d_A = (-0.5 \pm 2.5) \times 10^{-22}$ e-cm	5.0×10^{-22}					
TlF	$d = (-1.7 \pm 2.9) \times 10^{-23} \text{ e-cm}$	6.5×10^{-23}					
n	$d_n = (-0.21 \pm 1.82) \times 10^{-26}$ e-cm	3.6×10^{-26}					
Particle systems							
μ	$d_{\mu} = (0.0 \pm 0.9) \times 10^{-19} \text{ e-cm}$	1.8×10^{-19}					
Λ	$d_{\Lambda} = (-3.0 \pm 7.4) \times 10^{-17}$ e-cm	7.9×10^{-17}					

Parameters are not independent: e.g. d_e as function of C_S

+ Paramagn. HfF⁺. $d_e < 1.3.10^{-28} \text{ ecm } (90\%)$

More measurements needed with different systems...

Ramsey's method

P. Fierlinger – SPIN 2018

Spin-clock with two species

- Neutrons +¹⁹⁹Hg vapor measured simultaneously
- UCN center of mass is affected by gravity ("Slower UCN stay more at bottom")

• Frequency ratio:
$$R = \left| \frac{\gamma_n}{\gamma_{\text{Hg}}} \right| \left(1 + \frac{(\partial B/\partial z)h}{B} \right)$$

- Non-trivial: $T_2(z)$, $\Delta \omega(z)$
- If there is a spatially constant distribution, Spin echo can be applied: energy dependent analysis, T₂ recovery etc...
 -> Talk: G.Pignol

ТШТ

Systematics

A very critical effect: ,geometric phase' (GP)

$$\Delta \omega = \frac{\omega_{xy}^2}{2(\omega_0 - \omega_r)}$$

$$\omega_{xy}^2 = \left(\frac{\partial B_{0z}}{\partial z}\alpha\right)^2 + \left(\frac{E \times v}{c^2}\right)^2 + 2\frac{\partial B_{0z}}{\partial z}\alpha \cdot \frac{E \times v}{c^2}$$

Magnetic field requirements for 10⁻²⁸ ecm – level accuracy:

- ~< 0.3 nT/m gradient $d_f \sim 4.10^{-27} \text{ ecm } (^{199}\text{Hg GP})$ $d_f \sim 1-2.10^{-28} \text{ ecm } (\text{UCN GP})$
- Max. 1 dipole with 5 pT in 2 cm distance
- < 10 fT drift stability

Pendlebury et al., Phys. Rev. A 70, 032102 (2004) and many more...

New systematics?

E.g. non-gaussian spin distributions

- Non-ergodic behavior of trapped spins (non-thermalizing systems)
- Any skewness would lead to different frequency shift shifts
- Affects all previously known systematics
- Could appear also elsewhere at increased precision: g-2? pEDM?

Non-gaussianity build-up with time:

... Understanding B-fields seem even more important.

Neutron EDM projects

	RAL SUSSEX ILL (Grenoble, FR)	PSI (Villi	gen, CH)	TUM ILL (Gre Munich)	noble,	LANCSE EDM (Los Alamos, US)	SNS EDM (Oakridge, US)	PNPI ILL (Grenoble Gatchina,	e, FR ⇒ RU)	TRIUMI (Vancouv	er, CA)
temperature	RT	RT		RT	0.7 K	RT	0.7 К	RT		RT	
comag	Hg	Hg		none		Hg	³ He	none		Xe+Hg	
source	reactor, turbine	spall., sD ₂		reactor, cold beam, ⁴ He		D2	spall, internal ⁴ He	reactor, turbine, ⁴He		spall., ⁴ He	
nr of cells	1	1	2	2	> 100	1	2	2	>2	1	2
[UCN/cc]	2	3	5	10	1000	~ 50	125	4	10 ⁴	700	
goal [e·cm]	3·10 ⁻²⁶	1·10 ⁻²⁶	1.10-27	2·10 ⁻²⁷	< 10 ⁻²⁷	few 10 ⁻²⁷	2·10 ⁻²⁸	5·10 ⁻²⁶	<1.10-27		1·10 ⁻²⁷
date	2006	2017	2019	2019	2021+	2019	2022	2015	2022	2017	2020
status	done	RAL exp. NEW LIMIT SOON ~1.10 ⁻²⁶	new	Setup at started: ,PanEDM	ILL 1'	Sucessful source upgrade	Critical Component Demonstration			FIRST UCI OBSERVE prototype (2017)	N D from e source

- + Crystal EDM (Nagoya)
- + Beam EDM (Bern)

Taken from R. Picker (2016), adapted

nEDM progress without ,better' UCN sources?

 $\sigma_d \sim \frac{1}{ET\alpha_0 \mathrm{e}^{-T/T_2} \sqrt{N_0 \mathrm{e}^{-T/\tau_n}} \sqrt{M}}$

- T ... Measurement duration
- T_2 .. Spin coherence / τ ...UCN storage time
- E ... Electric field strength
- α_0 ... Visibility (Polarization)
- $N_{\rm 0}$.. Number of UCN at start of measurement
- M ... Number of repetitions

Fast magnetic equilibration: 30 s instead of 300 s

I. Altarev et al., J. Appl. Phys. ((2015)

- Deuterated polyethylene, softer spectrum: T, N increased LAltarev et al., Appl. Phys. Lett (2015)
- Visibility: α > 0.87 T. Zechlau, PD thesis

- Larger E ~ x 1.5
- Larger α(t) ~ x 1.1
- Recovery of UCN $T_2^* \sim x \ 1.2$
- Knowledge of energy dependence ~ x 1.1
- Faster turnaround and more stable performance: equilibration, new types of co-magnetometers ~ x 1.2

III Superthermal UCN production

Previously: moderation, lower end of Maxwell spectrum: inefficient, ~ 1 UCN / cm^3

All ,new' approaches: ,Superthermal' conversion instead of moderation. Goal: 1000 UCN / cm³

$$\sigma_{\text{UCN}} = \Phi_{\text{CN}} \Sigma \tau_{\text{UCN}}$$

Main options:

	R	$ au_{UCN}$
	[cm ⁻¹]	[s]
D ₂	10 ⁻⁸	0.030.1
He	13 x 10 ⁻⁹	101000

ТШТ

SNS EDM

- Cryogenic, > 100 UCN/cm³
- Site: SNS, placed at cold beam
- UCN source = EDM chamber, double chamber
- E = 75 kV/cm
- Co-magnetometer: spin dependent ³He absorption and scintillation, ³He MFP control
- Modulation of spin-dressing frequency to extract EDM

- Full-scale operation in 2022

LANL EDM

Progress 2017/18: UCN source upgrade

UCN at TRIUMF

- First operation of source in 2017: 500000 UCN
- Behaviour within expectations
- p-Accelerator
- Neutron-production target with a 1 microamp, 480 MeV proton beam for 60 seconds
- Goal: $\sigma_d \sim 10^{-27}$ ecm, room-temp. Ramsey, ¹²⁹Xe/¹⁹⁹Hg co-magnetometers

TRIUMF, <u>CFI</u>, <u>BCKDF</u>, MRF and <u>NSERC</u> in Canada, and <u>KEK</u> and <u>RCNP</u>

ТЛП

PNPI

UCN source:

- UCN density >1×10⁵ cm⁻³
- All hardware exists
- Cooling power test successful
- Permission to operate WWR-M unclear

nEDM:

Current: $d_n < 5.5 \times 10^{-26} ecm$ Improvement by factor 3 at new position and with new precession cell ILL 2020: $d_n < 2 \times 10^{-26} ecm$ Future source at PNPI: $d_n < 1 \times 10^{-27} ecm$

ТШ

PSI n(2)EDM

n2EDM: Shield being built ~ now

-> Talk: K. Kirch

-> Talk: Y. Stadnik

Pulsed beam

	'	"	 [kV/cm]	N	(no. cycles)	[10 ⁻²⁶ ecm]
@ PF1b/ILL *	8 ms	0.75	50	2 x 2 MHz	1	~ 800
@ ESS	90 ms	0.75	100	2 x 20 - 200 MHz	1	3 - 10
ILL/RAL /Sussex **	130 s	0.45	8.3	14000 per cycle	360	30

- Use neutron source's intrinsic pulses
- Fixed installation
- Lengh: 50m
- dN/dt > 100 MHz

F. Piegsa, PRC (2014)

TIII PanEDM phase I

- Helium-based SuperSUN source at ILL
- Ramsey experiment with UCN trapped at room temperature
- Double chamber in phase I
- ¹⁹⁹Hg (few fT in 250 s), Cs (finally good enough), ¹²⁹Xe, ³He, SQUIDs
- No co-magnetometer (better!)
- Start of data taking scheduled first cycle 2019

... + more surrounding magnetometers, ofcourse

TIII PanEDM phase I

- Helium-based SuperSUN source at ILL
- Ramsey experiment with UCN trapped at room temperature
- Double chamber in phase I
- ¹⁹⁹Hg (few fT in 250 s), Cs (finally good enough), ¹²⁹Xe, ³He, SQUIDs
- No co-magnetometer (better!)
- Start of data taking scheduled first cycle 2019

... + more surrounding magnetometers, ofcourse

TITI PanEDM phase I

- Helium-based SuperSUN source at ILL
- Ramsey experiment with UCN trapped at room temperature
- Double chamber in phase I
- ¹⁹⁹Hg (few fT in 250 s), Cs (finally good enough), ¹²⁹Xe, ³He, SQUIDs
- No co-magnetometer (better!)
- Start of data taking scheduled first cycle 2019

... + more surrounding magnetometers, ofcourse

Magnetic fields

- Double chamber: first order field drifts canceled (limited by B₀ correction coils)
- Damping of ext. distortions ~ 6x10⁶ (passive) at 1 mHz, x 1.5 for gradients
- Background gradient drift < 1 fT in 300 s between cells

Generated magnetic field

Illustration of the main issue:

Every magnetic field is disturbed by the shields!

(View into cylinder from front)

permeability varied (strongly) along inner shield cylinder

(Re)assembly ongoing now

He-based UCN source at ILL Grenoble

- Fixed number of UCN: Dilution of density in chambers and guides
- Build-up of UCN inside source: ultimately polarized UCN production
- Very low energy spectrum: 79 neV max (stage 1) -> extremely long storage times T = 250 s demonstrated); but bad transport
- Small systematics: low UCN velocity
- Very different to sD2 source: We have to build all UCN optics new...

Illustration: preceeding UCN tests

- Guides
- Switches, shutters
- Depolarization
- Adiabatic spin transport and spin-flipping
- Simultaneous spin detection
- Deuterated polyethylene coatings
- ,Dummy'-electrodes and insulator rings
- Results: e.g. 250 s storage demonstrated, α (300s) > 0.85

TIP Physics reach PanEDM phase I

Recently reduced to "1" due to coil as polarizer

	2019-20	20	2020+	
	SuperSun stage I	_	SuperSun stage II	_
UCN density	333	1/cm3	1670	1/cm3
Diluted density	80	1/cm3	400,8	1/cm3
Transfer loss factor	3	*	1,5	
Source saturation loss factor	2		2	
Polarization loss factor	2		1	
Density in cells	6,7	1/cm3	133,6	1/cm3
2 EDM chamber volume	33,2	1	33,2	1
Neutrons per chamber	110556		2217760	
EDM sensitivity				
E	2,00E+04	V/cm	2,00E+04	V/cm
alpha	0,85		0,85	
Т	250	s	250	s
N after time T (1/e)	39800		794000	
Number of EDM cells	2		2	
Sensitivity (1 Sigma, 1 cell)	3,9E-25	ecm	8,7E-26	ecm
Sensitivity (1 Sigma, 2 cells)	2,7E-25	ecm	6,1E-26	ecm
Preparation time	150	S	150	S
Measurements per day	216		216	
Sensitivity (1 Sigma, 2 cells) per day	1,9E-26	ecm	4,2E-27	ecm
Sensitivity 100 days	1,9E-27	ecm	4,2E-28	ecm
Limit 90% 100 days	3,00E-27	ecm	7,00E-28	ecm

 $\sigma_{d_{\rm n}} = \frac{\hbar}{2\alpha ET\sqrt{N}}$

PanEDM phase II

Concept: Multi-chamber

Reach:

HV	500000	V	
Cell "height"	7	cm	
E Field	71428,57143	V/cm	
alpha	0,95		
Т	350	S	
Initial UCN density (in situ!)	1000	1/cm3	
Volume	2198	cm3	
N(t= 0)	2,20E+06		
N after T	8,14E+05		
sigma_d =	1,53E-026	ecm / measureme	ent
Cells	100		
sigma_d =	1,53E-027	ecm	
Repetitions	10000		
sigma_d =	1,53E-029	ecm	~ .
sigma_d =	1,53E-029	ecm	c

S. Degenkolb, PF, O. Zimmer

ТЛП

PanEDM phase II

Principle:

- Cold beam produces UCN inside EDM cells in superfluid helium
- Cryogenic = low losses, large HV
- In situ = high density
- Control of systematic: many cells simultaneously
- Magnetic field demonstrated
- UCN source design with 3 m length demonstrated

A key 'trick': in-situ UCN detection

- Only one component needs to be developed & multiplied:
- 1.10⁻²⁹ ecm feasible without progress at neutron sources!
- No moving parts, (comparably) cheap!

Towards a fully cryogenic measurement

Detection concept:

Long magnetic shields

Extended length shielding needed for phase II, but also e.g. for pEDM

Now demonstrated: 0.1 nT at small radii

٦Π

Ongoing: characterization of 10 m long shield

ТШТ

Detector demonstrator: high-field seeker trap

Neutrons trapped on a wire with large current

- First trap for high-field seeking spin-states
- Closed trajectories with (sub)-millimeter distance to a mass without wall collisions
- Easy to detect decay products
- Next step: quantized states around wire

Cs magnetometers

• Free-space, in-electrode magnetometers at HV:

'typical' performance:< 60 fT without any corrections at typicalRamsey cycle durations

Nonmagnetic fiber coupled sensors:

< 30 fT in 1 s integration

Cs magnetometers

• Free-space, in-electrode magnetometers at HV:

'typical' performance:< 60 fT without any corrections at typicalRamsey cycle durations

Nonmagnetic fiber coupled sensors:

< 30 fT in 1 s integration

The (so-far) smallest magnetic fields

- 0.5 x 0.5 x 0.5 m < 25 pT homogeneity at < 50 pT absolute demonstrated (Measurements: PTB, HIT, TUM)
- Even better is feasible: enables 'next generation' of many things

Calculating small fields

- Time-dependent numerical modeling of hysteresis and magnetic equilibration (Thesis M. Reisner, TUM, follow-up work at HIT, China)
- Quantitative agreement with experiments
- Used in most new field designs, e.g. in atomic fountains, at the ISS, a primordial magnetic field experiment, semi-conductor industry and medicine

... Implications (e.g.)

Residual fields in shielded rooms can be lowered and gradients minimized; Static and time-dependent simulations give quite different results:

B inside the shield before and after equilibration

ПП

Z. Sun (HIT), in collaboration with TUM

Side note: SQUIDs at PTB

Our wish is to use such a SQUID (and cryostat!) as upgrade: instantaneous factor 10-100 sensitivity improvement (replacing is VERY simple)

FIG. 1. Left: the schematic setup of LINOD2 in gradiometer configuration. Right: a view of one of the heat shields made from Al_2O_3 strips together with the copper mesh heat shield at the dewar reservoir. The outer shell has been removed.

FIG. 2. Measured magnetic flux density noise $S_{B,m}^{1/2}$ for the two setups with 45 mm diameter pick-up coils: Magnetometer (solid green curve) and gradiometer (solid blue curve). The calculated intrinsic SQUID noise levels $S_{B,i}^{1/2}$ are given by the dotted curves. For the gradiometer, the noise is referred to the bottom pick-up loop, and the gradient noise is shown on the right.

Summary

- Many things from this talk have been covered by other speakers before
- It's an exciting time for EDM searchers:
 - Different experiments complement each other.
 - New systematics to be expected
 - Quite some good ideas as countermeasures
 - There will be progress from neutron EDM in reasonable timescales
- The TUM nEDM experiment is now at ILL: ,PanEDM'
 - Phase I will start taking data in spring 2019
 - Phase II will be cryogenic and can reach much further mainly with known technology
- nEDM developments also have spin-offs to other fields

Review paper: T. Chupp et al., RMP (2018) in press

... A discovery while waiting for UCN

