

Nuclear Dependence of Transverse Single-Spin Asymmetries in Polarized p + A Collisions at RHIC

Stephen Pate, New Mexico State University [for the PHENIX Collaboration]

SPIN 2018, Ferrara, 10-15 September 2018

• Transverse Single Spin Asymmetries (TSSAs)

in $\vec{p} + p$ Interactions

- Overview of current understanding
- TSSAs in the nuclear environment $(\vec{p} + A)$ seen in PHENIX
 - π^0 production at <u>central</u> rapidity ($|\eta| < 0.35$)
 - J/ψ production at forward and backward rapidity (1.2 < |y| < 2.2)
 - π^+/K^+ production at <u>forward</u> rapidity (1.4 < η < 2.4)
 - *n* production at <u>very forward</u> rapidity ($x_F > 0.5$; $0.3 < \theta < 2.2$ mrad)

Transverse Single Spin Asymmetries in $\vec{p} + p$ Interactions

- The topic of MANY talks at this conference!!!
- Multi-decades study of this phenomenon led to an understanding of the importance of various spin-momentum correlations
 - Initial state correlations: e.g. Sivers effect correlates the transverse spin of the nucleon with the intrinsic transverse momentum of the resident quark
 - Final state correlations: e.g. Collins effect correlates the transverse spin of the fragmenting quark with the transverse momentum of the produced hadron
- Direct measurements of these functions made in SIDIS and e^+e^- can be applied back to $\vec{p} + p$ interactions to reproduce data with some success
- Fragmentation (Collins) seems to be the main culprit for large asymmetries in $\vec{p} + p \rightarrow \pi + X$, at least in the $x_F < 0.3$ region; for $x_F > 0.3$ other mechanisms must be invoked as well
- See Daniel Pitonyak's excellent review (arXiv:1608.05353)
- <u>What happens when these interactions occur in a nuclear environment?</u>

Transverse Single Spin Asymmetries in \vec{p} + A Interactions What does the nuclear environment bring?

- The nucleon PDFs may change (EMC effect, nuclear shadowing)
 - \rightarrow modification of initial state
- Gluon saturation and/or Color Glass Condensate effects
- Multiple rescatterings
 - Broadening of TMDs \rightarrow dilute the asymmetry?
 - modification of $x_F \rightarrow$ enhance the asymmetry?
- Ultra-peripheral collisions
 - \rightarrow strong electromagnetic fields
 - \rightarrow Primakoff effect

Centrality in *p*+A collisions

The impact parameter of a *p*+A collision determines the average number of binary p+p and p+n collisions that will occur as the proton passes through the nucleus: N_{coll}^{Avg}

The impact parameter cannot be measured directly; instead we observe the charged particle multiplicity at extreme rapidity in a set of "Beam-Beam Counters" and use this to establish a "centrality classification" from 0% to 100%. A model calculation then determines N_{coll}^{Avg} .

A_N for π^0 production at <u>central</u> rapidity

[manuscript in progress]

The transverse single spin asymmetry is consistent with zero over the range $1 < p_T < 16$ GeV in *p*+*p*.

[manuscript in progress]

The transverse single spin asymmetry is consistent with zero over the range $1 < p_T < 16$ GeV in *p*+Al.

[manuscript in progress]

The transverse single spin asymmetry is consistent with zero over the range $1 < p_T < 16$ GeV in *p*+Au.

[manuscript in progress]

We do not observe a nuclear dependence in the transverse single spin asymmetry over the range $1 < p_T < 16$ GeV at <u>central</u> rapidity.

STAR also does not observe a nuclear dependence in this asymmetry for <u>forward</u> rapidity. (more on that later)

A_N for π^+/K^+ and J/ψ production at forward and backward rapidity

Use GPR for background shape, with training zones above and below the J/ψ and ψ' peaks.

 J/ψ and ψ' peaks are fit separately.

[PRD 98 (2018) 012006]

8 Ferrara

Azimuthal modulation fit for backward (Au-going) data in p+Au collisions.

A 2.2 σ signal is observed.

Results as a function of $x_{\rm F}$. We observe a negative asymmetry in p+Au collisions in both forward and backward production; the largest signal is seen for $-0.11 < x_{\rm F} < -0.05$.

Results as a function of $p_{\rm T}$. We observe a negative asymmetry in *p*+Au collisions in both forward and backward production for $0.42 < p_{\rm T} < 2$ GeV.

The nuclear environment has created or enhanced the asymmetry. This could be a new avenue for insight into the J/ψ production mechanism in nuclei, critical for an understanding of J/ψ production modification in A+A collisions.

A_N for π^+/K^+ production at <u>forward</u> rapidity (1.4 < η < 2.4)

[manuscript in progress]

We reproduce the forward azimuthal asymmetry previously seen in $\vec{p} + p \rightarrow \pi^+/K^+ + X$ (e.g. by BRAHMS [PRL 101 (2008) 042001]). The amplitude of the azimuthal asymmetry strongly diminishes with increasing mass number.

A_N for π^+/K^+ production at <u>forward</u> rapidity (1.4 < η < 2.4)

[manuscript in progress]

The A^{1/3} suppression was anticipated by Hatta et al. [PRD95 (2017) 014008]; gluon saturation in the nucleus suppresses the final-state Collins asymmetry.

Curiously, STAR does not observe a mass number dependence in the $\vec{p} + A \rightarrow \pi^0 + X$ channel. [slide from Heppelmann, ICTP Workshop, 2015]

 A_N for π^+/K^+ production at <u>forward</u> rapidity (1.4 < η < 2.4)

[manuscript in progress]

<u>Centrality classes</u> are determined using the multiplicity in the very forward Beam-Beam Counters.

 \Rightarrow N^{Avg}_{coll} = average number of binary collisions

 A_N for *n* production at <u>very forward</u> rapidity ($x_F > 0.5$; $0.3 < \theta < 2.2$ mrad)

Zero Degree Calorimeters (with Shower Maximum Detectors) neutrons

 A_N for *n* production at <u>very forward</u> rapidity ($x_F > 0.5$; $0.3 < \theta < 2.2$ mrad)

"Forward" is defined as the proton-going direction.

Using only the ZDC inclusive trigger, these plots illustrate the rapid change in the observed asymmetry as a function of mass number (p, Al, Au). $\epsilon_N(\phi) = PA_N^{\text{fit}} \sin(\phi - \phi_0)$ ϕ = azimuthal angle of neutron detected in ZDC ϕ_0 = transverse polarization direction P = beam polarization magnitude

 A_N^{fit} = fitted amplitude of the raw azimuthal asymmetry

[PRL 120 (2018) 022001]

 A_N for *n* production at <u>very forward</u> rapidity ($x_F > 0.5$; $0.3 < \theta < 2.2$ mrad)

Centrality dependence:

- (1) ZDC Inclusive: ZDC energy > 15 GeV
- (2) ZDC \otimes BBC-tag: ZDC and ≥ 1 hit in each BBC
- (3) $ZDC \otimes BBC$ -veto: ZDC and no hit in any BBC

Collisions with small impact parameter (BBC-tag) show a negative asymmetry with a moderate nuclear dependence.

Collisions with a large impact parameter (BBCveto) show a strong nuclear dependence, indicating the importance of ultra-peripheral collisions.

Mitsuka [PRC 95 (2017) 044908] has shown that in a UPC the photon flux from the unpolarized nucleus can interact with the polarized proton to produce such asymmetries.

[PRL 120 (2018) 022001]

Nuclear Dependence of TSSAs: Summary

- π^0 production at <u>central</u> rapidity
 - A_N very small, independent of nuclear size
- J/ψ production at forward and backward rapidity
 - A_N very small in p+p, becoming negative at low p_T in p+Au
- π^+/K^+ production at <u>forward</u> rapidity
 - A_N very large in p+p, strongly suppressed with increasing nuclear size and centrality → gluon saturation effect
- *n* production at <u>very forward</u> rapidity
 - Largest effect seen in UPCs; model calculation in agreement

A rich variety of behavior is revealed in this cross between spin-dependent scattering phenomena and the physics of cold nuclear matter.