oce Potential for e+HD experiments with Frozen-Spin HD close

<u>A.M. Sandorfi</u>^(a), L. Barion^(b), A. D'Angelo^(c), M. Contalbrigo^(b),
 G. Dezern^(a), J. Grames^(a), C. Hanretty^(a), T. Kageya^(a),
 M.M. Lowry^(a), T. O'Connell^(d), M. Poelker^(a),
 M. Statera^(a), K. Wei^(d), X. Wei^(a),

^(a) Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA
 ^(b) INFN-Sezione di Ferrara, 44122 Ferrara, Italy
 ^(c) Universita di Roma "Tor Vergata" and INFN-Sezione di Roma, I-00133 Roma, Italy
 ^(d) University of Connecticut, Storrs, CT 06269, USA

A

- \overrightarrow{HD} lifetimes with photon beams ~ 2 years :
 - PRL 102 (2009) 172002; PRL 118 (2017) 242002; ...
 - NIM A**737** (2014) 107; NIM A**815** (2016) 31; ...

- next goal viable transverse frozen-spin target with electron beams
- PAC 39: Scientific <u>rating</u>
 - ♦ SIDIS, C12-11-111, M. Contalbrigo,... 🕅
 - dihadron production, PR12–12–009, H. Avakian,...
 - DVCS, PR12-12-101, L. Elouadrhiri,...

ve steps in polarizing solid HD – a brief overview

- HD gas distilled with impurity concentrations, $c = 10^{-3}$ to 10^{-4} of H₂ & D₂
- condensed to a solid, $\frac{3}{4}$ of H₂ & $\frac{1}{3}$ of D₂ are caught in their J=1 levels
- magnet field aligns 1^{st} rotational states (J=1) of Ortho- H_2 & Para- D_2
- H_2 (& D_2) spin exchange with HD, polarizing target to P(H) ~ 60%
- spin-exchange stops as J=1 states decay away ⇒ HD with frozen spin

- I. e^- beam ionization unpairs *1s* molecular electrons of HD
 - if residual *1s* electron is unpolarized (depends on temperature)
 - → flips with Fourier components at nuclear Larmor frequencies
 - \rightarrow depolarizes the local HD
 - \rightarrow depolarization diffuses out into the rest of the HD crystal

- I. e^- beam ionization unpairs *1s* molecular electrons of HD
 - if residual 1s electron is unpolarized (depends on temperature)
 - → flips with Fourier components at nuclear Larmor frequencies
 - \rightarrow depolarizes the local HD
 - \rightarrow depolarization diffuses out into the rest of the HD crystal

II. Hyperfine mixing of unpaired electrons with H spins

- $\mu(e)$ opposite in sign to that of H (or D)
- → electrons polarized in the holding field have spins opposite to H
- → total angular momentum projected along B is less than maximal
- → Hyperfine mixing of |F, m_F = m_H+m_e> states with different m_H $\Leftrightarrow \frac{1}{\sqrt{2}} \left\{ \left| \hat{\Pi}_{H} \downarrow_{e} \right\rangle + \left| \downarrow_{H} \hat{\uparrow}_{e} \right\rangle \right\} \iff \text{dilutes H polarization}$
- \rightarrow depolarization can diffuse out into the rest of the HD crystal
 - \Rightarrow depolarization $\propto B^{-2}$ (& independent of temperature)
 - (should also have contributed to depolarization in 2012 tests)

Solutions:

- use RF flip of H (or D) to align nuclear and electron spins $|\downarrow_{\rm H}\downarrow_{e}\rangle$
- → stretched state with maximal angular mom projection ← unique
- → prevents depolarization through hyperfine mixing

III. Radiation-induced Chemical changes

(following parallel literature on tritium chemistry after beta decay)

- ionized HD⁺ will be highly reactive
- HD⁺ + HD ⇒ H₂D⁺ + D or ⇒ HD₂⁺ + H L no effect on polarization (paired e⁻), but highly mobile
 H₂D⁺ + e⁻ ⇒ H₂ + D , ... ⇒ increased concentrations of (J=1) ortho-H₂ (para-D₂) L polarization catalysts

 \Rightarrow could H (& D) loose their frozen spin state ?

Spin Transfer : eQQ and the role of J=1 pairs

I. Silvera, Rev Mod Phys 52 (1980) 393

• J=1 rotational excitations are NOT

(3)

(J=I)

very small energy splitting when a single J=1 is surrounded by other J=0 molecules

~0.01 cm⁻¹

Is lifted by large eQQ of a pair of J=1 molecule

spin transfer mechanism - through J=1 pairs

- in some orientations, the electric Quadrupole-Quadrupole (eQQ) I. Silvera, Rev Mod Phys 52 (1980) 393 interaction is attractive
 - overwhelmed by collisions in the gas or liquid states
 - but this binding can be a significant effect in a solid
 - a J=1 molecule at the solid-liquid boundary (triple pt) has a slightly increased probability of capturing another J=1
- phonons in the solid lattice scatters from eQ moments of J=1 x J=1 molecular pairs, causing sudden transitions between their 3 x 3 substates
 - transitions <> spatial reorientations
 - the magnetic dipole moments of the J=1 rotating molecules follow the reorientation
- ⇔ there is a sudden change in the magnetic field in the vicinity of nearby a HD, with Fourier components at H and D Larmor frequencies

degeneracy Is lifted by large eQQ of a pair of J=1 molecule

terms

spin transfer mechanism

I. Silvera, Rev Mod Phys 52 (1980) 393

⇔ these induces spin flips of H or D in nearby HD

- ⇔ depolarization resonantly hops outward through the HD (a Quantum crystal)
- eQQ interaction energies are almost the same for all combinations of J=1 pairs:

(oH₂) x (oH₂) (oH₂) x (pD₂) (pD₂) x (pD₂)

• number of J=1 x J=1 clusters is proportional to:

 $c(oH_2) \bullet c(oH_2) + 2 \bullet c(oH_2) \bullet c(pD_2) + c(pD_2) \bullet c(pD_2)$

degeneracy Is lifted by large eQQ of a pair of J=1 molecule

distilled NP grade gas

 $c(H_2) = H_2/HD = 0.00067 \pm 0.00002$ $c(D_2) = D_2/HD = 0.00064 \pm 0.00004$

Correlations between T_1 (2K) and $c(H_2), c(D_2)$ from Raman

Measurements on a large number of distilled HD gas samples over the last decade:

- T₁ (2K) measurements, &
- Raman measurements of $c(H_2)$, $c(D_2)$
- T₁ increases with time as c(ortho-H₂) and c(para-D₂) drop
- c(oH₂) = ³/₄ c(H₂) exp(-t/6 days)
- c(pD₂) = ⅓ c(D₂) exp(-t/27 days)

SPIN'2018 – Sept 11, 2018

Polarization decay (T_1) correlated with number of J=1 pairs COS

SPIN'2018 – Sept 11, 2018

III. Radiation-induced Chemical changes

(following parallel literature on tritium chemistry after beta decay)

- ionized HD⁺ will be highly reactive
- HD⁺ + HD ⇒ H₂D⁺ + D or ⇒ HD₂⁺ + H î no effect on polarization (paired e⁻), but highly mobile
 H₂D⁺ + e⁻ ⇒ H₂ + D , ... ⇒ increased concentrations of (J=1) ortho-H₂ (para-D₂) î polarization catalysts
 - \Rightarrow could H (& D) loose their frozen spin state ?

Solution:

• chemical processes will **NOT** produce J=1 species <u>in pairs</u>!

e⁻ beam-induced depolarization mechanisms :

- I. production of paramagnetic, unpaired electrons
 ⇔ should no be an issue at colder temperatures where they are fully polarized
- II. polarization dilution through hyperfine splitting (HFS)
 ⇔ eliminate by operating with target and electron spins aligned
- III. regeneration of J=1 rotational states through chain reactions
 ⇔ cannot generate the *pairs* of J=1 molecules that generate spin flips

Extrapolations from 2012 e+HD tests:

- ⇔ if the higher temperatures during the 2012 tests were the only source of loss, via the 1st mechanism, then we anticipate that our improvements would give
 - ~ 400 nA-hr lifetimes, ... and possibly longer if HFS was an issue

Testing eHD at Jlab's Upgraded Injector Test Facility (UITF) COS

SPIN'2018 – Sept 11, 2018

Electron energy loss in 5 cm of HD:

Sandorfi - preparing for transverse eHD - Feb 23, 2016

electron transport studied with **G4BeamLine**[©]

electron transport studied with **G4BeamLine**[©]

tice

Heat load > polarization of molecular electrons

- beam will ionize HD, breaking paired 1s electrons
- unpaired electrons will be inert if they polarize in the 0.9 T IBC field
- polarization depends on temperature
- HD temp depends on deposited beam power & temp of Cu heat sink (⇔ cooling pwr of IBC refrigerator)

P _e	l _e	Q_{HD}	T_{HD}^{max}
0.99977	2 nA	1 mW	138 mK
0.99999	1 nA	½ mW	98 mK

very promising !

Sandorfi - preparing for transverse eHD – Feb 23, 2016

• beam up to ¼ CryoModule in cave-1

- 10 MeV OPS waiting for the completion of safety reviews, expected ~ Dec/2018
- 1st beam into In-Beam Cryostat to study transport ~ Feb/2019
- beam on unpolarized HD ~ April/2019
- 1st beam on polarized $\overrightarrow{HD} \sim June/2019$

Trapping a transverse field in an MgB₂ diamagnetic shell

- energize 1¼ T external Dipole magnet
- cool MgB₂ shell within the HDice IBC to 4K ($T_c = 39$ K)
- load polarized \overrightarrow{HD} into the IBC, within the MgB₂ shell
- lower external Dipole field \rightarrow 0
 - \Rightarrow currents spontaneously flow in MgB₂ to maintain original internal field
 - ⇒ talk by Marco Statera

- rotate IBC horizontal and roll into CLAS12
- ramp up field in CLAS12 solenoid
 ⇒ additional currents begin to flow in MgB₂ to maintain original transverse field

- MgB₂ retains the "memory" of fields present when it was cooled below T_c and became a diamagnetic SC
- as CLAS12 solenoid is energized, complex currents develop in the MgB₂ that are much more intricate than could be realized with an electromagnet

e⁻ beam-induced depolarization mechanisms – III

- chemical recombination is a function of concentration and mobility
- energy release raises local temp ⇒ increases mobility
 ⇒ can produce a chain reaction, a *recombination flash*

SPIN'2018 – Sept 11, 2018

• g14 *flash* events: about 1/week (from $\gamma \rightarrow e^{\pm}$ pair production)

Effect on polarization ?

- most (as above example from Jan 24/12) had no effect on g14 targets
- but events will be more frequent with e^- beams

Polarization decay (T_1) correlated with number of J=1 pairs COSS

