

Hyperpolarizing ¹³C spins by DNP for MRI applications

Arnaud Comment

GE Healthcare

 Image ¹H₂O in the body High concentration (40M)

- Image ¹H₂O in the body High concentration (40M)
- Anatomical images with various contrast

- Image ¹H₂O in the body High concentration (40M)
- Anatomical images with various contrast
- Dynamic blood flow

- Image ¹H₂O in the body High concentration (40M)
- Anatomical images with various contrast
- Dynamic blood flow
- Diffusion imaging

- Image ¹H₂O in the body High concentration (40M)
- Anatomical images with various contrast
- Dynamic blood flow
- Diffusion imaging
- Functional MRI

- Image ¹H₂O in the body High concentration (40M)
- Anatomical images with various contrast
- Dynamic blood flow
- Diffusion imaging
- Functional MRI
- Beyond water

What about chemical information, i.e., biochemistry and metabolism?

¹H Magnetic resonance spectroscopy (MRS)

- Low concentration (< mM)
 ⇒ Only highly concentrated metabolites observable
- Inherent low ¹H MRS spectral resolution
- No dynamic information

K. Cai et al., Neuropsychopharmacol 2012

¹³C MR for probing metabolism

- Natural abundance ¹²C : 99% ; no spin and therefore MR inactive
- ¹³C has a spin 1/2; isotopically labeled substrates
- Much higher spectral resolution than ¹H

Mammalian metabolism

¹³C metabolic studies

Conventional ¹³C NMR for metabolism

- Injection of
 ¹³C-glucose into animals or humans
- Only the most concentrated metabolites can be detected *in vivo*

Gln C2

55

NAA C2

Asp C2

50

Glu C2

¹³C frequency shift

R. Gruetter et al., Am. J. Physiol. Endocrinol. Metab. (2001)

Conventional ¹³C NMR for metabolism

Conventional ¹³C NMR for metabolism

New frontier in ¹³C MR

Hyperpolarized ¹³C MR

• Why?

Need for higher spatial and temporal resolution

• How?

Larger ¹³C MR signal

Dynamic nuclear polarization (DNP)

Dissolution dynamic nuclear polarization

NMR signal is proportional to the nuclear spin polarization

7 T / 1 K hyperpolarizer

Preclinical *in vivo* studies

7 T / 1 K hyperpolarizer

Preclinical in vivo studies

dissolution and injection

[1-¹³C]PA polarization at time of injection

Real-time cerebral glucose metabolism

¹³C polarization >20% at time of injection of hyperpolarized deuterated [3,4-¹³C₂]glucose in healthy mouse 1° flip angle

Glycolytic intermediates

Clinical hyperpolarizer: SpinLab™

About 50% ¹³C polarization in 40 mL [1-¹³C]pyruvate solution

Around 60 s delay between dissolution and injection into human (equivalent to ¹³C T₁ of [1-¹³C]pyruvate)

SpinLab™ : key features

- Operates at 5T
- Very low working temperature (<1K)
- No cryogenic fluid required
- Low overall heat leak allowing a >12h working window
- Efficient sample cooling procedure, i.e., low helium evaporation during sample loading
- Automated dissolution and QC analysis
- Cryogenic and DNP compatible fluidpath for pharmacy usage
- Relatively small tower size/foot
 print

Global SPINIab[™] sites

- 24 installed worldwide
- 8 ongoing clinical studies

US / Canada

- ✓ UCSF 3T
- ✓ UCSF 5T
- ✓ Sunnybrook
- ✓ MSKCC 3T
- ✓ MSKCC 5T
- ✓ NIH
- ✓ U Maryland
- Stanford
- U Penn
- UT Southwestern
- ✓ MD Anderson
- ✓ GRC

Europe

- ✓ Oxford University
- ✓ University of Cambridge MRIS
- University of Cambridge WBIC
- ✓ Rigs Hospital Copenhagen
- Aarhus University
- ETH Zürich
- Lublin
- University of Nottingham
- **UCL London**
- Warsaw
- University Hospital Tübingen

25 Arnaud Comment 9/10/2018

Applications in oncology

Glycolytic pathway is perturbed in most cancer cells (Warburg effect) ⇒ Lactate production is increased

Applications in oncology

First in-human trial at UCSF: prostate cancer patients

S.J. Nelson *et al.*, Science Translational Medicine **5**, 198ra108 (2013)

J. Kurhanewicz et al., Neoplasia 13, 81 (2011)

¹³C Lactate Production in Brain Tumor

V. Z. Miloushev et al., Cancer Res. 78, 3755 (2018)

Applications in cardiology

J. A. M. Bastiaansen et al. Scientific Reports 2016

Carbohydrates vs. fatty acids

J. A. M. Bastiaansen et al. Scientific Reports 2016

- Potential Co-injection of pyruvate and butyrate
- •Equal amount of both substrates injected into rats

HP-¹³C Metabolic Imaging of the Human Heart

C. H. Cunningham *et al.* Circulation Research 2016

HP-¹³C Metabolic Imaging of the Human Heart

Tissue compartments visible in ¹³C images

C. H. Cunningham *et al.* Circulation Research 2016

Diagnosing ischemic heart

Pig heart pre- and post-15-min occlusion

Pig heart pre- and post-45-min occlusion

K. Golman et al., MRM 2008

Current developments

- Simplify delivery and quality control of hyperpolarized ¹³C-substrates
- Reduce delay between production and injection
- Improve hardware and methods to increase robustness
- Increase the number of substrates available for clinical applications

Demonstrate clinical benefit of this technology

Future developments

- Can we store hyperpolarized substrates?
- Can we transport them?
- Can we inject them in a continuous manner?

Use non-persistent polarizing agents

Photo-excited reactive triplet state

T. R. Eichhorn, et al., PNAS 2013

Spontaneous radical quenching upon dissolution

T. R. Eichhorn, et al., PNAS 2013

Preclinical in vivo studies

(3s between preparation and injection)

Real-time in vivo metabolism in mouse brain

Injection of hyperpolarized [1-13C]pyruvate

T. R. Eichhorn, et al., PNAS 2013

Annihilation temperature of photo-induced radicals

A. Capozzi et al., Nat. Commun. 2017

Rapid thermalization method

A. Capozzi et al., Nat. Commun. 2017

Ex situ dissolution

A. Capozzi et al., Nat. Commun. 2017

Conclusions

- Recent results show that valuable clinical information can be highlighted using this technology
- We are aiming at scanning the first few hundreds patients with current implementation
- Improved hardware and methods under developments
- Future implementations might allow to produce hyperpolarized substrates at remote sites

Acknowledgments

Irene Marco-Rius Tian Cheng Adam Gaunt

Andrea Capozzi Tim Eichhorn Jessica Bastiaansen Emine Can Mor Mishkovsky Najat Salameh Hikari Yoshihara

FNSNF

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Kevin Brindle Alan Wright Felix Kreis

Olivier Ouari Saket Patel

CAMBRIDGE INSTITUTE

Rolf Gruetter Jacques van der Klink Christophe Roussel Jean-Noel Hyacinthe

UF FLORIDA

Matthew Merritt

Mathilde Lerche Magnus Karlsson

European Research Council