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Neutron protein crystallography

Gardberg et al. (2010)  Acta Cryst. D66:558-567

• Usually, macromolecular 
crystallography uses X-ray 
facilities to measure molecular 
structure

– Modern light sources have incredibly 
high flux

• Using neutrons for 
crystallography has pros/cons:

– Comparatively low flux
– Sensitivity of the neutron cross 

section to lighter elements (especially 
hydrogen)

– Sensitivity to isotopes

• NPX is a unique experimental 
tool for the experimental location 
of key hydrogen atoms and water 
molecules in biological 
macromolecules.
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Neutron protein crystallography
• Usually, macromolecular 

crystallography uses X-ray 
facilities to measure molecular 
structure

– Modern light sources have incredibly 
high flux

• Using neutrons for 
crystallography has pros/cons:

– Comparatively low flux
– Sensitivity of the neutron cross 

section to lighter elements (especially 
hydrogen)

– Sensitivity to isotopes

• NPX is a unique experimental 
tool for the experimental location 
of key hydrogen atoms and water 
molecules in biological 
macromolecules, but use is 
limited by requirement for huge 
crystals.

X-ray Structures
>100000

Neutron Structures
<100

X-ray Crystals <0.001mm3

Neutron Crystals >0.1mm3



5 DNP for Neutron Scattering

Community Scientific Needs: Smaller Samples and 
Faster Data Collection 

• Grand Challenges: Cold neutron flux: 
“Radically increase the flux of neutron beam 
lines at long wavelengths in particular for small 
angle scattering, crystallography, and spin 
echo.”

• How can we accomplish this without building a 
new facility?

Gains Required

• Data set in 1 day        x20

• Reduce crystal size to 0.001mm3 x100

At the workshop, 37 invited leading researchers from 
more than 20 different universities and institutes joined 5 
participants from the Neutron Sciences Directorate of 
ORNL to map out 10 grand challenges that we face in 
biological research over the next 10 years. 
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Spin Dependence of Neutron Scattering
• For a lattice of identical atoms 

with non-zero spin, the 
incoherent and coherent cross 
section for neutron scattering has 
a dependence on the spin 
alignment of the neutron and the 
struck nucleus

• Control over spin orientation 
gives control over scattering.

• Neutron Polarization is well 
developed

– Supermirror polarizers
– 3He filters

• Nuclear Polarization is more 
challenging

𝑑𝑑𝑑𝑑
𝑑𝑑Ω 𝑖𝑖𝑖𝑖𝑖𝑖

=
𝑏𝑏2

4
𝐼𝐼 𝐼𝐼 + 1 − 𝑝𝑝𝑝𝑝𝐼𝐼 − 𝑝𝑝2𝐼𝐼2 ;

𝑑𝑑𝑑𝑑
𝑑𝑑Ω 𝑖𝑖𝑐𝑐𝑐

= 𝑏𝑏02 + 𝑏𝑏𝑏𝑏0𝐼𝐼𝑝𝑝𝑝𝑝 +
𝐼𝐼2𝑝𝑝2𝑏𝑏2

4
;
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Spin Dependence of Neutron Scattering from 
Hydrogen

Coherent, incoherent and total scattering cross 
section of hydrogen as a function of the proton 
polarization for fully polarized neutrons.

• Hydrogen is a special case
– The spin dependence of the hydrogen 

cross section is very large
– Looking for hydrogen locations is a primary 

motivation for Neutron Protein 
Crystallography

• Incoherent scattering can be 
removed entirely (true for any 
nucleus)

• Coherent scattering can be 
increased by a factor of 7 (or 20)

• An increase in signal to noise enters 
squared into the calculation figure 
of merit

– Factor of 10 in signal to noise is a 
factor of 100 in flux/sample size/data 
collection time

• The hydrogen nucleus is polarizable
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Tests at IMAGINE
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Refrigerator and Magnet

• Stock Dilution Refrigerator 
from Bluefors
– 400µW@100mK
– >1mW@1K
– Base temperature 

(unmodified) ~7mK
– Cryogen Free

• 5T Solenoid
– Warm 100mm bore
– Cryogen Free
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NMR
• Absolute polarization measurements are challenging

– Target sizes are generally <1mm3

– TE signals are extremely small

• Liverpool Q-meter
almost works
– With sufficient gain 

and careful work,
a decent TE can 
be measured

– Error is high
– Still hard to trust

• Sensitive to very small contaminations

• In general, absolute polarization measurement is not needed
– The higher the better
– Absolute numbers may be extracted from diffraction data
– Large solution samples are used to test performance
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Microwave System
• Here, small sample size

is helpful
– Very low microwave power

needed because the sample
is tiny

• VDI diode based microwave 
source
– Low cost 
– 300mW of power @140GHz
– Ease of use

• USB control
• Incredibly stable frequency
• No high voltage or cooling 
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Sample Interface
Microwave “horn”

Sample Position

NMR Coil

Indium Seal

Protein Crystal
(<1mm)

• Requirements
– Cannot put the sample in the mixing 

chamber
• 3He captures neutrons

– Allow crystal rotation
– Fit in 100mm space
– Load sample cold

• Crystals cannot warm past ~150K

• Sample located in a Kel-F  
chamber, surrounded by 
superfluid

– Not sealed space
– Large cryogenic load from 4He 

film/vapor
– Hard to get repeatable temperatures

• Sample temperatures vary from 300mK 
to 150mK
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Paramagnetic Labeling in Protein Crystals

• Strategies
– Site specific
– Non-specific

• Site specific labeling (Intrinsic) 
– Mutagenesis for intrinsic/site specific labels 
– Spin-labeled mutants T4 lysozyme constructed, expressed, 

crystallized 
– X-ray and first neutron structures determined 

• Non-specific
– Crystals soaked in a solution with paramagnetic label

MTSL

TEMPO
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T4 Lysozyme Results

Unpolarized

• Doped with TEMPO

• “Large” crystals
– ~0.5mm-1.0mm on edge

• Detector was uncalibrated, and shifted 
between frames

• Short hold times in “frozen spin” mode
– ~60-180 min T1

– Very high temperatures
• ~230 mK

• Measured diffraction pattern change

• Enhancements of 2-3 in integrated
diffraction pattern for anti-aligned spins

– The enhancement of individual reflections depends varies depending on the 
relative contribution of hydrogen

• Consistent with maximum polarizations of around 50%
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T4 Lysozyme Results

Polarized
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Moving Forward

• New Scattering data will be taken starting in November 2018
• System has been updated with ¼” VCR based cold seal at 

the top of the sample stick
– Seal made at low temperature using 0.005” KELF gasket

• Appears to be very reliable and require little torque
– Relaxation times improved by factor of 1.5-2.2

• Improved (existent) DAQ software
– Will allow the crystal orientation to be determined
– Allow extraction of polarization from scattering data

• New detector
– Same design concept, but lower noise
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Conclusion
• The nuclear spin dependence of neutron scattering can be 

used to manipulate scattering 
• Polarized hydrogen has a large potential benefit to protein 

crystallography
– Could allow the use of sustainably smaller samples or greatly 

reduced data collection time

• DNP is an effective means to polarize the hydrogen within a 
sample
– Sample preparation and sample environment requirements are 

substantial 
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Application to SANS Contrast Matching
• Deuteration

– The unpolarized coherent scattering 
length of hydrogen is -3.74 fm

– The unpolarized coherent scattering 
length of deuterium is 6.674 fm

• Polarization
– Positive polarization: 10.82 fm 
– Negative polarization: 

-18.3 fm 
– Can be changed in-situ

• Requires a single sample reparation
– Work done by Stuhrmann et al
– Current work by Kumada et al. (also working on DNP for 

reflectometry)



22 DNP for Neutron Scattering

Application to SANS Contrast Matching
• Deuteration

– The unpolarized coherent scattering 
length of hydrogen is -3.74 fm

– The unpolarized coherent scattering 
length of deuterium is 6.674 fm

• Polarization
– Positive polarization: 10.82 fm 
– Negative polarization: 

-18.3 fm 
– Can be changed in-situ

• Requires a single sample reparation
– Work done by Stuhrmann et al
– Current work by Kumada et al. (also working on DNP for 

reflectometry)



23 DNP for Neutron Scattering

Application to SANS Contrast Matching
• Deuteration

– The unpolarized coherent scattering 
length of hydrogen is -3.74 fm

– The unpolarized coherent scattering 
length of deuterium is 6.674 fm

• Polarization
– Positive polarization: 10.82 fm 
– Negative polarization: 

-18.3 fm 
– Can be changed in-situ

• Requires a single sample reparation
– Work done by Stuhrmann et al
– Current work by Kumada et al. (also working on DNP for 

reflectometry)



24 DNP for Neutron Scattering

Advanced Techniques: Localized Polarization
• If the center is an attached spin 

label, then the location of the 
polarized region can be controlled
– Attached to a specific site on a 

macromolecule
– Size and rate of propagation has 

been studied with SANS (van den 
Brandt 2006)

• Alternatively, different components 
of a composite sample could be 
selectively polarized
– One layer of a sample for example
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Advanced Techniques: 
Difference Measurements
• All that is required is to change the 

microwave frequency to change 
polarization sign 
– Field remains constant
– Temperature remains constant

• Adiabatic Fast Passage or neutron 
spin flipper can reverse polarization 
more quickly

• Only thing that changes is the cross 
section for the nuclei, and that 
changes in a predictable manner

• This can be used to highlight 
specific structures

Spins Aligned

Spins Anti-aligned
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Other Nuclei
• All non spin zero nuclei will polarize
• Polarization will be different for 

different nuclei
– 15N and 13C polarize well, are 

used for DNP enhanced MRI 
and NMR measurements

• Spin dependent scattering 
lengths are different for each 
nucleus
– 15N and 13C have very little spin 

dependence

• Difference measurements may still be possible
– Different nuclei species could be 

selectively polarized/depolarized/flipped using a combination of NMR 
and DNP techniques

𝑑𝑑𝑑𝑑
𝑑𝑑Ω 𝑖𝑖𝑖𝑖𝑖𝑖

=
𝑏𝑏2

4
𝐼𝐼 𝐼𝐼 + 1 − 𝑝𝑝𝑝𝑝𝐼𝐼 − 𝑝𝑝2𝐼𝐼2 ;

𝑑𝑑𝑑𝑑
𝑑𝑑Ω 𝑖𝑖𝑐𝑐𝑐

= 𝑏𝑏02 + 𝑏𝑏𝑏𝑏0𝐼𝐼𝑝𝑝𝑝𝑝 + 𝐼𝐼2𝑃𝑃2𝑏𝑏2

4
;

𝑎𝑎 = 𝑏𝑏0 + 𝑏𝑏𝑰𝑰 ⋅ 𝒔𝒔

𝑏𝑏 =
2 𝑏𝑏+ − 𝑏𝑏−
2𝐼𝐼 + 1
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