Storage of polarized ultracold neutrons

Guillaume Pignol, Sep 13 2018 SPIN 2018, Ferrara, Italy

European Research Council

Hunting the neutron Electric Dipole Moment (EDM)

One measures the neutron Larmor precession frequency f_L in weak Bagdetic and strong Electric fields

$$f_L(\uparrow\uparrow) - f_L(\uparrow\downarrow) = -\frac{2}{\pi\hbar}d_n E$$

Neutron EDN

The most sensitive experiments use Ramsey's method with polarized ultracold neutrons stored in a "precession" chamber Here a cylinder, Ø50 cm, H12 cm.

Scheme of the apparatus at PSI during EDM data-taking 2015-2016

Importance of neutron polarization

2 modes to study the depolarization in nEDM

Cycle to measure the longitudinal polarization, **T1 mode**

Filling polarized UCNs	Storage period of duration T,	Emptying neutrons,	
	UCN spins aligned with \overrightarrow{B}	counting N_+ and N	

Cycle to measure the transverse polarization, **Ramsey mode**

Filling polarized UCNs	$\pi/2$ pulse	Storage period of duration T , UCN spins precessing about \vec{B}		Emptying neutrons, counting N_+ and N
	(2 s)		(2 s)	

time

Longitudinal depolarization curve

- The initial polarization 0.85 gives the **analyzing power** of the detection system.
- The UCN longitudinal polarization decays due to depolarization at wall collisions.

Rate of wall collisions ≈ 50/s

 T_1

Depolarization probability $\approx 3 \times 10^{-6}$

23 modes to study the depolarization in nEDM

T1 mode

Filling	Storage UCN spins aligned with \vec{B}	Emptying, counting N_+ and N
---------	--	----------------------------------

Ramsey mode

Filling	$\pi/2$ pulse	Storage UCN spins precessing about \overrightarrow{B}	$\pi/2$ pulse	Emptying, counting N_+ and N
---------	---------------	---	---------------	----------------------------------

Spin-echo cycles

Filling polarized UCNs	$\pi/2$ pulse	π pulse	$\pi/2$ pulse	Emptying, counting N_+ and N
	(2 s)	(4 s)	(2 s)	>
9/22			 	time

Principle of the spin-echo method

Ramsey cycles

Filling	$\pi/2$	$\pi/2$	Emptying neutrons,
	pulse	pulse	counting N_{\perp} and N_{\perp}

Spin-echo cycles

UCN polarization after T = 180 s storage

Elements of spin-relaxation theory

Intrinsic depolarization =

polarization decay within an energy group due to random motion in a static but non-uniform field.

This is an **irreversible process**

Longitudinal "noise" seen by a neutron $b(t) = B_z(t) - \langle B_z \rangle$. The spin-relaxation theory says:

$$\frac{1}{T_2} = \gamma^2 \int_0^\infty \frac{\langle b(t)b(t+\tau) \rangle}{f} d\tau := \gamma^2 \langle b^2 \rangle \tau_c$$

Autocorrelation function of the field Correlation time, defined by this equation

MC calculation of the correlation time

- In nEDM@PSI we obtained $\alpha = 0.77$ after T = 180 s of precession
- It is important to understand the magnetic depolarization for the design of n2EDM because we want to increase the size : diameter 47 cm in nEDM -> diameter 80 cm in n2EDM

We also store polarized mercury atoms

Magnetic depolarization of mercury?

14 Hg spin relaxation rate [mHz] 13 experiment 12 The mercury is less 11 sensitive to gradients theory 10 because the correlation time is shorter, $\tau_c = 2 \text{ ms}$ 2 Gradient [nT/cm] (gigantic)

Frequency shift induced by magnetic noise

False motional EDM of mercury

Final remarks on field uniformity To measure nEDM at the 10⁻²⁷ e cm level

B must be uniform

otherwise the UCN depolarize too fast the requirement on the *field production* is < **10 pT/cm**

• **B** non-uniformities must be controlled

otherwise we get a false EDM due to the mercury motional field the requirement on the *field measurement* is **< 0.1 pT/cm**

Credits to the n2EDM collaboration

50 physicists 10 PhD students 7 countries 13 laboratories

22/22

thank you, the rest are backup slides

UCNs and magnetic fields

Neutron magnetic moment $\mu_n \times (1 \text{ T}) = 60 \text{ neV}$ Magnetic fields act on the spin ½ neutron

$$V = -\vec{\mu}_n \, \vec{B}$$

Storing Ultracold neutrons in the nEDM apparatus

FIG. 3. False motional EDM d_n^{false} induced by a linear gradient of $G_1 = 1 \text{ pT/cm}$ as a function of the magnitude of the holding field B_0 in a cylindrical chamber of height 12 cm and diameter 47 cm (dashed line) or 100 cm (plain magenta line). The vertical lines labeled "magic field" indicate the values of B_0 for which $d_n^{\text{false}} = 0$.