

Institut für Kernphys

A measurement of the Weak Mixing Angle at Low Energy

Sebastian Baunack

Universität Mainz

SPIN 2018, Ferrara, Italy

September 2018

JGU

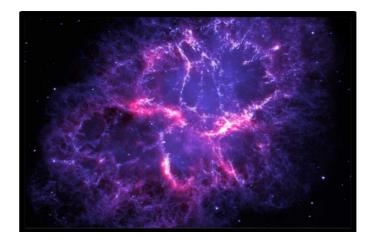
Institut für Kernphysik

• Introduction:

The Weak Mixing Angle and the Standard Model

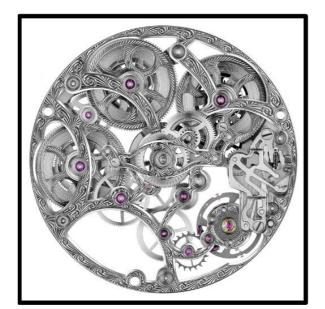
• P2 Experiment Design

Achievable precision in $\sin^2 \Theta_W$ Spectrometer Design


- Further Physics Program
- Summary

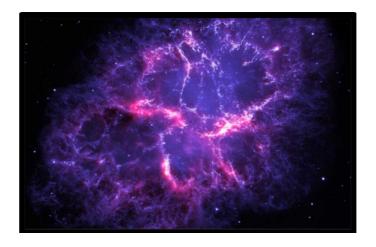
Standard Model: Open questions

- Consistent description of all four fundamental interactions?
- Dark matter, dark energy?

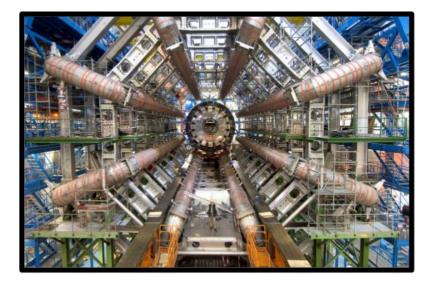


Search for **New Physics**:

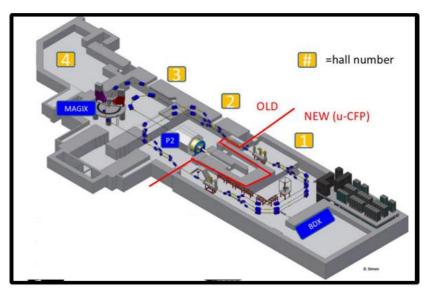
Option 1: Direct search for new particles at high energies



Option 2: Precise determination of Standard Model predictions at moderate energies


Standard Model: Open questions

- Consistent description of all four fundamental interactions?
- Dark matter, dark energy?



Search for **New Physics**:

Option 1: Direct search for new particles at high energies

Option 2: Precise determination of Standard Model predictions at moderate energies

The weak mixing angle

 $sin^2\Theta_W$: a central parameter in the Standard Model

Tree level relations:

Electric charge

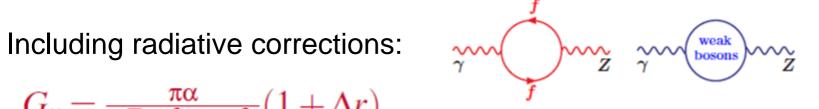
$$e = \sqrt{4\pi\alpha} = g_1 \cos\theta_W = g_2 \sin\theta_W$$

- Masses of W and Z Boson $\cos \theta_W = M_W / M_Z$
- Myon decay constant

$$G_{\mu} = \frac{\pi\alpha}{\sqrt{2}\sin^2\theta_W M_W^2}$$

Standard model relations for the weak mixing angle

Tree level relations:

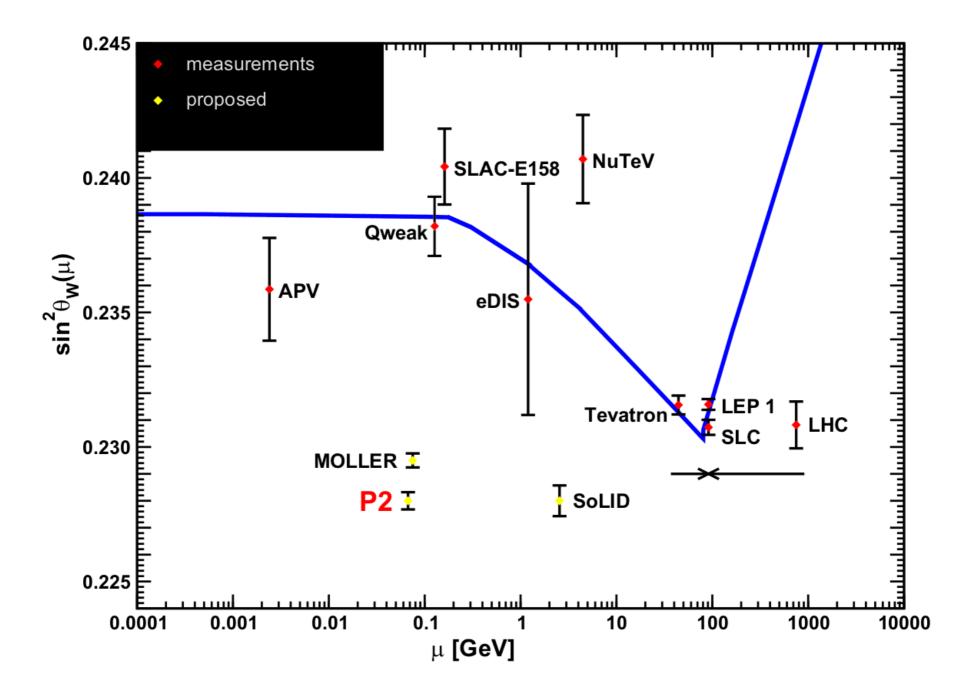

- Electric charge
- Masses of W and Z Boson
- Myon decay constant

$$e = \sqrt{4\pi\alpha} = g_1 \cos \theta_W = g_2 \sin \theta_W$$

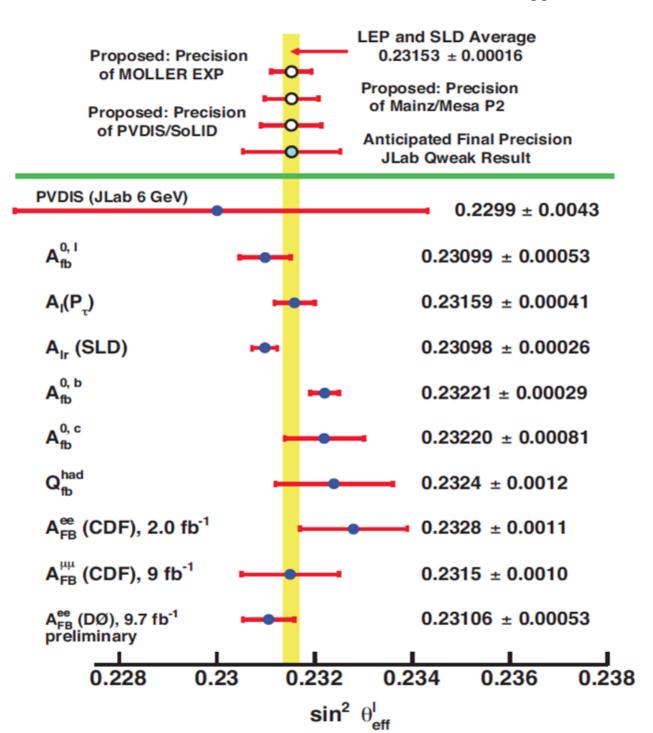
$$\cos\theta_W = M_W/M_Z$$

$$G_{\mu} = \frac{\pi\alpha}{\sqrt{2}\sin^2\theta_W M_W^2}$$

$$G_{\mu} = \frac{\pi\alpha}{\sqrt{2}\sin^2\theta_W M_W^2} (1 + \Delta r)$$

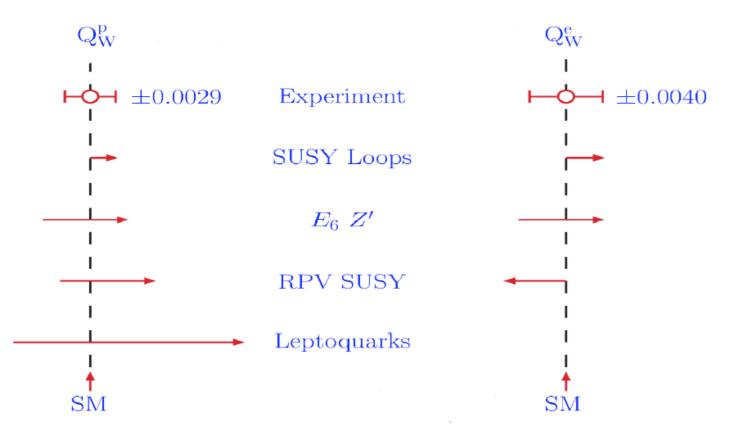


with $\Delta r = \Delta r(\alpha, M_W, \sin \theta_W, m_{top}, M_{Higgs}, \ldots)$


Absorb universal quantum corrections in an *effective, running* weak mixing angle:

 $\sin^2 \theta_W \rightarrow \sin^2 \theta_{eff}$ or $\sin^2 \theta_W(\mu)$ mit μ as energy scale

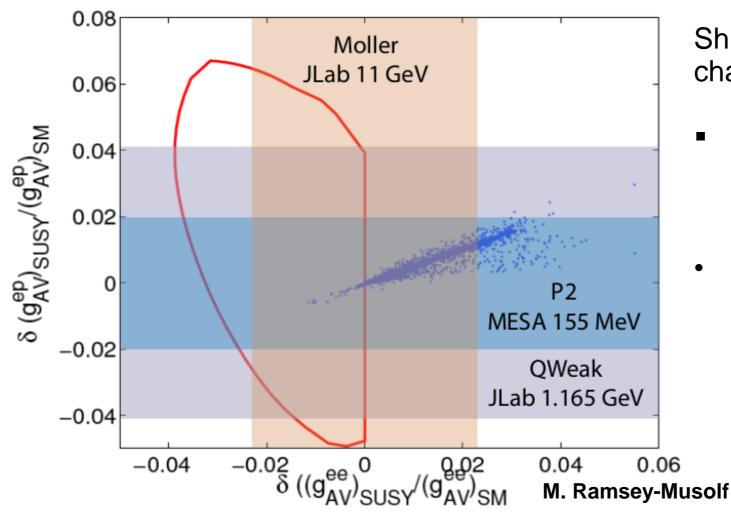
Scale dependency of $\sin^2\Theta_W$



Measurements of sin²O_w

Physics beyond the Standard Model

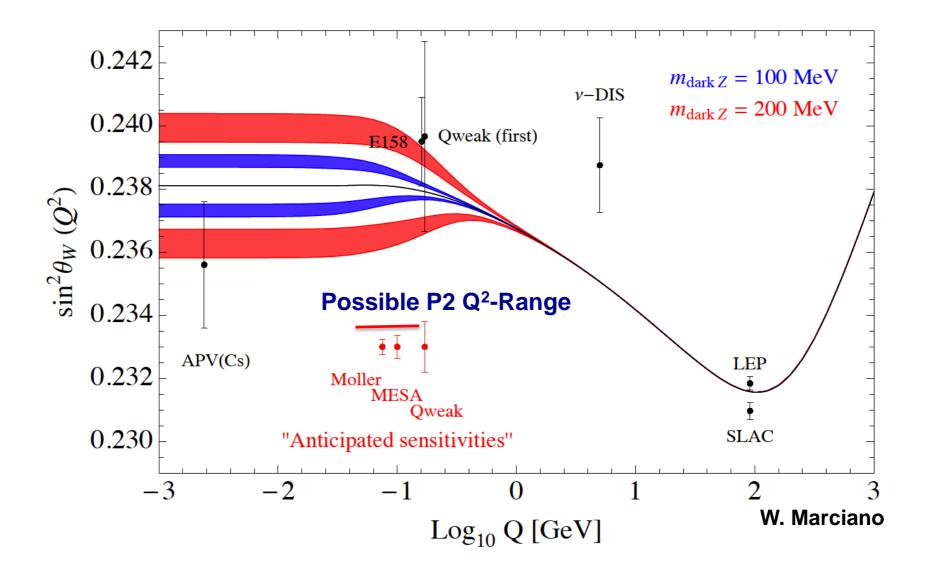
Weak charges of proton and electron (tree level):

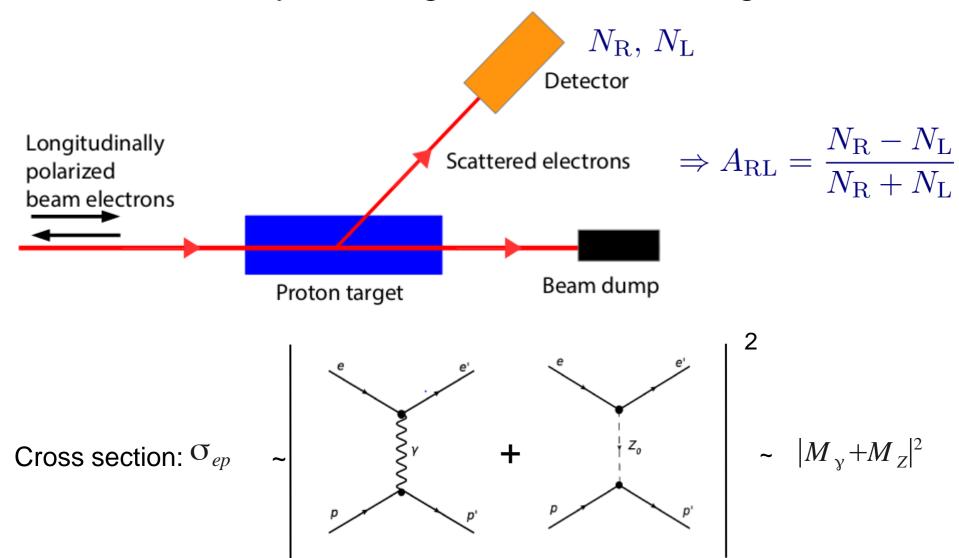


Standard Model extensions:

- Characteristic shifts in Q_w(p) und Q_w(p)
- Measurements of Q_W(p) and Q_W(p) are complentary

Super Symmetric Models


Example: Super symmetric Standard Model extension (SuSy) with and without R-Parity violation


Shifts in the weak charges of p und e-

- Blue dots: Minimal supersymmetric models
 - Red "Ellipse": Allowed range for R-parity violating supersymmetric models

<u>Running of $\sin^2 \theta_W$ and Dark Parity Violation</u>

Parity violating electron scattering

The weak interaction is **parity violating**: $M_Z^+ \neq M_Z^- \longrightarrow |M_\gamma + M_Z^+|^2 \neq |M_\gamma + M_Z^-|^2$

$$\rightarrow$$
 $\sigma_{ep}^{+} \neq \sigma_{ep}^{-}$

Parity violating electron scattering

Asymmetry in the cross section of elastic electron-proton scattering for left- and right-handed polarized electrons

$$\mathbf{A}_{LR} = \frac{\sigma(\mathbf{e}_{\downarrow}) - \sigma(\mathbf{e}_{\uparrow})}{\sigma(\mathbf{e}_{\downarrow}) + \sigma(\mathbf{e}_{\uparrow})} = -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \Big(\mathbf{Q}_W(\mathcal{N}) - \mathbf{F}(\mathbf{Q}^2) \Big)$$

The weak charge of the proton (tree level):

 $Q_W(p) = 1 - 4\sin^2\theta_W$

$$\frac{\Delta \sin^2 \theta_W}{\sin^2 \theta_W} = \frac{1 - 4 \sin^2 \theta_W}{4 \sin^2 \theta_W} \frac{\Delta Q_W(p)}{Q_W(p)}$$

1.5% precision in $Q_W(p)$ results in a precision of 0.13% in sin² Θ_W

The parity violating asymmetry can be written as

$$A^{\rm PV} = \frac{-G_{\rm F}Q^2}{4\pi\alpha_{\rm em}\sqrt{2}} \left[Q_{\rm W}({\rm p}) - F(E_{\rm i},Q^2) \right]$$

with the form factor contribution

$$F(E_{\rm i},Q^2) \equiv F^{\rm EM}(E_{\rm i},Q^2) + F^{\rm A}(E_{\rm i},Q^2) + F^{\rm S}(E_{\rm i},Q^2)$$

with

$$F^{\rm EM}(E_{\rm i},Q^2) \equiv \frac{\epsilon G_{\rm E}^{{\rm p},\gamma} G_{\rm E}^{{\rm n},\gamma} + \tau G_{\rm M}^{{\rm p},\gamma} G_{\rm M}^{{\rm n},\gamma}}{\epsilon (G_{\rm E}^{{\rm p},\gamma})^2 + \tau (G_{\rm M}^{{\rm p},\gamma})^2}$$
$$F^{\rm A}(Q^2) \equiv \frac{\left(1 - 4\sin^2\theta_{\rm W}\right)\sqrt{1 - \epsilon^2}\sqrt{\tau (1 - \tau)} G_{\rm M}^{{\rm p},\gamma} G_{\rm A}^{{\rm p},Z}}{\epsilon (G_{\rm E}^{{\rm p},\gamma})^2 + \tau (G_{\rm M}^{{\rm p},\gamma})^2}$$

$$F^{\mathrm{S}}(E_{\mathrm{i}},Q^{2}) \equiv \frac{\epsilon G_{\mathrm{E}}^{\mathrm{p},\gamma} G_{\mathrm{E}}^{\mathrm{s}} + \tau G_{\mathrm{M}}^{\mathrm{p},\gamma} G_{\mathrm{M}}^{\mathrm{s}}}{\epsilon (G_{\mathrm{E}}^{\mathrm{p},\gamma})^{2} + \tau (G_{\mathrm{M}}^{\mathrm{p},\gamma})^{2}} + \frac{\epsilon G_{\mathrm{E}}^{\mathrm{p},\gamma} G_{\mathrm{E}}^{\mathrm{u},\mathrm{d}} + \tau G_{\mathrm{M}}^{\mathrm{p},\gamma} G_{\mathrm{M}}^{\mathrm{u},\mathrm{d}}}{\epsilon (G_{\mathrm{E}}^{\mathrm{p},\gamma})^{2} + \tau (G_{\mathrm{M}}^{\mathrm{p},\gamma})^{2}}$$

The parity violating asymmetry can be written as

$$A^{\rm PV} = \frac{-G_{\rm F}Q^2}{4\pi\alpha_{\rm em}\sqrt{2}} \left[Q_{\rm W}({\bf p}) - F(E_{\rm i},Q^2) \right]$$

A/ppb 10³ APV 10² AEM 10 155.00 MeV = 30 10 20 40 50 60 70 80 90 θ/deg

Asymmetry contributions for the MESA beam energy of 155 MeV

The parity violating asymmetry can be written as

$$A^{\rm PV} = \frac{-G_{\rm F}Q^2}{4\pi\alpha_{\rm em}\sqrt{2}} \left[Q_{\rm W}({\bf p}) - F(E_{\rm i},Q^2) \right]$$

Prediction of the achievable precision:

The measured asymmetry can be written as

$$\langle A^{\rm raw} \rangle_{\rm sig} = P \cdot \langle A^{\rm PV} \rangle_{\rm sig} + A^{\rm false}$$

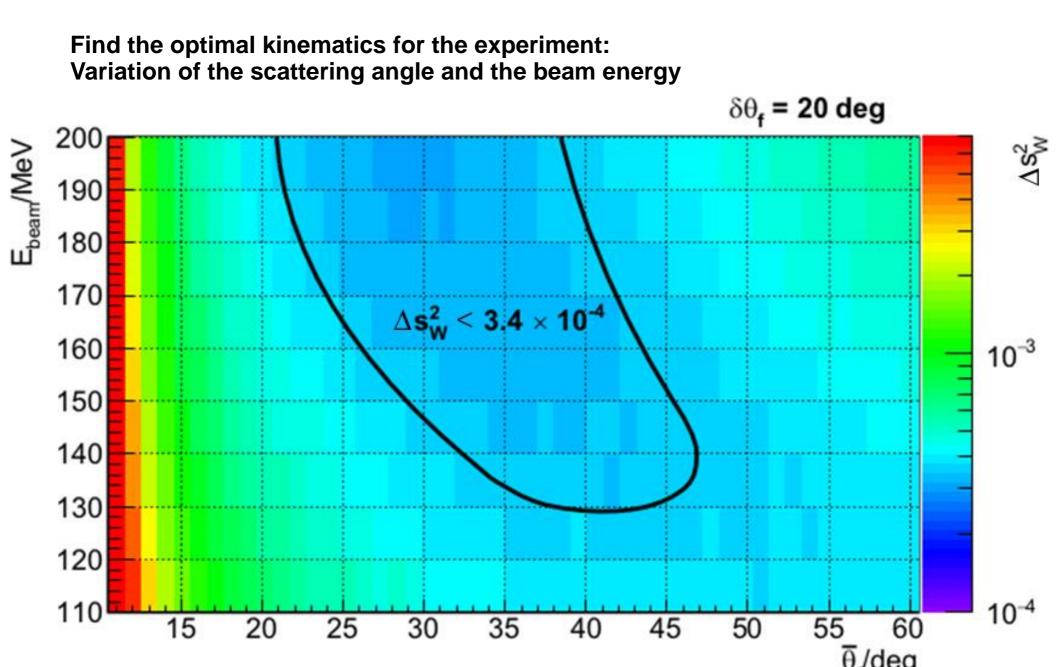
- Solve this equation for $sin^2\Theta_W$, denoted here as s^2_W

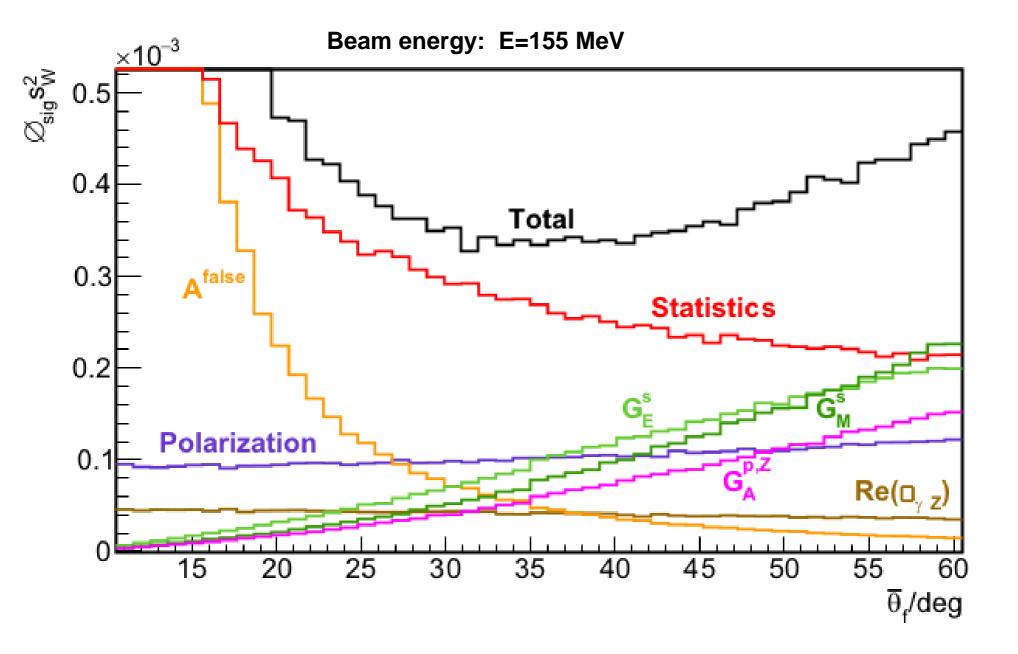
 $s_{\mathrm{W}}^2 = s_{\mathrm{W}}^2 \left(\langle A^{\mathrm{raw}} \rangle_{\mathrm{sig}}, P, E_{\mathrm{beam}}, \bar{\theta}_{\mathrm{f}}, \delta\theta_{\mathrm{f}}, F(\{\kappa_k\}, Q^2), \Box_{\gamma \mathrm{Z}} \right)$

• Perform error propagation calculation based on a Monte Carlo algorithm

Input parameters for error propagation:

λ_l	$\langle \lambda_l angle$	$\Delta\lambda_l$
$E_{\rm beam}$	variable	$0.13{ m MeV}$
$ar{ heta}_{ m f}$	variable	0°
$\delta heta_{ m f}$	variable	0.1°
$\delta \phi_{ m f}$	360°	0°
$I_{\rm beam}$	$150\mu A$	$0.001\mu A$
P	0.85	0.00425
L	$600\mathrm{mm}$	$0\mathrm{mm}$
T	$1\times 10^4\mathrm{h}$	$0 \mathrm{h}$
A^{false}	0	$0.1\mathrm{ppb}$


Proton form factors of the proton from Bernauer et al.:


$$\begin{split} G_{\rm E}^{\rm p,\gamma}(Q^2) &= \quad G_{\rm dipole}^{\rm std}(Q^2) \cdot G_{\rm E}^{\rm poly}(Q^2) \\ G_{\rm M}^{\rm p,\gamma}(Q^2) &= \mu_{\rm P}/\mu_{\rm N} \cdot G_{\rm dipole}^{\rm std}(Q^2) \cdot G_{\rm M}^{\rm poly}(Q^2) \\ G_{\rm F}^{\rm poly}(Q^2) &= 1 + \sum_{i=1}^{8} \left(\kappa_i^{\rm p, \ F} \cdot Q^{2i}\right) \\ G_{\rm dipole}^{\rm std}(Q^2) &= \left(1 + \frac{Q^2}{0.71 \,\,{\rm GeV}^2}\right)^{-2} \end{split}$$

Neutron form factors from M. El Yakoubi;

$$\begin{split} G_{\rm E}^{{\rm n},\gamma}(Q^2) &= \frac{\tau \kappa_1^{{\rm n},{\rm E}}}{1+\tau \kappa_2^{{\rm n},{\rm E}}} \cdot G_{\rm dipole}^{\rm std}(Q^2) \\ G_{\rm M}^{{\rm n},\gamma}(Q^2) &= \sum_{i=0}^9 \kappa_i^{{\rm n},{\rm M}} Q^{2i} \end{split}$$

Strangeness and Isobreaking form factors...

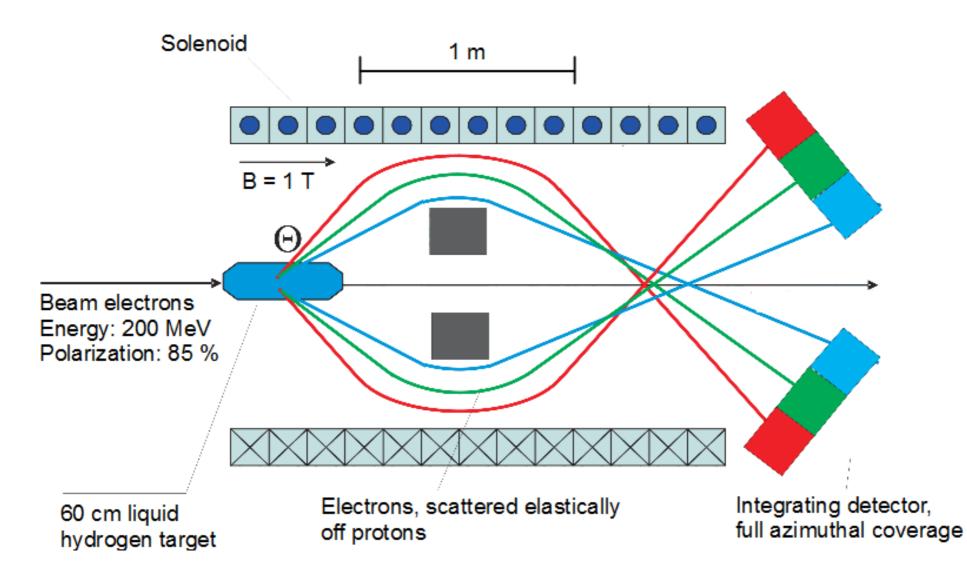
$E_{ m beam} \ ar{ heta}_{ m f} \ \delta heta_{ m f}$	$egin{array}{c} 155{ m MeV}\ 35^\circ\ 20^\circ \end{array}$	P2 Experiment conditions
$s_{ m W}^2 \ {\it \Delta}_{ m exp} s_{ m W}^2$	$\begin{array}{c} 0.23116\\ 3.7\times10^{-4}(0.16\%)\end{array}$	
$egin{aligned} & \Delta_{ ext{exp, stat}} s_{ ext{W}}^2 \ & \Delta_{ ext{exp, P}} s_{ ext{W}}^2 \ & \Delta_{ ext{exp, false}} s_{ ext{W}}^2 \ & \Delta_{ ext{exp, t.w.}} s_{ ext{W}}^2 \ & \Delta_{ ext{exp, t.w.}} s_{ ext{W}}^2 \ & \Delta_{ ext{exp, t.p.}} s_{ ext{W}}^2 \end{aligned}$	$\begin{array}{c} 3.1 \times 10^{-4} \ (0.13 \ \%) \\ 0.7 \times 10^{-4} \ (0.03 \ \%) \\ 0.6 \times 10^{-4} \ (0.03 \ \%) \\ 1.2 \times 10^{-4} \ (0.05 \ \%) \\ 0.1 \times 10^{-4} \ (0.00 \ \%) \end{array}$	_
$\Delta_{ ext{exp}, \Box_{\gamma Z}} s_{ ext{W}}^2 \ \Delta_{ ext{exp, nucl. FF}} s_{ ext{W}}^2$	$\begin{array}{c} 0.4 \times 10^{-4} \ (0.02 \%) \\ 1.2 \times 10^{-4} \ (0.05 \%) \end{array}$	-

$E_{ m beam} \ ar{ heta}_{ m f} \ \delta heta_{ m f}$	$egin{array}{c} 155 \ { m MeV} \ 35^\circ \ 20^\circ \end{array}$	
$s_{ m W}^2 \ arDelta_{ m exp} s_{ m W}^2$	$\begin{array}{c} 0.23116\\ 3.7\times10^{-4}(0.16\%) \end{array}$	P2 Achievable precision
$egin{aligned} & \Delta_{ ext{exp, stat}} s_{ ext{W}}^2 \ & \Delta_{ ext{exp, P}} s_{ ext{W}}^2 \ & \Delta_{ ext{exp, talse}} s_{ ext{W}}^2 \ & \Delta_{ ext{exp, t.w.}} s_{ ext{W}}^2 \ & \Delta_{ ext{exp, t.p.}} s_{ ext{W}}^2 \end{aligned}$	$\begin{array}{l} 3.1\times10^{-4}~(0.13\%)\\ 0.7\times10^{-4}~(0.03\%)\\ 0.6\times10^{-4}~(0.03\%)\\ 1.2\times10^{-4}~(0.05\%)\\ 0.1\times10^{-4}~(0.00\%) \end{array}$	
$\Delta_{ ext{exp}, \Box_{\gamma Z}} s_{ ext{W}}^2 \ \Delta_{ ext{exp, nucl. FF}} s_{ ext{W}}^2$	$0.4 \times 10^{-4} \ (0.02 \%)$ $1.2 \times 10^{-4} \ (0.05 \%)$	_

	$E_{ ext{beam}} \ ar{ heta}_{ ext{f}} \ \delta heta_{ ext{f}}$	$egin{array}{c} 155 \ { m MeV} \ 35^\circ \ 20^\circ \end{array}$
	$s_{ m W}^2 \ {\it \Delta}_{ m exp} s_{ m W}^2$	$\begin{array}{c} 0.23116\\ 3.7\times10^{-4}(0.16\%)\end{array}$
Statistics	$egin{aligned} & \Delta_{ ext{exp, stat}} s_{ ext{W}}^2 \ & \Delta_{ ext{exp, P}} s_{ ext{W}}^2 \ & \Delta_{ ext{exp, talse}} s_{ ext{W}}^2 \ & \Delta_{ ext{exp, t.w.}} s_{ ext{W}}^2 \ & \Delta_{ ext{exp, t.p.}} s_{ ext{W}}^2 \end{aligned}$	$\begin{array}{c} 3.1 \times 10^{-4} \ (0.13 \ \%) \\ 0.7 \times 10^{-4} \ (0.03 \ \%) \\ 0.6 \times 10^{-4} \ (0.03 \ \%) \\ 1.2 \times 10^{-4} \ (0.05 \ \%) \\ 0.1 \times 10^{-4} \ (0.00 \ \%) \end{array}$
-	$\Delta_{ ext{exp}, \Box_{\gamma Z}} s_{ ext{W}}^2 \ \Delta_{ ext{exp, nucl. FF}} s_{ ext{W}}^2$	$\begin{array}{l} 0.4 \times 10^{-4} \ (0.02 \ \%) \\ 1.2 \times 10^{-4} \ (0.05 \ \%) \end{array}$

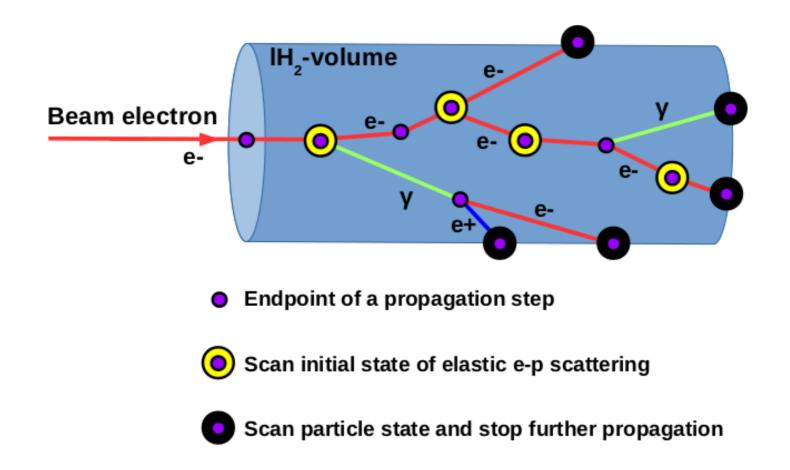
	$E_{ m beam} \ ar{ heta}_{ m f} \ \delta heta_{ m f}$	$egin{array}{c} 155 \ { m MeV}\ 35^\circ\ 20^\circ \end{array}$
	$s_{ m W}^2 \ {\it \Delta}_{ m exp} s_{ m W}^2$	$\begin{array}{c} 0.23116\\ 3.7\times10^{-4}(0.16\%)\end{array}$
Statistics	$\Delta_{ m exp, \; stat} s_{ m W}^2 \ \Delta_{ m exp, \; P} s_{ m W}^2$	$3.1 \times 10^{-4} \ (0.13 \%)$ $0.7 \times 10^{-4} \ (0.03 \%)$
	$\Delta_{ ext{exp, false}} s_{ ext{W}}^2 \ \Delta_{ ext{exp, t.w.}} s_{ ext{W}}^2 \ \Delta = s_{ ext{W}}^2$	$\begin{array}{l} 0.6 \times 10^{-4} \ (0.03 \ \%) \\ 1.2 \times 10^{-4} \ (0.05 \ \%) \\ 0.1 \times 10^{-4} \ (0.00 \ \%) \end{array}$
_	$\Delta_{ ext{exp, t.p.}} s_{ ext{W}}^2$ $\Delta_{ ext{exp,}\Box_{\gamma Z}} s_{ ext{W}}^2$	$0.4 \times 10^{-4} \ (0.02 \%)$
Form factors	$\Delta_{ m exp,\ nucl.\ FF} s_{ m W}^2$	$1.2 \times 10^{-4} \ (0.05 \%)$

	$E_{ ext{beam}} \ ar{ar{ heta}}_{ ext{f}} \ \delta heta_{ ext{f}}$	$egin{array}{c} 155{ m MeV}\ 35^\circ\ 20^\circ \end{array}$
	$s_{ m W}^2 \ {\it \Delta}_{ m exp} s_{ m W}^2$	$\begin{array}{c} 0.23116\\ 3.7\times10^{-4}(0.16\%)\end{array}$
Statistics	$\Delta_{ m exp, \ stat} s_{ m W}^2 \ \Delta_{ m exp, \ P} s_{ m W}^2$	$\begin{array}{c} 3.1 \times 10^{-4} \ (0.13 \%) \\ 0.7 \times 10^{-4} \ (0.03 \%) \end{array}$
Target windows	$egin{aligned} & \Delta_{ ext{exp, false}} s_{ ext{W}}^2 \ & \Delta_{ ext{exp, t.w.}} s_{ ext{W}}^2 \ & \Delta_{ ext{exp, t.p.}} s_{ ext{W}}^2 \end{aligned}$	$\begin{array}{c} 0.6 \times 10^{-4} \ (0.03 \ \%) \\ 1.2 \times 10^{-4} \ (0.05 \ \%) \\ 0.1 \times 10^{-4} \ (0.00 \ \%) \end{array}$
Form factors	$\Delta_{\mathrm{exp, \ D}_{\gamma Z}} s_{\mathrm{W}}^{2}$ $\Delta_{\mathrm{exp, \ nucl. \ FF}} s_{\mathrm{W}}^{2}$	$\begin{array}{c} 0.4 \times 10^{-4} \ (0.02 \ \%) \\ 1.2 \times 10^{-4} \ (0.05 \ \%) \end{array}$

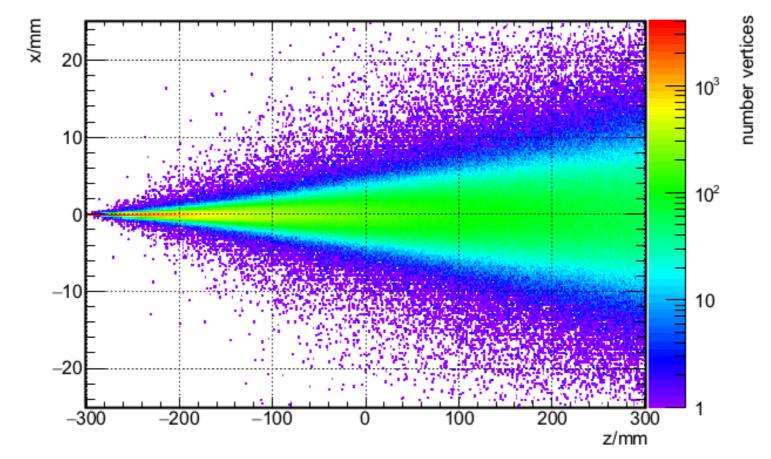

	$E_{ m beam} \ ar{ heta}_{ m f} \ \delta heta_{ m f}$	$egin{array}{c} 155 \ { m MeV}\ 35^\circ\ 20^\circ \end{array}$
	$s_{ m W}^2 \ \Delta_{ m exp} s_{ m W}^2$	$\begin{array}{c} 0.23116\\ 3.7\times10^{-4}(0.16\%)\end{array}$
Statistics	$arDelta_{\mathrm{exp,\ stat}} s_{\mathrm{W}}^2$	$3.1 \times 10^{-4} \ (0.13 \%)$
Beam polariza	ation $arDelta_{\mathrm{exp, P}} s_{\mathrm{W}}^2$	$0.7 \times 10^{-4} \ (0.03 \%)$
Target windo	$\Delta_{\mathrm{exp,\;false}} s_{\mathrm{W}}^2 \ \mathbf{ws}\; \Delta_{\mathrm{exp,\;t.w.}} s_{\mathrm{W}}^2 \ \Delta_{\mathrm{exp,\;t.p.}} s_{\mathrm{W}}^2$	$\begin{array}{l} 0.6 \times 10^{-4} \ (0.03 \%) \\ 1.2 \times 10^{-4} \ (0.05 \%) \\ 0.1 \times 10^{-4} \ (0.00 \%) \end{array}$
Form factors	$\Delta_{\mathrm{exp},\square_{\gamma Z}} s_{\mathrm{W}}^2 \ \Delta_{\mathrm{exp, nucl. FF}} s_{\mathrm{W}}^2$	$\begin{array}{l} 0.4 \times 10^{-4} \ (0.02 \%) \\ 1.2 \times 10^{-4} \ (0.05 \%) \end{array}$

	$E_{ ext{beam}} \ ar{ heta}_{ ext{f}} \ \delta heta_{ ext{f}}$	$egin{array}{c} 155 \ { m MeV}\ 35^\circ\ 20^\circ \end{array}$
	$s_{ m W}^2 \ {\it \Delta}_{ m exp} s_{ m W}^2$	$\begin{array}{c} 0.23116\\ 3.7\times10^{-4}(0.16\%)\end{array}$
Asymmetr	$\Delta_{ ext{exp, stat}} s_{ ext{W}}^2$ ation $\Delta_{ ext{exp, P}} s_{ ext{W}}^2$ ies $\Delta_{ ext{exp, false}} s_{ ext{W}}^2$ ws $\Delta_{ ext{exp, t.w.}} s_{ ext{W}}^2$ $\Delta_{ ext{exp, t.p.}} s_{ ext{W}}^2$	$\begin{array}{c} 3.1\times10^{-4}~(0.13\%)\\ 0.7\times10^{-4}~(0.03\%)\\ 0.6\times10^{-4}~(0.03\%)\\ 1.2\times10^{-4}~(0.05\%)\\ 0.1\times10^{-4}~(0.00\%) \end{array}$
Form factors	$\Delta_{ ext{exp}, \Box_{\gamma Z}} s_{ ext{W}}^2$ $\Delta_{ ext{exp, nucl. FF}} s_{ ext{W}}^2$	$\begin{array}{l} 0.4 \times 10^{-4} \ (0.02 \%) \\ 1.2 \times 10^{-4} \ (0.05 \%) \end{array}$

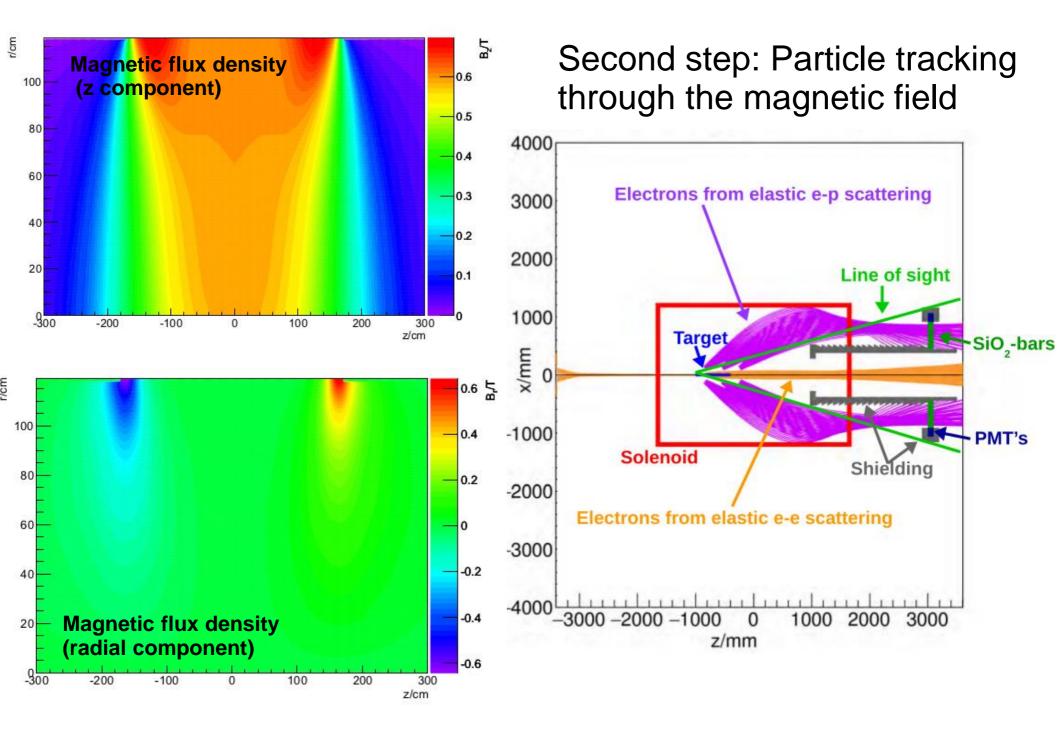
Spectrometer design


Principle:

- Detect elastically scattered electrons
- Reject background events

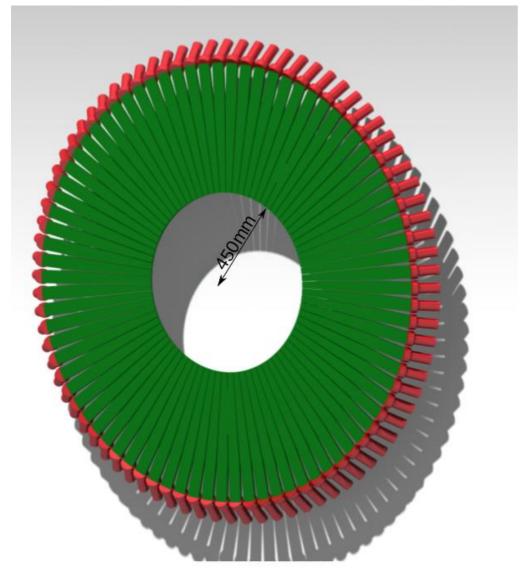

Full GEANT4 simulation with CAD Interface

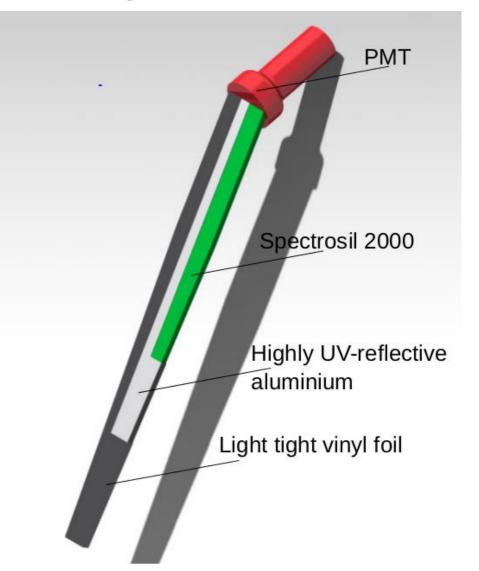
First step: Generate ensemble of initial states in the target



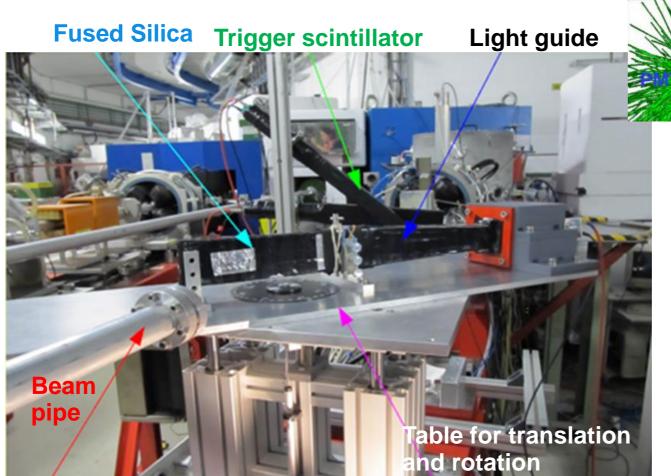
Full GEANT4 simulation with CAD Interface

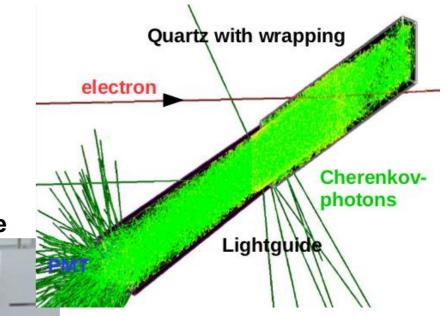
First step: Generate ensemble of initial states in the target


Spatial distribution of sampled vertices for ep scattering in the target


Detector development

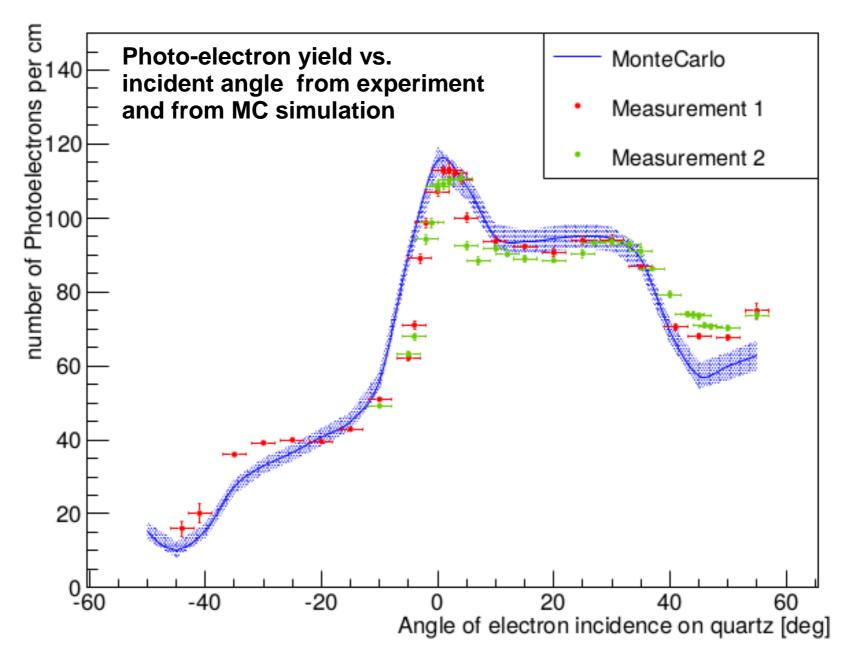
Cover the whole azimuth with a radiation hard, fast detector


Ring detector consisting of 82 fused silica bars



Single detector element

 MC Simulations for generation of Cherenkov light within the fused silica bars and the propagation of the photons in the material

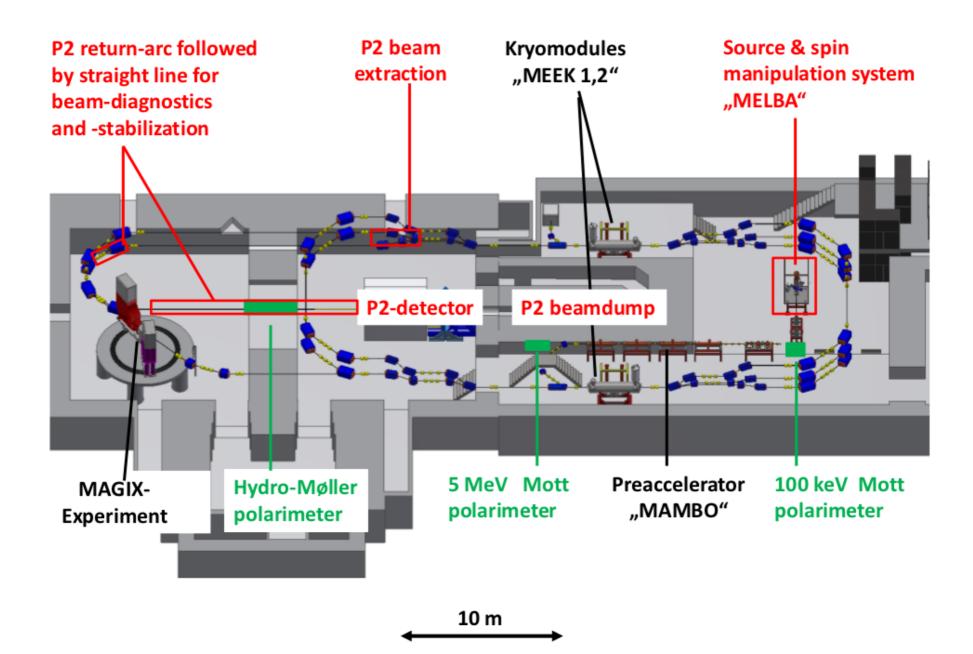


- Beamtests at MAMI
 - electrons
 - photons

Benchmark Simulations with Measurments

Cherenkov detectors: Comparison experiment with MC simulation

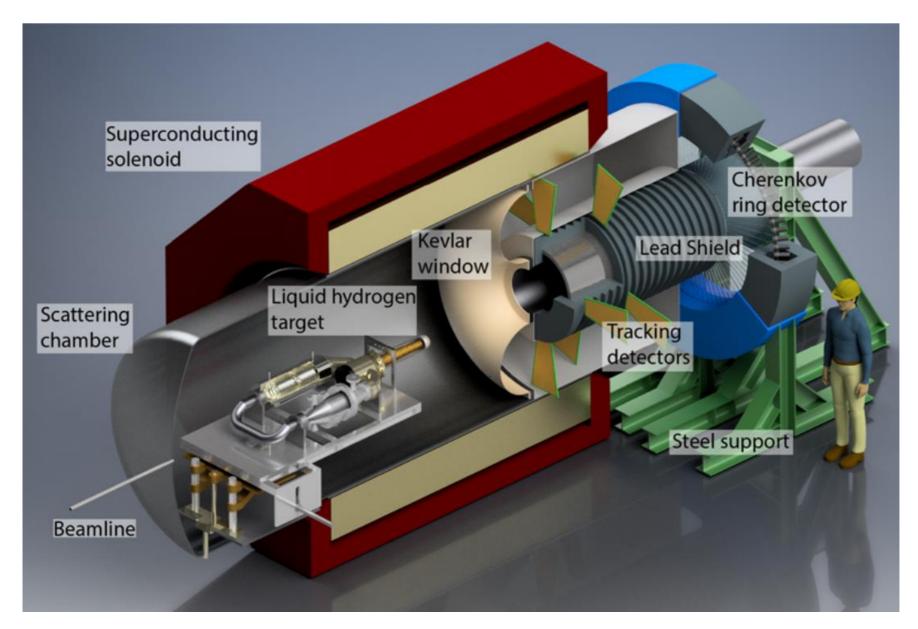
Result of Monte Carlo Studies

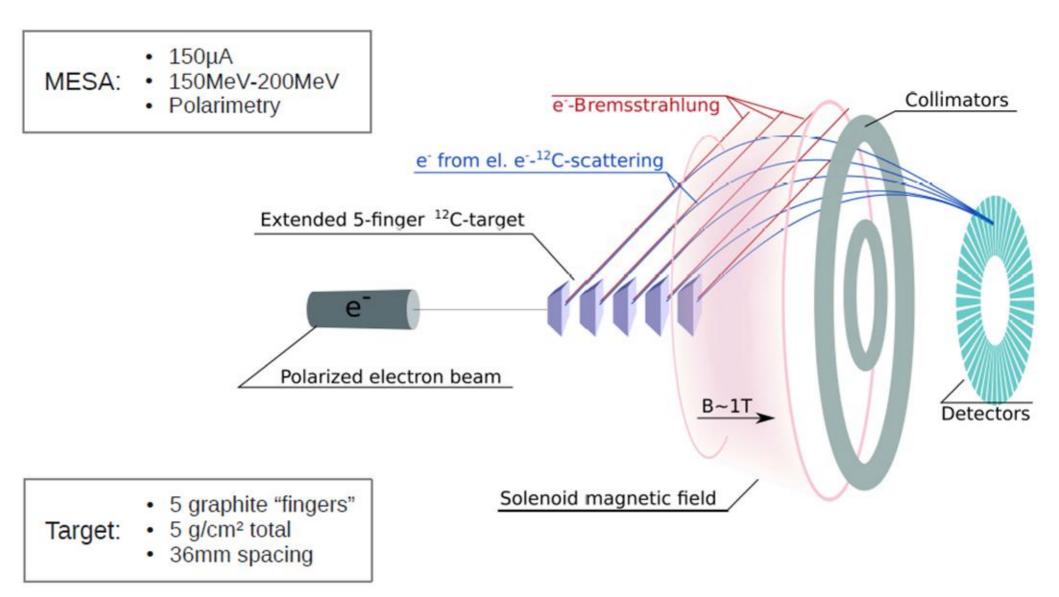

Predicted photo currents at the photocathodes from particles hitting the detector

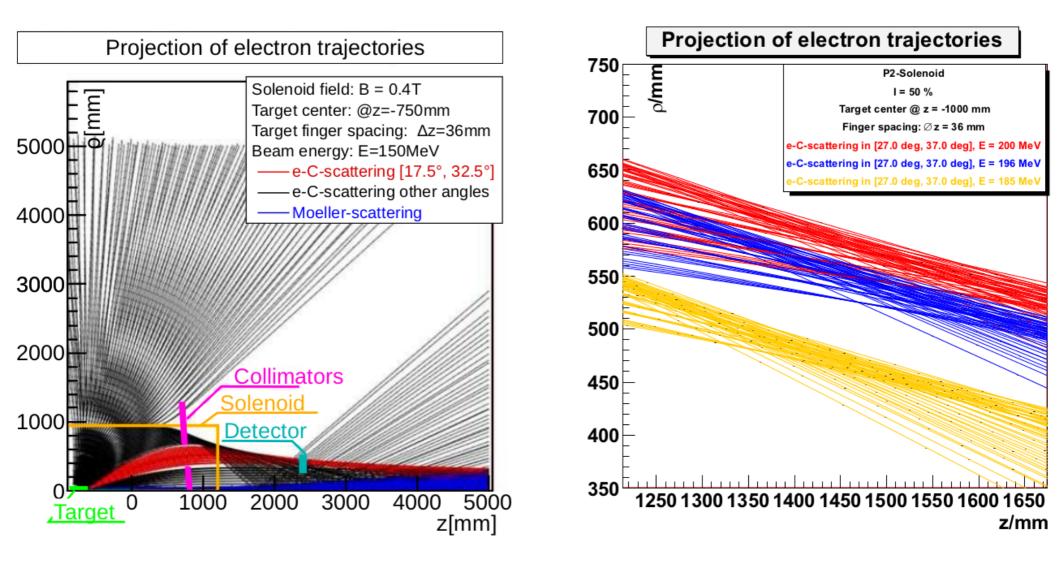
Particle type	Photo current/ μA		
Elastic ep scatt	Elastic ep scattering:		
Primary electrons, $\theta_{\rm f} \in [25^\circ, 45^\circ]$	$8.20 \times 10^{-1} \ (56.55 \%)$		
Primary electrons, $\theta_{\rm f} \notin [25^\circ, 45^\circ]$	$4.98 \times 10^{-1} (34.34\%)$		
Secondary electrons	$4.92 \times 10^{-2} \ (3.39 \%)$		
Secondary photons	$2.61 \times 10^{-2} \ (1.80 \%)$		
Secondary positrons	$9.88 \times 10^{-3} \ (0.68 \%)$		
Background processes:			
Electrons	$4.07 \times 10^{-2} \ (2.81 \%)$		
Photons	$5.57 \times 10^{-3} \ (0.38 \%)$		
Positrons	$1.28 \times 10^{-3} \ (0.09 \%)$		
Total	1.45		

$$\langle Q^2 \rangle_{\text{exp}} = 4.82 \times 10^{-3} \, (\text{GeV/c})^2$$

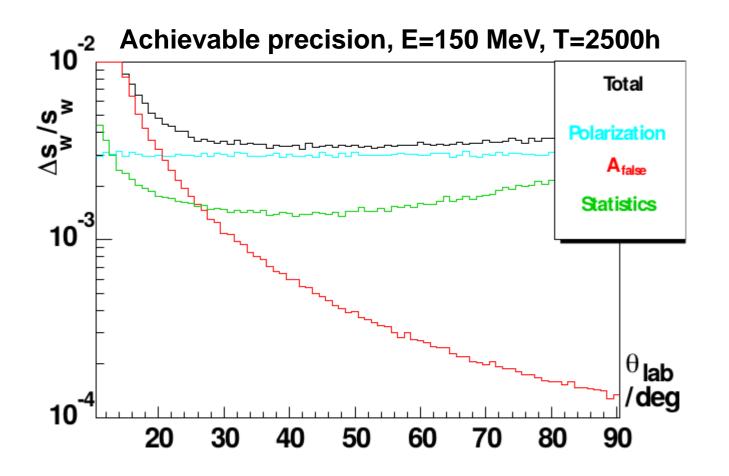
 $\langle A^{\text{raw}} \rangle_{\text{exp}} = -24.03 \, \text{ppb}$
 $\Delta_{\text{tot}} \langle A^{\text{raw}} \rangle_{\text{exp}} = 0.58 \, \text{ppb}$


P2 experiment: Installation at a new accelerator facility


Mainz Energy recovering Superconducting Accelerator


Spectrometer design

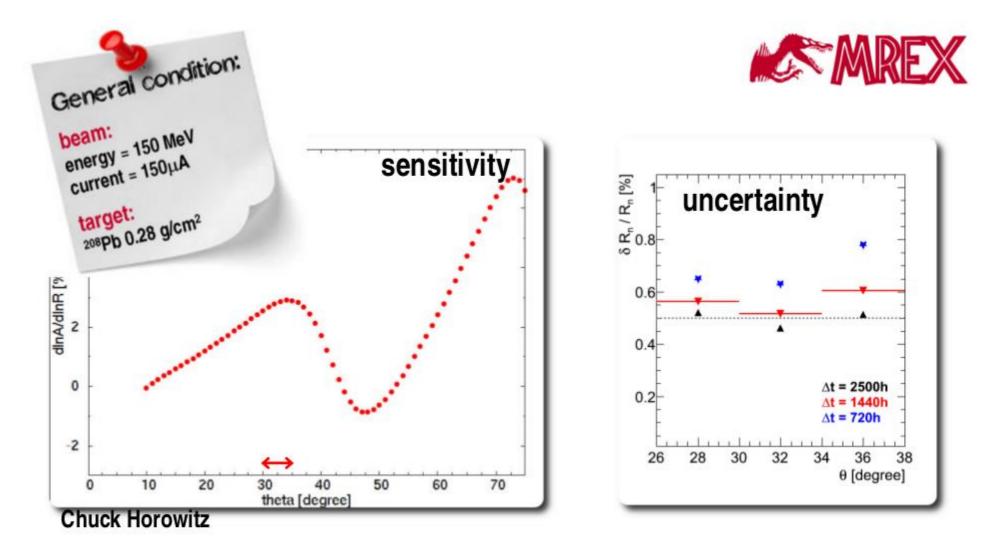
Current CAD design of the P2 apparatus



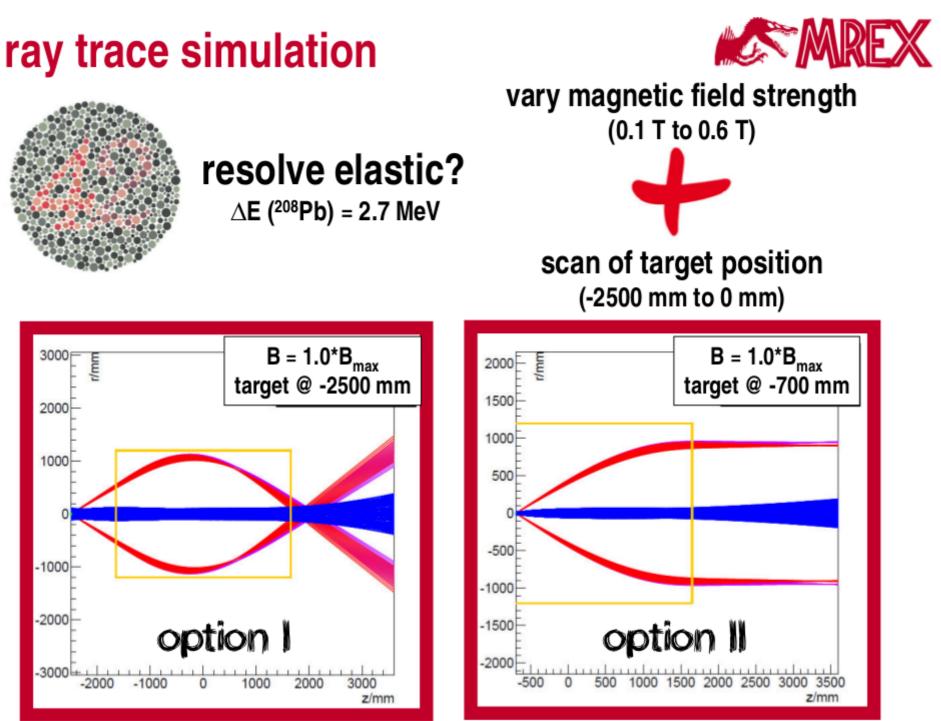
Raytracing study for the P2 solenoid:

Weak charge of the ¹²C nucleus: $Q_{\rm W}(^{12}{\rm C}) = -24 \sin^2 \theta_W$

Precision in the Weak Mixing Angle is dominated by Polarization uncertainty

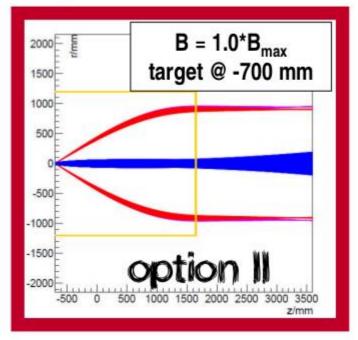

- Complimentary sensitivity to certain classes of new physics models
- Weak charged of different targets expressed with the Peskin-Takeuchi parameters:

$$Q_{\rm W}(^{12}{\rm C}) = -5.510[1 - 0.003T + 0.016S - 0.033X - \chi],$$


$$Q_{\rm W}({\rm p}) = +0.0707[1 + 0.15T - 0.21S + 0.43X + 4.3\chi],$$

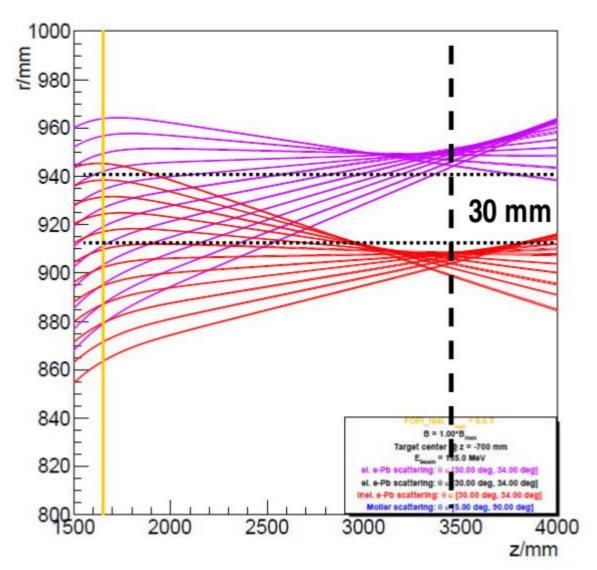
$$Q_{\rm W}({\rm e}) = -0.0435[1 + 0.25T - 0.34S + 0.7X + 7\chi],$$

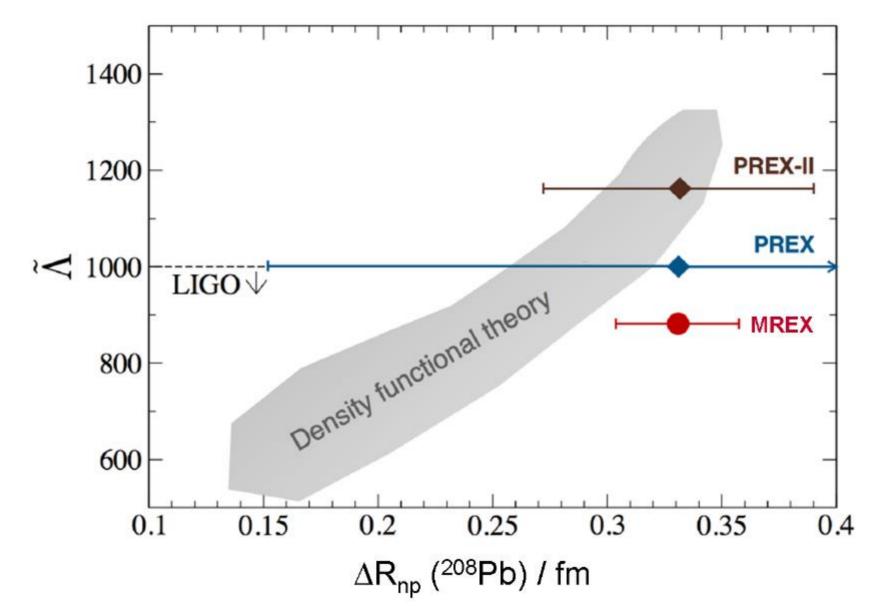
$$Q_{\rm W}(^{133}{\rm Cs}) = -73.24[1 + 0.011S - 0.023X - 0.9\chi]$$



 $\Delta \theta = 4^{\circ}$: expected rate = 8.25 GHz, $A_{PV} = 0.66$ ppm, P = 85%, Q \approx 86 MeV 1440h $\rightarrow \delta R_n/R_n = 0.52\%$ (²⁰⁸Pb @ 155 MeV)

ray trace simulation




PRO: similar to P2 design (maybe) easier shielding

CON:

(maybe) not enough space after the solenoid

Projected precision compared to PREX:

Summary and outlook

- P2: A new experiment to measure the weak mixing angle at low energy
- Makes use of the polarized high current electron beam from the new MESA accelerator
- Extensive simulations and beam tests at MAMI
- Δsin²Θ_W=3.7x10⁻⁴ (0.16%) expected: Sensitive for BSM physics
- Construction is scheduled to begin end of year 2020