
Forces inside hadrons: pressure, shear 
forces, mechanical radius and all that

M.V. Polyakov
Ruhr-University Bochum & Petersburg NPI

Interaction of the nucleon with gravity, EMT form factors
 Pressure and shear forces distribution in the nucleon
 Normal and tangential forces inside nucleon. Stability        

conditions.
 Mechanical radius and surface tension - shaping hadrons
 First experimental results on gravitational form factors
 Forces between quark and gluon subsystems inside the 

nucleon
 Conclusion and outlook.

See recent review: P. Schweitzer, MVP 1805.06596 

https://arxiv.org/abs/1805.06596


Interaction of the nucleon with gravity  
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Nucleon gravitational form factors from instantons: forces between quark and gluon
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Using the instanton picture of the QCD vacuum we compute the nucleon c̄Q(t) form factor of the
quark part of the energy momentum tensor (EMT). This form factor describes the non-conservation
of the quark part of EMT and contributes to the quark pressure distribution inside the nucleon.
Also it can be interpreted in terms of forces between quark and gluon subsystems inside the nucleon.
We show that this form factor is parametrically small in the instanton packing fraction. Numerically
we obtain for the nucleon EMT a small value of c̄Q(0) ' 1.4 · 10�2 at the low normalisation point
of ⇠ 0.4 GeV2. This smallness implies interesting physics picture – the forces between quark and
gluon mechanical subsystems are smaller than the forces inside each subsystem. The forces from
side of gluon subsystem squeeze the quark subsystem – they are compression forces. Additionally,
the smallness of c̄Q(t) might justify Teryaev’s equipartition conjecture. We estimate that the
contribution of c̄Q(t) to the pressure distribution inside the nucleon is in the range of 1�20% relative
to the contribution of the quark D-term.

INTRODUCTION

The hadron form factors of energy momentum tensor (EMT) were introduced in 1960’s in Refs. [1, 2] to study the
behaviour of hadrons in curved space-time and to obtain the basic mechanical properties of them. Nowadays the
interest to EMT form factors increased as they can be, in principle, accessed in hard exclusive processes without
invoking very weak gravitational forces and in this way to study in details the mechanical properties of the hadrons.

The symmetric QCD energy-momentum tensor operators for quark and gluon can be obtained by varying the QCD
action in respect to the metric of curved space-time, it has the following form
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The nucleon matrix element of individual pieces of EMT operator can be parameterized as the following expression,
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is the nucleon mass. Due to EMT conservation,
Eq. (3), the constraint

P
a

c̄a(t) = 0 holds
The physics interpretation of the EMT form factors, their calculation in various models, and extraction from

experimental data were extensively discussed in recent review [3]. Here we concentrate on the form factor c̄Q(t) =P
a=u,d,s,...

c̄a(t), which describes the non-conservation of EMT for individual quark and gluon pieces. This form factor
is important to determine the pressure forces distribution in the nucleon individually for quarks and gluons, and to
study the forces between quark and gluon subsystems in the nucleon. The form factor c̄Q(t) is the least studied, we
are aware only about the calculation of c̄Q(t) in the bag model with the result of c̄Q(0) ' �1/4 [4]. The value resulted
from the relation c̄Q(0) = �AQ(0)/4 in the bag model [4], however the authors of [4] stressed that this relation is not
true in QCD because the renormalised quark part of the energy-momentum tensor has a trace anomaly. The relations
of c̄Q(t) to twist-4 generalised parton distributions (GPDs) were derived in Refs. [5, 6, 9].
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last global unknown: How do we learn about hadrons?

|N⟩ = strong interaction particle. Use other forces to probe it!

em: ∂µJ
µ
em = 0 ⟨N ′|Jµ

em|N⟩ −→ Q, µ, . . .

weak: PCAC ⟨N ′|Jµ
weak|N⟩ −→ gA, gp, . . .

gravity: ∂µT
µν
grav = 0 ⟨N ′|Tµν

grav|N⟩ −→ M , J, D, . . .

global properties: Qprot = 1.602176487(40)× 10−19C
µprot = 2.792847356(23)µN

gA = 1.2694(28)
gp = 8.06(0.55)
M = 938.272013(23)MeV
J = 1

2
D = ??

and more:
t-dependence . . . . . .
parton structure, etc . . .

↪→ D = “last” global unknown

which value does it have?

what does it mean?

The D-term 



Total p(r) and s(r), normal and tangential forces, stability conditions 
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Z
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All calculations of the D-term in various approaches give negative value for it.

What are the nucleon D-term and the forces inside the nucleon?.

For some systems the D-term is fixed by general principles:

D(0) = �1 Goldstone bosons (pions etc.) Novikov, Shifman ‘1980

Free fermions Hudson, Schweitzer  ‘2017D(0) = 0

19

The von Laue condition can be proven in exactly the same way also in the Skyrme model [180] and bag model [197].
These models have in common that they describe the nucleon in terms of a static mean field, even though in these
models the mean fields are realized in much di↵erent ways. The generic mean field picture of the nucleon is justfied in
QCD in the large-N

c

limit [198, 199]. Thus, the connection of the von Laue condition and the virial theorem is of
more general character than the respective models: it holds in the large-N

c

limit in QCD. It is not known whether a
connection of the von Laue condition and extrema of the action can be established also in QCD with finite N

c

.
It is interesting to investigate what happens when one increases the value of the current quark masses (as it was

routinely done until recently in lattice QCD studies). In this case the hadron masses increase, while their sizes decrease.
For the EMT densities it has the following implications: the energy density in the center of the nucleon increases and
so does the pressure, see Fig. 5. This implies a more negative D-term [178].
Modifications of the D-term of the nucleon in nuclear matter were studied in [200, 201]. As the density of the

nuclear medium increases, the energy density in the center of the nucleon bound in the medium and the pressure both
decrease. The size of the system, however, grows and the D-term becomes more negative [200, 201].

Chiral perturbation theory cannot predict the value of the nucleon D-term, but it predicts its m
⇡

-dependence and
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Figure 4. EMT densities of the nucleon from the chiral quark soliton [126]. (a) Energy density T00(r), (b) densities p(r) and
s(r) of the stress tensor Tij(r), and (c) 4⇡r2p(r) where the shaded areas above and below the x-axis are exactly equal to each
other which demonstrates how the von Laue condition (31) is realized. (d) The integrand of the D-term is proportional to r
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and yields D < 0 upon integration. The negative sign of D emerges as a natural consequence of the “stability pattern” [126].
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Stability conditions for low dimensional sub-systems in the nucleon 

p(n�1)D(r) = � 1

n
s(nD)(r) + p(nD)(r), s(n�1)D(r) =

n� 1

n� 2
s(nD)(r)

Generically, the dimensional reduction:

The von Laue stability conditions for n-dimensional subsystem is: 
Z

dV (nD) p(nD)(r) = 0

We can view the nucleon as a dimensional reduction of an object in higher dimensions!
AdS/QCD ?



Size of the forces in the nucleon. Comparison with confinement 
forces 

21

nucleon – they are distinguished by the chirality of the tangential forces. It would be interesting to understand at the
microscopic level the physical reasons for the emergence of these two di↵erent regions.
In the lattice QCD study [184] a hybrid approach based on domain wall valence quarks with 2 + 1 flavors of

improved staggered sea quarks was used. The range 0.1GeV2 < �t < 1.2GeV2 was covered for pion masses from
760MeV down to 350MeV. Depending on the chiral extrapolation method the following values were obtained which
do not include disconnected diagrams: DQ = �1.07 ± 0.25 using covariant baryon chiral perturbation theory, and
DQ = �1.68± 0.22 using heavy baryon chiral perturbation theory at the physical value of the pion mass in MS scheme
at µ2 = 4GeV2. The quark contribution to the D-term from dispersion relations [185] refers to the same µ2 and is in
the range �1.54 . DQ . �1.27 in good agreement with the lattice result. Considering that the results from chiral
models (70) show the total D-term, the dispersion relation and lattice result agree well with these models [178, 180].
The nucleon EMT form factors A(t) and B(t) were also studied in approaches based on light front wave functions

such as AdS/QCD models or spectator models [186–191, 194–196]. Such models are often based on a light-front Fock
state expansion. Typically the form factors A(t) and B(t) can be evaluated, which are simply related to the helicity
non-flip and helicity flip matrix elements of the component T̂

++

of the EMT. Being related to the stress tensor T̂
ij

the form factor D(t) naturally “mixes” good and bad light-front components and is described in terms of transitions
between di↵erent Fock state components in overlap representation. As a quantity intrinsically non-diagonal in a Fock
space, it is di�cult to study the D-term in approaches based on light-front wave-functions. This is due to the relation
of the D-term to internal dynamics: a complete description of a hadron requires the inclusion of all Fock components.

D. Size of the forces in the nucleon, and comparison with linear potential confinement forces

Very frequently, e.g. in colour tube models, the confinement forces are related to the linear potential V
conf

(r) = �r,
where � ⇠ 1GeV/fm is estimated from the slope of meson Regge trajectories. Recently the spatial distribution of the
stress tensor for a heavy quark Q̄Q pair was directly measured on the lattice: the typical size of the forces ⇠ 1GeV/fm
was confirmed [205]. Such a linear interquark potential corresponds to a constant force between quarks F = �. Our
aim is to compare this force with the forces encoded in the stress tensor.
The spherical shell of radius r in the nucleon experiences the normal force F

n

= 4⇡r2[ 2
3

s(r) + p(r)] and tangential
force F

t

= 4⇡r2[� 1

3

s(r) + p(r)]. We use the chiral quark-soliton model (�QSM) results of Ref. [126] to compute the
corresponding forces. The result is shown on Fig. 7, we see that the maximally achieved strength is five times smaller
than the confining forces in a colour tube model.

E. Spin-1 hadrons

Light vector mesons were studied in Ref. [206] using light-front wave-functions obtained from an AdS/QCD model.
For the ⇢-meson the mean square radius of the energy density was found to be hr2i

E

= 0.21 fm2. This is significantly
smaller then the mean square charge radius of ⇢+ determined to be hr2i

ch

= 0.53 fm2 in the same approach [207].
The GPDs for the deuteron were introduced in [192] and studied in details in Ref. [193]. The EMT form factors of

the deuteron were studied in Ref. [208] using a deuteron wave function from a softwall AdS/QCD model. The D-term

-0.1

 0

 0.1

 0.2

 0  0.5  1  1.5

 F(r)  [GeV fm
-1

]

r [fm]

Fn(r)

Ft(r)

Figure 7. The normal force Fn = 4⇡r2[ 23s(r) + p(r)] (solid) and tangential force Ft = 4⇡r2[� 1
3s(r) + p(r)] (doted) experienced

by a spherical shell of radius r in the nucleon computed in the �QSM.

Fn = 4⇡r2
✓
2

3
s(r) + p(r)

◆

Ft = 4⇡r2
✓
�1

3
s(r) + p(r)

◆
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the small-t behavior of D(t) [202–204]. The slope of D(t) at zero-momentum transfer diverges in the chiral limit as
D0(0) ⇠ 1/m

⇡

. This behavior is reproduced also in chiral models [126, 180].
In Section XII the mechanical radius of a hadron was defined not in terms of the slope of D(t). Applying the

definition of the mechanical radius (41) to the nucleon case, one can see on general grounds that the corresponding
mechanical radius (in contrast to D0(0) and to the charge radius of the nucleon) is finite in the chiral limit (m

⇡

! 0).
Therefore, one expects that the nucleon mechanical radius should be smaller than, say, the charge radius. Indeed, the
chiral quark soliton model predicts the mechanical radius of the proton to be about 25% smaller than its mean square
charge radius: hr2i

mech

⇡ 0.75 hr2i
charge

.
It is instructive to see details of the strong forces distribution inside the nucleon. The radial (normal) forces in

Eq. (43), are always “stretching” (directed outwards the nucleon centre) and monotonically decrease with distance from
the centre. The distribution of the tangential forces provides us with further fine details of how the strong forces keep
the nucleon together. From the stability condition (46) it is clear that the tangential force must at least once change
its direction. Studying these forces one can pose very intriguing questions about nature of strong forces – how many
times do the forces change from “stretching” to “squeezing”? What does this number mean? What does distinguish
the regions of “stretching” and “squeezing”? What do we learn about the confinement mechanism from this?
Presently we are not able to answer the above posed questions. Here we just report the results on the force

distribution in the nucleon from models. In Fig. (6) we plot the vector field of the �-component of the tangential force
(the 2D vector vector field 4⇡r2T

ij

e�
j

) inside the nucleon9 obtained from EMT densities from the chiral quark soliton
model [126].

One clearly sees that at a distance of r ⇡ 0.5 fm from the nucleon centre the tangential force changes its direction,
and turns from “stretching” to “squeezing”. Thus, we see that there are two qualitatively di↵erent regions inside the

Figure 6. Visualisation of the �-component of the tangential force (the 2D vector vector field 4⇡r2Tije
�
j ) distribution in the

nucleon from the chiral quark soliton model. The radius of the disc on the figure is 1.5 fm, the colour legend gives the absolute
value of the tangential force in GeV/fm.

9 See also recent lattice calculations of the spatial distribution of forces for the heavy quark Q̄Q pair in Ref. [205]. The formalism provided
here paves a way to perform analogous studies on the lattice for hadrons.

Compare with the linear potential force of ~1 GeV/fm !

What does it imply for pictures of the confinement?

�2 � D(0) � �4

Values of D-term for the nucleon:

Chiral Quark Soliton model Goeke et al.  ‘2007Boffi, Radici,  Schweitzer ‘2001

DQ(0) ⇡ �1.56 at µ = 4 GeV2 Dispersion relations Pasquini, Vanderhaeghen, MVP ‘2014

stretching squeezing

Details in talk by Barbara Pasquini tomorrow 



Mechanical radius and surface tension 

dFr

dSr
=

2

3
s(r) + p(r) � 0

Positive quantity - allows to define the mechanical radius

hr2imech =

R
d3r r2

⇥
2
3s(r) + p(r)

⇤
R
d3r

⇥
2
3s(r) + p(r)

⇤ =
6D(0)

R 0
�1 dt D(t)

Note that mech radius is NOT the slope of D(t) 

For a liquid drop

p(r) = p0✓(r �R)� p0R

3
�(r �R), s(r) = ��(r �R),

relation to stability: EMT conservation ⇔ ∂µT̂µν = 0 ⇔ ∇iTij(r⃗ ) = 0

↪→ necessary condition for stability

∫ ∞

0

dr r2 p(r) = 0 (von Laue, 1911)

D = −
16π

15
m

∫ ∞

0

dr r4s(r) = 4πm

∫ ∞

0

dr r4 p(r) → shows how internal forces balance

let’s gain intuition from models:

• liquid drop model of nucleus

s(r)

 

-2

-1

 0

 1

 2

 3

 0  1  

  p(r) & s(r)  in units of p0

r in R0   

liquid drop

p(r)
s(r)

radius RA = R0A1/3, mA = m0A

surface tension γ = 1
2
p0RA, s(r) = γ δ(r −RA)

pressure p(r) = p0Θ(RA − r)− 1
3
p0RA δ(r −RA)

D-term D = −4π
3
mA γ R4

A ≈ −0.2A7/3

M.V.Polyakov PLB555 (2003);

tested in Walecka model Guzey, Siddikov (2006)

p0 = 2�/R
Relation between pressure in the drop and the surface
tension Lord Kelvin ‘1858

p(0) =

Z 1

0
dr

2s(r)

r

dFr

dSr
=

2

3
s(r) + p(r) = p0✓(r �R)Hence for a liquid drop

mechanical radius has the intuitive clear value

For general systems one can obtain the generalisation of the Kelvin relation

s(r) can be called surface tension for the system



Mechanical radius and surface tension 

The surface tension energy
Z

d3r s(r) = � 3

8m

Z 0

�1
dt D(t)

This energy must be less than the total energy of the system
Z

d3r s(r)  m this implies

hr2imech � �9D/(4m2)
we checked that for stable systems (stable solitons) is always satisfied.
Violated for unstable systems!

hr2imech ⇡ 0.75 hr2icharge in chiral soliton picture of the nucleon

Shear forces distribution s(r) is important for forming the shape of the hadron. 
For s(r)=0 the hadron corresponds to homogeneous, isotropic fluid. Hence has infinite
mechanical radius.  Non-zero s(r) is responsible for hadron structure formation!

Interestingly the pressure anisotropy (shear forces distribution) plays an essential role in 
astrophysics, see the review [Herrera:1997plx] on the role of pressure  asymmetry  for self-
gravitating systems in astrophysics and cosmology. 

Cedric Lorce, privat communication 
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N(P) N(P’)

(a)

 

graviton*

Tµν

 

N(P) N(P’)

(b)

γ
∗ real  γ

GPD

 

π0
(P)

π0
(P’)

(c)

γ
∗

γ

GDA

Figure 1. (a) A natural but impractical probe of EMT form factors is scattering o↵ gravitons. (b) Hard-exclusive reactions like
deeply virtual Compton scattering (DVCS) provide a realistic way to access EMT form factors through GPDs. Here one of the
relevant tree-level diagrams is shown. (c) Information on the EMT structure of particles not available as targets, such as e.g. ⇡0,
can also be accessed from studies of generalized distribution amplitudes (GDAs) which are an “analytic continuation” of GPDs
to the crossed channel. The shown reaction �

⇤
� ! ⇡

0
⇡

0 (and analog for other hadrons) can be studied in e

+
e

� collisions.

VI. THE LAST GLOBAL UNKNOWN PROPERTY OF A HADRON

The D-term is sometimes referred to as the “last unknown global property.” To explain what this means we recall
that the structure of hadrons, the bound states of strong interactions, is most conveniently probed by exploring
the other fundamental forces: electromagnetic, weak, and (in principle) gravitational interactions. The particles
couple to these interactions via the fundamental currents Jµ

em

, Jµ

weak

, Tµ⌫

grav

which are conserved (in case of weak
interactions we deal with partial conservation of the axial current, PCAC). The matrix elements of these currents are
described in terms of form factors which contain a wealth of information on the probed particle. The undoubtedly most
fundamental information corresponds to the form factors at zero momentum transfer. For the nucleon, these are the
“global properties:” electric charge Q, magnetic moment µ, axial coupling constant g

A

, induced pseudo-scalar coupling
constant g

p

, mass M , spin J , and the D-term D. These properties, being related to external conserved currents, are
scale- and scheme-independent in QCD. All global properties are in principle on equal footing and well-known, see
Table I, with one exception: the D-term.

em: @µJ
µ
em = 0 hN 0|Jµ

em|Ni �! Q = 1.602176487(40)⇥ 10�19C
µ = 2.792847356(23)µN

weak: PCAC hN 0|Jµ
weak|Ni �! gA = 1.2694(28)

gp = 8.06(55)

gravity: @µT
µ⌫
grav = 0 hN 0|Tµ⌫

grav |Ni �! m = 938.272013(23)MeV/c

2

J = 1
2

D = ?

Table I. The global properties of the proton defined in terms of matrix elements of the conserved currents associated with
respectively electromagnetic, weak, and gravitational interaction. Notice the weak currents include the partially conserved axial
current, and gA or gp are strictly speaking defined in terms of transition matrix elements in the neutron �-decay or muon-capture.
The values of the properties are from the particle data book [107] and [108] (for gp) except for the unknown D-term.

In some cases (e.g. free particles, Goldstone bosons) the value of the D-term is fixed by general principles (see
discussions below). For other particles the D-term is not fixed and it reflects the internal dynamics of the system
through the distribution of forces. In strongly interacting systems the D-term is sensitive to correlations in the system.
For example, the baryon D-term behaves as ⇠ N2

c

whereas all other global observables (mass, magnetic moments, axial
charge, etc.) behave at most as ⇠ N

c

in the large N
c

limit. For a large nucleus the D-term shows also anomalously
fast increase with the atomic mass number D ⇠ A7/3.

Unfortunately the Mellin moments are not observable in model independent way.  However, D(t)
is related to subtraction constant in dispersion relations

H(⇠, t) =

Z 1

�1
dx

✓
1

⇠ � x� i0
� 1

⇠ + x� i0

◆
H(x, ⇠, t)

ReH(⇠, t) = �(t) +
1

⇡
vp

Z 1

0
d⇠0 ImH(⇠0, t)

✓
1

⇠ � ⇠0
� 1

⇠ + ⇠0

◆

�(t) =
4

5

X

q

e2q Dq(t) +
X

q

e2q dq3(t) + ...

D(t) is more easy access than J(t). It is possible model independent extraction of D(t) in contrast to J(t)

MVP ‘2003
Teryaev ‘2005
Anikin, Teryaev ‘2007
Diehl, Ivanov ‘2007

Talk by Oleg Teryaev on Wednesday 

Z 1

�1
dx xHa(x, ⇠, t) = Aa(t) + ⇠2Da(t) ,

Z 1

�1
dx xEa(x, ⇠, t) = 2Ja(t)�Aa(t)� ⇠2Da(t) .
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Simplifying assumptions (for present state of art of the experiment):

1) d3(t),  d5(t), … much smaller than D(t). It is so at large normalisation scale.
2) Flavour singlet D(t) is dominant. Justified in large Nc limit. Can be relaxed for more precise data.
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XIX. FIRST EXPERIMENTAL RESULTS

Recently first information on the D-terms of the proton and the neutral pion became available from phenomenological
analyses of experimental data. In this section we review what is currently known.

A. Nucleon

The D-term was shown to be of importance for the phenomenological description of hard-exclusive reactions [17–20],
see also the reviews [28, 29] and references there in. The D-term can be accessed in DVCS with help of fixed-t

dispersion relations [32–35], for the LO DVCS Compton form factor H(⇠, t) =
R
1

�1

dx( 1

⇠�x�i0

� 1

⇠+x�i0

) H(x, ⇠, t) one
obtains

ReH(⇠, t) = �(t) +
1

⇡
p.v.

Z
1

0

d⇠0 ImH(⇠0, t)

✓
1

⇠ � ⇠0
� 1

⇠ + ⇠0

◆
. (72)

The corresponding subtraction constant �(t) in the leading QCD order is related to the D-term in the following way:

�(t) = 2

Z
1

�1

dz
D(z, t)

1� z
, (73)

with D(z, t) having the following expansion in the Gegenbauer polynomials C3/2

n

(z):

D(z, t) = (1� z2)
1X

k=1

⇥
e2
u

du
2k�1

(t) + e2
d

dd
2k�1

(t)
⇤
C

3/2

2k�1

(z), (74)

where e
q

is the electric charge of the quark with flavour q. In the above equation we neglected contributions of strange
and heavy quarks. The EMT form factor Dq(t) = 4

5

dq
1

(t). We remind that the quantities considered here (dq
1

(t),
D(z, t), etc.) depend on the QCD normalisation point µ2. We do not write explicitly this dependence for brevity. The
QCD evolution equations for the quark and gluon D-term are the same as for the second Mellin moments of the quark
and gluon parton distributions.
The first experimental access to the subtraction constant �(t, µ2) based on the most complete database of DVCS

results was obtained in [20] (KM15 fit) in the form:

�(t, µ2) = � C

(1� t/M2

C

)
2

, (75)

with parameters C = 2.768 and M
C

= 1.204 GeV at the QCD normalisation point of µ2 = 4 GeV2. The statistical
uncertainty of the parameters are of order 20� 30% [220], but the authors of Ref. [20] refrained from publishing the
precise value of the statistical error bars due to large systematic uncertainties (see the discussion of this point in
relation to the D-term in Ref. [221]) 11.

We can relate the LO subtraction constant �(t, µ) to the EMT form factor DQ(t, µ2) = Dd(t, µ2) +Dd(t, µ2) using
the following simplifying assumptions:

• only the first coe�cient dq
1

(t) of the Gegenbauer expansion (74) is taken account. In the asymptotic limit of
infinitely large renormalization scale µ all dq

i

(t) for i > 1 vanish, except for dq
1

(t) which determines the asymptotic
form of GPDs [24] and is related to the EMT form factor Dq(t) = 4

5

dq
1

(t);

• dominance of the flavour singlet combination of the quark D-term du
1

⇡ dd
1

⇡ dQ/2. This can be justified by in
the limit of large number of colours, see Eq. (71).

Under these assumptions we obtain:

DQ(t) =
4

5

1

2(e2
u

+ e2
d

)
�(t) =

18

25
�(t). (76)

11 We are grateful to Kresimir Kumerički for discussion of this point.

Experiment and phenomenology

• HERMES proceeding NPA711, 171 (2002); Airapetian et al PRD 75, 011103 (2007)

φ (rad)

A
C

HERMES preliminary
-0.3

-0.25
-0.2

-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

-3 -2 -1 0 1 2 3

beam charge asymmetry
dotted line: VGG model without D-term (ruled out)
dashed line: VGG model + positive D-term (ruled out)
dashed-dotted: VGG model + negative D-term (yeah!)
Frank Ellinghaus, NPA711, 171 (2002)

model-dependent statement (!)
Belitsky, Müller, Kirchner, NPB629 (2002) 323

• fits by Kresimir Kumerički, Dieter Müller et al: D < 0 needed! model-independent evidence!

DVCS parametrizations from:
Kumerički, Müller, NPB 841 (2010) 1,

Kumerički, Müller, Murray, Phys. Part. Nucl. 45 (2004) 723

Kumerički, Müller, EPJ Web Conf. 112 (2016) 01012.

Fig. 9 from ECT∗ workshop proceeding 1712.04198

statistical uncertainty of D in KMM12: ∼ 50%,

statistical uncertainty of D in KM15: ∼ 20%.

unestimated systematic uncertainty

Kresimir Kumerički private communication

The first determination of D(t) from DVCS 
Kumericki, Mueller Nucl. Phys. B841 (2010) 1

KM10, statistical accuracy 70%

KM12, statistical accuracy 50%

KM15, statistical accuracy 20%

The D-term is negative, statistical accuracy is increasing
 with new data added.

The systematic uncertainty remains unestimated !
Kresimir Kumericki, privat commuication  
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The KM15 fit Eq. (75) corresponds to the negative D-term of DQ = �2.0 at µ2 = 4 GeV2 with about 20% statistical
uncertainty and unestimated systematic one. The result of the KM15 fit [20] corresponding to Eqs. (75,76) is shown in
Fig. 10 in comparison with theoretical predictions and other fits to DVCS data.

Recently an analysis of the JLab data [90, 101]12 was reported [222] where an experimental information on the quark
contribution to the D-term was also extracted. Additionally, the pressure distribution in the proton was presented in
Ref. [222]. Below we compare the theoretical predictions with the data on the form factor, and not with the pressure
distribution of [222] as the latter was obtained under model assumptions which are still missing clear justification.

In Ref. [222] the dispersion relations subtraction constant �(t) (see Eq. (72) for the definition) at the normalisation
point of µ2 = 1.5 GeV2 was presented on their Fig. 4 [223]. The main di↵erence of the analysis in [222] with that in
[20] is the much smaller systematic uncertainties in the former. This di↵erence calls for a clarification.
The DQ(t) form factor obtained from the analysis of [222] with help of Eq. (76) is also shown in Fig. 10 where for

comparison we include the results for the D-term form factor from dispersion relations [185], lattice QCD [184] and
models [126, 174, 180].
The dispersion relation study of Ref. [185] used information on pion parton distribution functions which fixes the

overall normalization of the form factor: in Fig. 10 the result for DQ(t) is shown which is normalized as DQ = �1.56.
The results from the dispersion relations and lattice QCD show the quark contribution to DQ(t) and refer to the scale
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JLab data

Figure 10. The D

Q(t) form factor obtained from the KM15 fit [20] in comparison to D

Q(t) obtained form Je↵erson Lab analysis
[222], to calculations from dispersion relations [185], lattice QCD [184], and results from the bag [174], chiral quark soliton [126]
and Skyrme [180] model. The JLab data [222] refers to the normalisation point of µ2 = 1.5 GeV2, KM15 fit, dispersion relations
and lattice results show the contribution of quarks to the D-term at the QCD scale of 4GeV2. The bag and Skyrme models show

the total D-term which is renormalization scale independent. The result from chiral quark soliton refers to the low normalisation point

of µ

2 ' 0.4 GeV

2

12 These data are included in the experimental database of Ref. [20]

Recent analysis of CLAS data
• CLAS result

based on: Girod et al PRL 100 (2008) 162002, Jo et al PRL 115 (2015) 212003

Burkert, Elouadrhiri, Girod, Nature 557, 396 (2018) ← Latifa (Monday)

see talk: V. Burkert, SPIN 2016 in Urbana-Champaign, Sep. 2016
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D-term = subtraction term in
fixed-t dispersion relations for ADVCS

Teryaev hep-ph/0510031

Anikin, Teryaev, PRD76, 056007 (2007)

Diehl and Ivanov, EPJC52, 919 (2007)

Radyushkin, PRD83, 076006 (2011)

subtraction term ∼ d1 + d3 + d5 + . . .
the di → 0 for i > 1 with Q2 →∞

assumed d3, d5, . . . small compared to d1
working assumption (do better → future data)

chiral quark-soliton dq3/d
q
1 = 0.3, dq5/d

q
1 = 0.1

Kivel, Polyakov, Vanderhaeghen, PRD63 (2001)

Dq(t) = 4
5
dq1(t)

⇒ CLAS, KM-fits, dispersion relations, models, lattice: D-term negative & sizeable!

(double-checking if same normalization in analysis and calculations) Exciting! What do we learn?

1) D-term negative and sizeable
2) Agrees with chiral quark soliton model

However:
1) Systematic uncertainty much smaller than
      in KM15, although the same exp. data used
2)   In extraction of p(r) strong model 
      assumptions are used.

LETTER
https://doi.org/10.1038/s41586-018-0060-z

The pressure distribution inside the proton
V. D. Burkert1*, L. Elouadrhiri1 & F. X. Girod1

The proton, one of the components of atomic nuclei, is composed 
of fundamental particles called quarks and gluons. Gluons are the 
carriers of the force that binds quarks together, and free quarks 
are never found in isolation—that is, they are confined within 
the composite particles in which they reside. The origin of quark 
confinement is one of the most important questions in modern 
particle and nuclear physics because confinement is at the core of 
what makes the proton a stable particle and thus provides stability to 
the Universe. The internal quark structure of the proton is revealed 
by deeply virtual Compton scattering1,2, a process in which electrons  
are scattered off quarks inside the protons, which  subsequently 
emit high-energy photons, which are detected in coincidence 
with the scattered electrons and recoil protons. Here we report a 
measurement of the pressure distribution experienced by the quarks 
in the proton. We find a strong repulsive pressure near the centre of 
the proton (up to 0.6 femtometres) and a binding pressure at greater 
distances. The average peak pressure near the centre is about 1035 
pascals, which exceeds the pressure estimated for the most densely 
packed known objects in the Universe, neutron stars3. This work 
opens up a new area of research on the fundamental gravitational 
properties of protons, neutrons and nuclei, which can provide access 
to their physical radii, the internal shear forces acting on the quarks 
and their pressure distributions.

The basic mechanical properties of the proton are encoded in the 
gravitational form factors (GFFs) of the energy–momentum tensor1,4,5. 
Graviton–proton scattering is the only known process that can be used 
to directly measure these form factors4,6, whereas generalized parton 
distributions2,7,8 enable indirect access to the basic mechanical prop-
erties of the proton2.

A direct determination of the quark pressure distribution in the pro-
ton (Fig. 1) requires measurements of the proton matrix element of the 
energy–momentum tensor9. This matrix element contains three scalar 
GFFs that depend on the four-momentum transfer t to the proton. 
One of these GFFs, d1(t), encodes the shear forces and pressure distri-
bution on the quarks in the proton, and the other two, M2(t) and J(t), 
encode the mass and angular momentum distributions. Experimental 
information on these form factors is essential to gain insight into the 
dynamics of the fundamental constituents of the proton. The frame-
work of generalized parton distributions (GPDs)2,7,8 has provided a way 
to obtain information on d1(t) from experiments. The most effective 
way to access GPDs experimentally is deeply virtual Compton scat-
tering (DVCS)1,2, where high-energy electrons (e) are scattered from 
the protons (p) in liquid hydrogen as e p → e′ p′ γ, and the scattered 
electron (e′), proton (p′) and photon (γ) are detected in coincidence. 
In this process, the quark structure is probed with high-energy virtual 
photons that are exchanged between the scattered electron and the 
proton, and the emitted (real) photon controls the momentum transfer 
t to the proton, while leaving the proton intact. Recently, methods have 
been developed to extract information about the GPDs and the related 
Compton form factors (CFFs) from DVCS data10–13.

To determine the pressure distribution in the proton from the experi-
mental data, we follow the steps that we briefly describe here. We note 
that the GPDs, CFFs and GFFs apply only to quarks, not to gluons.
(1) We begin with the sum rules that relate the Mellin moments of the 
GPDs to the GFFs1.

(2) We then define the complex CFF, H, which is directly related to the 
experimental observables describing the DVCS process, that is, the 
differential cross-section and the beam-spin asymmetry.
(3) The real and imaginary parts of H can be related through a disper-
sion relation14–16 at fixed t, where the term D(t), or D-term, appears as 
a subtraction term17.
(4) We derive d1(t) from the expansion of D(t) in the Gegenbauer  
polynomials of ξ, the momentum transfer to the struck quark.
(5) We apply fits to the data and extract D(t) and d1(t).
(6) Then, we determine the pressure distribution from the relation 
between d1(t) and the pressure p(r), where r is the radial distance from 
the proton’s centre, through the Bessel integral.

The sum rules that relate the second Mellin moments of the chiral- 
even GPDs to the GFFs are1:

∫ ξ ξ+ =x H x t E x t x J t[ ( , , ) ( , , )]d 2 ( )

∫ ξ ξ= +xH x t x M t d t( , , )d ( ) 4
5

( )2
2

1

1Thomas Jefferson National Accelerator Facility, Newport News, VA, USA. *e-mail: burkert@jlab.org
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Fig. 1 | Radial pressure distribution in the proton. The graph shows 
the pressure distribution r2p(r) that results from the interactions of the 
quarks in the proton versus the radial distance r from the centre of the 
proton. The thick black line corresponds to the pressure extracted from 
the D-term parameters fitted to published data22 measured at 6 GeV. The 
corresponding estimated uncertainties are displayed as the light-green 
shaded area shown. The blue area represents the uncertainties from all the 
data that were available before the 6-GeV experiment, and the red shaded 
area shows projected results from future experiments at 12 GeV that will 
be performed with the upgraded experimental apparatus30. Uncertainties 
represent one standard deviation.
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The pressure distribution inside the proton
V. D. Burkert1*, L. Elouadrhiri1 & F. X. Girod1

The proton, one of the components of atomic nuclei, is composed 
of fundamental particles called quarks and gluons. Gluons are the 
carriers of the force that binds quarks together, and free quarks 
are never found in isolation—that is, they are confined within 
the composite particles in which they reside. The origin of quark 
confinement is one of the most important questions in modern 
particle and nuclear physics because confinement is at the core of 
what makes the proton a stable particle and thus provides stability to 
the Universe. The internal quark structure of the proton is revealed 
by deeply virtual Compton scattering1,2, a process in which electrons  
are scattered off quarks inside the protons, which  subsequently 
emit high-energy photons, which are detected in coincidence 
with the scattered electrons and recoil protons. Here we report a 
measurement of the pressure distribution experienced by the quarks 
in the proton. We find a strong repulsive pressure near the centre of 
the proton (up to 0.6 femtometres) and a binding pressure at greater 
distances. The average peak pressure near the centre is about 1035 
pascals, which exceeds the pressure estimated for the most densely 
packed known objects in the Universe, neutron stars3. This work 
opens up a new area of research on the fundamental gravitational 
properties of protons, neutrons and nuclei, which can provide access 
to their physical radii, the internal shear forces acting on the quarks 
and their pressure distributions.

The basic mechanical properties of the proton are encoded in the 
gravitational form factors (GFFs) of the energy–momentum tensor1,4,5. 
Graviton–proton scattering is the only known process that can be used 
to directly measure these form factors4,6, whereas generalized parton 
distributions2,7,8 enable indirect access to the basic mechanical prop-
erties of the proton2.

A direct determination of the quark pressure distribution in the pro-
ton (Fig. 1) requires measurements of the proton matrix element of the 
energy–momentum tensor9. This matrix element contains three scalar 
GFFs that depend on the four-momentum transfer t to the proton. 
One of these GFFs, d1(t), encodes the shear forces and pressure distri-
bution on the quarks in the proton, and the other two, M2(t) and J(t), 
encode the mass and angular momentum distributions. Experimental 
information on these form factors is essential to gain insight into the 
dynamics of the fundamental constituents of the proton. The frame-
work of generalized parton distributions (GPDs)2,7,8 has provided a way 
to obtain information on d1(t) from experiments. The most effective 
way to access GPDs experimentally is deeply virtual Compton scat-
tering (DVCS)1,2, where high-energy electrons (e) are scattered from 
the protons (p) in liquid hydrogen as e p → e′ p′ γ, and the scattered 
electron (e′), proton (p′) and photon (γ) are detected in coincidence. 
In this process, the quark structure is probed with high-energy virtual 
photons that are exchanged between the scattered electron and the 
proton, and the emitted (real) photon controls the momentum transfer 
t to the proton, while leaving the proton intact. Recently, methods have 
been developed to extract information about the GPDs and the related 
Compton form factors (CFFs) from DVCS data10–13.

To determine the pressure distribution in the proton from the experi-
mental data, we follow the steps that we briefly describe here. We note 
that the GPDs, CFFs and GFFs apply only to quarks, not to gluons.
(1) We begin with the sum rules that relate the Mellin moments of the 
GPDs to the GFFs1.

(2) We then define the complex CFF, H, which is directly related to the 
experimental observables describing the DVCS process, that is, the 
differential cross-section and the beam-spin asymmetry.
(3) The real and imaginary parts of H can be related through a disper-
sion relation14–16 at fixed t, where the term D(t), or D-term, appears as 
a subtraction term17.
(4) We derive d1(t) from the expansion of D(t) in the Gegenbauer  
polynomials of ξ, the momentum transfer to the struck quark.
(5) We apply fits to the data and extract D(t) and d1(t).
(6) Then, we determine the pressure distribution from the relation 
between d1(t) and the pressure p(r), where r is the radial distance from 
the proton’s centre, through the Bessel integral.

The sum rules that relate the second Mellin moments of the chiral- 
even GPDs to the GFFs are1:

∫ ξ ξ+ =x H x t E x t x J t[ ( , , ) ( , , )]d 2 ( )

∫ ξ ξ= +xH x t x M t d t( , , )d ( ) 4
5

( )2
2

1

1Thomas Jefferson National Accelerator Facility, Newport News, VA, USA. *e-mail: burkert@jlab.org
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Fig. 1 | Radial pressure distribution in the proton. The graph shows 
the pressure distribution r2p(r) that results from the interactions of the 
quarks in the proton versus the radial distance r from the centre of the 
proton. The thick black line corresponds to the pressure extracted from 
the D-term parameters fitted to published data22 measured at 6 GeV. The 
corresponding estimated uncertainties are displayed as the light-green 
shaded area shown. The blue area represents the uncertainties from all the 
data that were available before the 6-GeV experiment, and the red shaded 
area shows projected results from future experiments at 12 GeV that will 
be performed with the upgraded experimental apparatus30. Uncertainties 
represent one standard deviation.
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Pion D-term

• D-term of π0

access EMT form factors of unstable particles
through generalized distribution amplitudes
(analytic continuation of GPDs)
via γγ∗ → π0π0 in e+e−

Masuda et al (Belle), PRD 93, 032003 (2016)

 

π0(P)

π0(P’)

  

γ∗

γ

GDA

best fit to Belle data → DQ
π0
≈ −0.7

at ⟨Q2⟩ = 16.6 GeV2

compatible with soft pion theorem Dπ0 ≈ −1
(if gluons contribute the rest)
Kumano, Song, Teryaev, PRD97, 014020 (2018)
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µ2 = 4GeV2 [184, 185]. The lattice data were obtained in a hybrid approach using domain wall valence quarks with
2 + 1 flavors of improved staggered sea quarks not including disconnected diagrams. The “dataset 6” from [184] shown
in Fig. 10 was taken on a 283⇥32 lattice with a lattice spacing a = 0.124 fm and a pion mass of m

⇡

= (352.3±1.4)MeV.
The results from bag [174] and Skyrme [180] model show the total scale–independent D(t). The chiral quark soliton model

is based on the instanton picture of the instanton vacuum (see e.g. a review by D.I. Diakonov [224]) therefore the results of

[126] on DQ(t) refer to the normalisation point of order inverse instanton size in the vacuum, numerically µ2 ' 0.4 GeV

2

,

see discussion in [225].

Keeping all this in mind, Fig. 10 shows a remarkable agreement. The MIT bag model [174] seems to underestimate
the magnitude of the D-term form factor, the Skyrme model [180] seems to overestimate it (though, with di↵erent
parameter fixing than in [180], a better discription may be possible). The results from dispersion relations [185] and
chiral quark soliton model [126] compare very well to the experimental results from [222].

B. Pion

Recently in Ref. [131] the first extraction of the pion EMT form factors from the BELLE data on �⇤� ! 2⇡0 [226]
was reported. The results for the quark part of EMT form factors (AQ(t) and DQ(t) in our notation, see Eq. (7)) were
presented. The results for the form factors at zero momentum transfer are:

AQ(0) ⇡ 0.70, DQ(0) ⇡ �0.75. (77)

These results are in agreement with the normalisation condition for the full form factor A(0) = 1 and with the soft
pion theorem D = �1, given that quarks carry only a fraction (about 70% according to the result of Ref. [131]) of the
pion mass, and the gluon contribution to the D-term is not extracted. Also it is important that the analysis of [131]
shows that the D-term is definitely negative as it should be for mechanical stability of the pion. The result obtained in
[131] for the slopes of the pion EMT form factors are:

1

AQ(0)

d

dt
AQ(0) = 1.33 ⇠ 2.02 GeV�2,

1

DQ(0)

d

dt
DQ(0) = 8.92 ⇠ 10.35 GeV�2. (78)

These results confirm the inequality �D0(0) > A0(0) expected from chiral theory, however the numerical values are
in sharp contrast with our estimate (68) based on the instanton picture of QCD vacuum combined with the chiral
perturbation theory. It would be very important to understand which dynamical mechanism leads to anomalously
large slopes of the pion EMT form factors obtained in analysis of Ref. [131].

XX. CONCLUSIONS

We have reviewed aspects of the physics associated with the D-term and other EMT properties. The physics of
EMT form factors is important for a variety of problems including the description of hadrons in strong gravitational
fields, hard exclusive processes, hadronic decays of heavy quarkonia, and the description of certain exotic hadrons with
hidden charm as hadroquarkonia.

The matrix elements of the EMT contain fundamental information on a particle, namely the mass, spin, and D-term.
While mass and spin are related to the Casimir operators of the Poincaré group, the D-term is related to the stress
tensor and internal forces inside a composed particle. When interpreted in the Breit frame the Fourier transforms of
the EMT form factors give insights on the 3D spatial densities describing the distributions of energy, pressure and
shear forces.

In free field theory the D-term of a spin-zero boson is negative, but that of a spin 1

2

fermion is zero. This indicates
an interesting distinction of bosons and fermions.
In interacting theories the D-term in general is not fixed, except for the Goldstone bosons of chiral symmetry

breaking for which the D-term is determined by soft-pion theorems to be D = �1 in the chiral limit. For other hadrons
the D-term is not fixed, and reflects the internal dynamics of the system through the distribution of forces, and is
sensitive to correlations in the system. For example, the baryon D-term behaves as ⇠ N2

c

whereas all other global
observables (mass, magnetic moments, axial charge, etc.) behave at most as ⇠ N

c

in the large N
c

limit. For a large
nucleus the D-term shows also anomalously fast increase with the atomic mass number D ⇠ A7/3.

The form factor D(t) provides the key to introduce mechanical properties. For instance, we have given a definition
of the mechanical radius of a hadron, discussed the concepts of normal and tangential forces, and presented (on the
basis of model results) a picture of the forces inside the nucleon. Remarkably, the forces change their directions in the

Slopes obtained:

18

For the numerical estimate of the D(t) slope we can combine the results in Eqs. (65,67):

�D0(0) =
N

c

48⇡2f2

⇡

+
ln

�
µ2/m2

⇡

�

24⇡2f2

⇡

= (0.73 + 1.66) GeV�2 = 2.40 GeV�2. (68)

Here for the numerical estimate we use µ = m
⇢

and physical pion mass of m
⇡

= 0.140 GeV. An important conclusion
from the consideration of slopes of the EMT form factors in chiral theory is that for the pion �D0(0) should be larger
than A0(0) due to the di↵erent behavior of these slopes in the chiral limit.

It is also instructive to compare Eq. (68) with the analogous estimate (see section 6.1 of Ref. [162]) for the slope of
pion charge form factor F

e.m.

(t):

F 0
e.m.

(0) =
N

c

24⇡2f2

⇡

+
ln

�
µ2/m2

⇡

�

96⇡2f2

⇡

= (1.46 + 0.42) GeV�2 = 1.88 GeV�2. (69)

First, the obtained numerical value is in good agreement with the experimental value of F 0
e.m.

(0) = (1.86± 0.03) GeV�2

[166], which indicates that such an estimate gives sensible results for pion form factors. Second, it is very instructive
to compare the expressions (68) and (69) – one sees that the chiral loop corrections to the slope of the pion D(t) form
factor are four times larger than the to slope of the pion charge form factor, whereas the large N

c

(“core”) contribution
is two times smaller – the slope of the pion D(t) form factor is dominated by chiral logs. This demonstrates that the
D-term is very sensitive to physics of spontaneous breakdown of the chiral symmetry in QCD and study of the D-term
can provide us with new e↵ective tools for probing the mechanisms of chiral symmetry breaking in QCD.

The low energy e↵ective chiral Lagrangian in curved space-time and the gravitational form factors of the pion were
also studied in quark model frameworks [167–169], AdS/QCD models in [170], and covariant and light-front constituent
models [171]. The result (65) was rederived in Ref. [167] in the large N

c

limit in quark spectral models, where it was
noted that the equality of the slopes of A(t) and D(t) was independent of the particular realization of the spectral
model. The von Laue condition for the pion was studied in [172]. A study of pion EMT form factors in lattice QCD
was reported in Ref. [173].

C. Nucleon

The first model studies of the nucleon D-term were performed in the bag model [174], chiral quark soliton model
[175], see also [126, 176–179], and Skyrme model [180, 181]. The quark contributions to the D-term were also studied
in the QCD multi-color limit N

c

! 1 [24], lattice QCD [182–184], dispersion relations [185], and quark models
[186–191, 194–196].
The bag and chiral quark soliton model were used in Ref. [134] to illustrate how interactions can generate the

D-term of a fermion. In the bag model a non-zero D-term emerges when interactions are introduced in the shape of
the bag boundary condition which is imposed to simulate confinement and bind the otherwise free quarks. In the
chiral quark soliton model the D-term vanishes when the chiral interactions are “switched o↵” and the free theory is
restored in a limiting procedure. The bag model with massless quarks gives a small value D = �1.1 [134, 174]. The
chiral models predict a more sizable D-term in the range [126, 176–181]

� 4 . D . �2 . (70)

In the large N
c

limit the D-term of the nucleon exhibits the flavor hierarchy [24]

|Du(t) +Dd(t)| ⇠ N2

c

� |Du(t)�Dd(t)| ⇠ N
c

. (71)

This result is supported by numerical calculations in chiral quark soliton model [179] and lattice QCD [182–184] .
Fig. 4 shows the EMT densities from the chiral quark soliton model (�QSM) [126]. In the center T

00

(0) = 1.7GeV/fm3

which is approximately 13 times the nuclear matter density while p(0) = 0.23GeV/fm3, which corresponds to 3.7 · 1029
atmospheric pressures. The positive pressure in the center means repulsion, and negative p(r) for r & 0.6 fm means
attraction. Repulsive and attractive forces balance each other exactly according to the von Laue condition (31).
The von Laue condition can be rigorously proven in the �QSM [126] by exploring a theorem known as “virial

theorem:” the soliton mass is a functional of the soliton profile. One may consider a special class of variations of the
profile function generated by the dilatational transformations r ! � r. This yields an energy functional m(�) which
has a minimum at � = 1. The von Laue condition can now be expressed as

R
d3r T

ii

(r) = m0(�)|
�=1

= 0 [126]. This
shows that this condition is satisfied by any stationary solution: global minimum, local minimum, other extremum,
saddle point of the action. This means the von Laue condition is necessary but not su�cient for stability.

Considerably larger than estimates
in chiral effective theory! Why?
Schweitzer, MVP ‘2018

Details in talk by Qin-Tao Song tomorrow 



Interaction of the gluon and quark subsystems inside the nucleon  

hp0|T a
µ⌫(0)|pi = ū0


Aa(t)

PµP⌫

MN
+ Ja(t)

i P{µ�⌫}⇢�
⇢

2MN
+Da(t)

�µ�⌫ � gµ⌫�2

4MN
+MN c̄a(t)gµ⌫

�
u

In QCD: @µT
Q
µ⌫ = �g  ̄Gµ⌫�µ @µT

g
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2
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Q
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µ⌫) = 0 due to EOM [D�, G�↵] = ja↵t
a with ja↵ = �g  ̄�↵t

a 

@µT
Q
µ⌫ = Ga

µ⌫ jaµ Expression for the Lorentz force experienced by a quark
in external gluon field. We may expect that Cbar(t) is
related to forces between quark and gluon subsystems.

c̄Q(t)|µ = c̄Q(t)|µ0


↵s(µ)

↵s(µ0)

��/b b =
11

3
Nc �

2

3
Nf

� =
4(N2

c � 1)

3Nc
+

2

3
Nf

With increasing of the QCD scale this FF logarithmically disappear. The interaction of quark and
gluon subsystems decreasing due to the asymptotic freedom.

��MN c̄Q(t) ū0u = hp0|ig ̄G�↵�↵ |pi

coeff. of QCD beta-function

 anomalous dimension



Interaction of the gluon and quark subsystems inside the nucleon  

with eDa

(r) =
R

d

3
�

(2⇡)

3 e�i�r Da

(��2

). Note that the form factor c̄a(t) contributes only to
the pressure inside the nucleon.

For the total (quarks+gluons) stress tensor T
ij

= TQ

ij

+ T g

ij

the stability (equilibrium)
condition is @Tij(r)

@rj
= 0, for the quark part of the stress tensor the equation reads:

@TQ

ij

(r)

@r
j

+ f
i

(r) = 0. (5.5)

This equation can be interpreted (see e.g §2 of [28]) as equilibrium equation for quark
internal stress and external force (per unit of the volume) f

i

(r) from the side of the gluons.
This gluon force can be computed in terms of EMT form factor c̄Q(t) as:

f
i

(r) = M
N

@

@r
i

Z
d3�

(2⇡)3
e�i�r c̄Q(��2

) (5.6)

Due to spherical symmetry this force (per unit of volume) is directed along unit vector
n
i

= r
i

/r. For the case of monotonically decreasing with distance Fourier transform of
c̄Q(t) (in practice for c̄Q(0) > 0) the corresponding force (5.6) is directed towards the
nucleon centre, therefore we call it squeezing (compression) force. For opposite sign the
corresponding force is stretching. The results of previous sections imply that the gluon
forces squeeze (compress) the quark subsystem.

Integrating Eq. (5.6) over some volume we obtain the force acting on this volume from
side of gluons. Taking a spherical ball of the radius R we can easily obtain that the total
gluon force which squeezes (compresses) the quarks has the value:

F (R) = 8⇡M
N

Z
R

0

dr r

Z
d3�

(2⇡)3
�
e�i�r � e�i�nR

�
c̄Q(��2

) (5.7)

The total squeezing gluon force acting on quarks in the nucleon is equal to F
total

= F (1):

F
total

=

2M
N

⇡

Z
0

�1

dtp
�t

c̄Q(t). (5.8)

The estimates of the nucleon c̄Q(t) in previous sections can be parametrised by a simple
dipole Ansatz (4.5). With this Ansatz we obtain that the total squeezing (compression)
gluon force acting on the quark subsystem in the nucleon is:

F
total

= c̄
quark

M
N

⇤ ' 5.9 · 10�2

GeV

fm

. (5.9)

This force can be compared with typical size of forces inside the quark subsystem. The
latter in the nucleon are of order ⇠ 0.2 GeV/fm [3], i.e. intersystems force is about 3 times
smaller. Also this force is about 15 times smaller than the confinement force ⇠ 1 GeV/fm
commonly associated with the string tension. So, we have an interesting physics picture –

– 8 –
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Landau, Lifshitz, vol. 7

Cbar(t) FF important to know what are (compressing or stretching) forces experienced by quarks
from side of gluons inside the nucleon. Size of this forces?



Interaction of the gluon and quark subsystems inside the nucleon
from instantons.

Instantons form a dilute liquid in the QCD vacuum. They provide a mechanism of spontaneous 
breakdown of chiral symmetry in QCD. Shuryak ‘1982

Diakonov, Petrov ‘1983

��MN c̄Q(t) ū0u = hp0|ig ̄G�↵�↵ |pi
Computed in QCD vacuum using the method of Diakonov, Weiss, 

MVP ‘1996
Balla, Weiss, 
MVP ‘1997

c̄Q(t) =
c̄quark

(1� t/⇤2)2
c̄Q(0) = c̄quark ' 1.4 · 10�2.c̄quark ⇠ 1

6

⇢̄4

R̄4
ln

✓
R̄

⇢̄

◆
We  found a strong suppression by the instanton packing fraction

H.-D. Son, MVP ‘2018

We obtained small and positive value at a low normalisation point of ~0.5 GeV^2. 
This corresponds to rather small compression forces experienced by quarks!

with eDa

(r) =
R

d

3
�

(2⇡)

3 e�i�r Da

(��2

). Note that the form factor c̄a(t) contributes only to
the pressure inside the nucleon.

For the total (quarks+gluons) stress tensor T
ij

= TQ

ij

+ T g

ij

the stability (equilibrium)
condition is @Tij(r)

@rj
= 0, for the quark part of the stress tensor the equation reads:

@TQ

ij

(r)

@r
j

+ f
i

(r) = 0. (5.5)

This equation can be interpreted (see e.g §2 of [28]) as equilibrium equation for quark
internal stress and external force (per unit of the volume) f

i

(r) from the side of the gluons.
This gluon force can be computed in terms of EMT form factor c̄Q(t) as:

f
i

(r) = M
N

@

@r
i

Z
d3�

(2⇡)3
e�i�r c̄Q(��2

) (5.6)

Due to spherical symmetry this force (per unit of volume) is directed along unit vector
n
i

= r
i

/r. For the case of monotonically decreasing with distance Fourier transform of
c̄Q(t) (in practice
For c̄Q(0) > 0) the corresponding force is directed towards the nucleon centre, therefore we
call it squeezing (compression) force. For opposite sign the corresponding force is stretching.

The results of previous sections imply that the gluon forces squeeze (compress) the
quark subsystem.

Integrating Eq. (5.6) over some volume we obtain the force acting on this volume from
side of gluons. Taking a spherical ball of the radius R we can easily obtain that the total
gluon force which squeezes (compresses) the quarks has the value:

F (R) = 8⇡M
N

Z
R

0

dr r

Z
d3�

(2⇡)3
�
e�i�r � e�i�nR

�
c̄Q(��2

) (5.7)

The total squeezing gluon force acting on quarks in the nucleon is equal to F
total

= F (1):

F
total

=

2M
N

⇡

Z
0

�1

dtp
�t

c̄Q(t). (5.8)

The estimates of the nucleon c̄Q(t) in previous sections can be parametrised by a simple
dipole Ansatz (4.5). With this Ansatz we obtain that the total squeezing (compression)
gluon force acting on the quark subsystem in the nucleon is:

F
total

= c̄
quark

M
N

⇤ ' 5.9 · 10�2

GeV

fm

. (5.9)

This force can be compared with typical size of forces inside the quark subsystem. The
latter in the nucleon are of order ⇠ 0.2 GeV/fm [3], i.e. intersystems force is about 3 times
smaller. Also this force is about 15 times smaller than the confinement force ⇠ 1 GeV/fm

– 8 –

it looks like the two systems decouple. 
Justification of Teryaev’s equipartition conjecture ?
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Abstract: Using the instanton picture of the QCD vacuum we compute the nucleon
c̄Q(t) form factor of the quark part of the energy momentum tensor (EMT). This form
factor describes the non-conservation of the quark part of EMT and contributes to the
quark pressure distribution inside the nucleon. Also it can be interpreted in terms of
forces between quark and gluon subsystems inside the nucleon. We show that this form
factor is parametrically small in the instanton packing fraction. Numerically we obtain for
the nucleon EMT a small value of c̄Q(0) ' 1.4 · 10�2 at the low normalisation point of
⇠ 0.4 GeV2. This smallness implies interesting physics picture – the forces between quark
and gluon mechanical subsystems are smaller than the forces inside each subsystem. The
forces from side of gluon subsystem squeeze the quark subsystem – they are compression
forces. Additionally, the smallness of c̄Q(t) might justify Teryaev’s equipartition conjecture.
We estimate that the contribution of c̄Q(t) to the pressure distribution inside the nucleon
is in the range of 1� 20% relative to the contribution of the quark D-term.
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Proton Mass Decomposition from the QCD Energy Momentum Tensor
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We report results on the proton mass decomposition and also on related quark and glue momentum
fractions. The results are based on overlap valence fermions on four ensembles of Nf = 2+ 1 DWF
configurations with three lattice spacings and three volumes, and several pion masses including the
physical pion mass. With fully non-perturbative renormalization (and universal normalization on
both quark and gluon), we find that the quark energy and glue field energy contribute 33(4)(4)%
and 37(5)(4)% respectively in the MS scheme at µ = 2 GeV. A quarter of the trace anomaly gives
a 23(1)(1)% contribution to the proton mass based on the sum rule, given 9(2)(1)% contribution
from the u, d, and s quark scalar condensates. The u, d, s and glue momentum fractions in the MS
scheme are in good agreement with global analyses at µ = 2 GeV.

PACS numbers: 11.15.Ha, 12.38.Gc, 12.39.Mk

Introduction: In standard model, Higgs boson pro-
vides the origin of quark masses. But how it is related to
the proton mass and thus the masses of nuclei and atoms
is another question. The masses of the valence quarks
in the proton are just ⇠3 MeV per quark which is di-
rectly related to the Higgs boson, while the total proton
mass is 938 MeV. The percentage of the quark and gluon
contributions to the proton mass can only be provided
by solving QCD non-perturbatively, and/or with infor-
mation from experiment. With phenomenological input,
the first decomposition was carried out by Ji [1]. As in
Refs. [1, 2], the Hamiltonian of QCD can be decomposed
as

M = �hT44i = hHmi+hHEi(µ)+hHgi(µ)+ 1

4
hHai, (1)

in the rest frame of the hadron state where M is the
hadron mass, Tµ⌫ is the energy momentum tensor of
QCD with hT44i as its expectation value in the hadron,
and the trace anomaly gives

M = �hT̂µµi = hHmi+ hHai. (2)

The Hm, HE , and Hg in the above equations denote
the contributions from the quark condensate, the quark
energy, and the glue field energy, respectively:

Hm =
X

u,d,s···

Z
d3xm  , HE =

X

u,d,s...

Z
d3x  ( ~D · ~�) ,

Hg =

Z
d3x

1

2
(B2 � E2). (3)

The QCD anomaly termHa is the joint contribution from
the quantum anomaly of both glue and quark,

Ha = Ha
g +H�

m, Ha
g =

Z
d3x

��(g)
g

(E2 +B2),

H�
m =

X

u,d,s···

Z
d3x �mm  . (4)

All the hHi are defined by hN |H|Ni/hN |Ni where |Ni is
the nucleon state in the rest frame. Note that hHE+Hgi,
hHmi and hHai are scale and renormalization scheme
independent, but hHEi(µ) and hHgi(µ) separately have
scale and scheme dependence.
The nucleon mass M can be calculated from the

nucleon two-point function. If one calculates further
hHmi and hHEi(µ), then hHgi(µ) and hHai can be ob-
tained through Eqs. (1) and (2). The approach has
been adopted to decompose the S-wave meson masses to
gain insight about contributions of each term from light
mesons to charmoninums [2]. But the mixing between
hHEi(µ) and hHmi will be non-trivial under the lattice
regularization, when there is any breaking of the quark
equation of motion at finite spacing. On the other hand,
if we obtain the renormalized quark momentum fraction
hxiRq in the continuum limit, and define the renormalized
quark energy hHR

E i in term of hxiRq and hHmi with the
help of the equation of motion, i.e.,

hHR
E i = 3

4
hxiRq M � 3

4
hHmi, (5)

then the additional mixing can be avoided. Similarly, the
renormalized glue field energy can be accessed from the
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c̄Q(0) = �AQ(0)/4 + mass term obtained using TQ
µµ = 0 in chiral limit

Where is contribution of the dilatation anomaly? Is QCD scale dependence (in)consistent?

5

are almost independent of the quark mass. At the
physical point, the quark and glue energy contributions
are 32(4)(4)% and 36(5)(4)% respectively. With the
quark scalar condensate contribution of 9(2)(0)% [3],
we can obtain that a quarter of the trace anomaly
contributes 23(1)(1)% with Nf = 2 + 1.

For the decomposition in Eq. 2, the frame-independent
proton mass just includes the contribution from quark
scalar condensate and trace anomaly, with their contri-
butions as 9(2)(1)% and 91(8)(1)% respectively. On the
other hand, following the structure of perfect fluid EMT
in relativistic hydrodynamics [30], a new decomposition
is introduced in Ref. [31],

hP |Ti,µ⌫ |P i = hP |P i
2E

�
2PµP⌫hxii � 2M�µ⌫ p̄i), (13)

where |P i is the nucleon state in a frame with momentum
P , and pi = (�hxii + hHm,ii)/4 is the partial pressure of
the parton i = u, d, s, g... satisfying the . We have p̄u+d =
0.105(12)(12), p̄s = 0.002(8)(2), and p̄g = �C̄u+d+s =
�0.107(15)(12).

In summary, we present a simulation strategy to cal-
culate the proton mass decomposition. The renormal-
ization and mixing between the quark and glue en-
ergy can be calculated non-perturbatively, and the quark
scalar condensate contribution and the trace anomaly are
renormalization group invariant. Based on this strat-
egy, the lattice simulation is carried out on four ensem-
bles with three lattice spacings and volumes, and several
pion masses including the physical pion mass, to con-

trol the respective systematic uncertainties. With non-
perturbative renormalization and normalization, the in-
dividual u, d, s and glue momentum fractions agree with
those from the global fit in the MS scheme at 2 GeV.

FIG. 3. The valence pion mass dependence of the proton mass
decomposition, in terms of the quark condensate (hHmi),
quark energy hHEi, glue field energy hHgi and trace anomaly
hHai/4.

Quark energy, gluon energy, and quantum anomaly con-
tributions to the proton mass are fairly insensitive to the
pion mass up to 400 MeV within our statistical and sys-
tematic uncertainties.
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They obtained that the Cbar contribution to quark pressure is positive and 
quarks experience stretching forces from the side of gluon. Picture opposite
to ours! 

Frequently used in several other papers!



 gravitational D-form factor is related to “elastic properties” of the nucleon, and gives access to 
details of strong forces inside the nucleon.

 D(0) (the D-term) is the last unknown global (in the same sense as mass and spin) property of the 
nucleon 

 First experimental results for D(t) of the nucleon and of the pion are obtained. It is negative, as 
expected from stability conditions.

 Cbar(t) FF is important to understand forces between quark and gluon subsystems inside hadrons. 
Instanton picture of QCD vacuum predicts small positive value of the FF.  That corresponds to 
compression forces experienced by quark subsystem (at variance with lattice results) 

Conclusions

Outlook

 knowledge of the D-term can be important to understand hadron interaction in gravitational field 
relevant to BH or NS mergers (LIGO events). 

 the pressure distribution inside hadrons important to understand the physics of hadro-charmonia 
(LHCb pentaquarks, tetraquarks with hidden charm) 

 several theoretical issues - relation between pressure and energy density (elastic waves in 
hadrons?), analogies with cosmology, hadrons as projection of higher dimensional objects, etc.   

MVP  in preparation

Eides, Petrov, MVP ‘2016, Perevalova, Schweitzer, MVP ‘2017,
Panteleeva, Perevalova, Schweitzer, MVP ‘2018


