Experimental overview of Transverse Momental Distributions and

INTERNATIONAL SPIN SYMPOSIUM FERRARA - ITALY

menti

University of Trieste and INFN

essan

3RD INTERNATIONAL SPIN SYMPOSIUM SPIN 2018 September 10-14, Ferrara Italy:

Accessing TMD PDFs and FFs

- TMD factorization works in the domain where there are two observed momenta in the process, such as SIDIS, DY, e^+e^- . $Q \gg q_T$: Q is large to ensure the use of pQCD, q_T is much smaller such that it is sensitive to parton's transverse momentum
- SIDIS off polarized p, d, n targets

HERMES COMPASS JLab *future: EIC*

$$\sigma^{\ell p \to \ell' h X} \sim q(x) \otimes \hat{\sigma}^{\gamma q \to q} \otimes D^h_q(z)$$

• polarised Drell-Yan

COMPASS RHIC σ^{hp-} FNAL future: **FAIR, JPark, NICA**

 $\sigma^{hp\to\mu\mu}\sim \overline{a}$ (x) $\bigotimes a$ (x

 $\sigma^{hp\to\mu\mu}\sim \bar{q}_h(x_1)\otimes q_p(x_2)\otimes\hat{\sigma}^{\bar{q}q\to\mu\mu}(\hat{s})$

BaBar *Belle* Bes III

$$\sigma^{e^+e^- \to h_1 h_2} \sim \hat{\sigma}^{\ell\ell \to \bar{q}q}(\hat{s}) \otimes D_q^{h_1}(z_1) \otimes D_q^{h_2}(z_2)$$

The spin of the proton

Three twist-2 quark DF's in collinear approximation ($\int dk_{\perp}$)

 $\Phi_{\text{Coll}}^{\text{Tw}-2}(x) = \frac{1}{2} \{q(x) + S_L \gamma_5 g_1(x) + S_T \gamma_5 \gamma^1 h_1(x)\} n^+$

TMD Distribution Functions

Proton goes out of the screen. Photon goes into the screen

TMD evolution:

QCD evolution of TMDs in Fourier space (solution of equation)

• Polarized scattering data comes as ratio: e.g. $A_{UT}^{\sin(\phi_h - \phi_s)} = F_{UT}^{\sin(\phi_h - \phi_s)} / F_{UU}$

 Unpolarized data is very important to constrain/extract the key ingredient for the non-perturbative part

Effect of QCD evolution

What evolution does

• Spread out the distribution to much larger k_{\perp} . At low k_{\perp} , the distribution decreases due to this spread

Importance of unpolarized SIDIS

- The cross section dependence from P_{hT} results from:
 - intrinsic k_{\perp} of the quarks
 - p_{\perp} generated in the quark fragmentation
- The azimuthal modulations in the unpolarised cross sections comes from:
 - Intrinsic k_{\perp} of the quarks
 - The Boer-Mulders PDF
- Difficult measurements were one has to correct for the apparatus acceptance
- COMPASS and HERMES have
 - results on ${}^{6}LiD$ (~d) and d and on p (Hermes only)
 - No COMPASS measurements on p since on NH_3 ($\sim p$) nuclear effects may be important
- \Rightarrow COMPASS-II, measurements on LH₂ in parallel with DVCS

proton

 k_{\perp}

Positive vs Negative charged hadrons

9/21/2018

spin2018

Global Analysis: Unpolarized TMD

Global analysis of semi-inclusive DIS, Drell-Yan and Z production data with TMD evolution

Drell-Yan cross section

Z production

Transverse momentum distribution

A. Bacchetta et al., J. High Energy Phys. 06 (2017) 081.

19

The matching problem $(q_T/Q > 1$ region) N. Sato COMPASS 17 h^+ 20.0 data/theory(NLO) vs. $q_{\rm T}$ (GeV) $x_{\rm bj} = 0.13$ $1 Q^2 = 9.2 \text{ GeV}^2$ data/theory(LO) PDF: JAM18 FF: JAM18 8.3 $q_{\rm T} > Q$ 26 4 (GeV 3.5 $\frac{data/theory(NLO)}{5} \xrightarrow{0} 0 \xrightarrow{1} 1 \xrightarrow{1} 1 \xrightarrow{1} 1$ Q^2 2 4 6 1.8 < z >= 0.242 4 6 20 40 q_T^2 (GeV^2) < z >= 0.341.3< z >= 0.48< z >= 0.689 2 6 2 4 6 24 6 2 4 6 4 0.010 0.07 0.007 0.016 0.030.04 0.270.15 $x_{\rm bj}$

spin2018

Transversity PDF

$$h_1^q(\mathbf{x}) = q^{\uparrow\uparrow}(\mathbf{x}) - q^{\uparrow\downarrow}(\mathbf{x})$$

 $q = u_v, d_v, q_{sea}$ quark with spin parallel to the nucleon spin in a transversely polarised nucleon

- probes the relativistic nature of quark dynamics
- no contribution from the gluons \rightarrow simple Q^2 evolution
- first moments: tensor charge...... $\delta q(Q^2) = \int_0^1 dx \left[h_1^q(x) h_1^{\bar{q}}(x) \right]$
- is chiral-odd: decouples from inclusive DIS

Bakker, Leader, Trueman, PRD 70 (04)

Transversity

is chiral-odd:

observable effects are given only by the product of h_1^q (x) and an other chiral-odd function can be measured in SIDIS on a transversely polarised target via "quark polarimetry"

- $\ell N^{\uparrow} \rightarrow \ell' h X$
- $\ell \, \mathbf{N}^{\uparrow} \rightarrow \ell' \, \mathbf{h} \, \mathbf{h} \, \mathbf{X}$

 $\ell\,\mathsf{N}^{\uparrow}\to\ell^{\scriptscriptstyle\mathsf{T}}\,\Lambda\,\mathsf{X}$

- "Collins" asymmetry "Collins" Fragmentation Function
- "two-hadron" asymmetry "Interference" Fragmentation Function
- **Λ** polarisation

Fragmentation Function of $q\uparrow \rightarrow \Lambda$

Collins asymmetry on proton

Collins asymmetry on proton. Multidimensional Extraction of TSAs with a Multi-D $(x: Q^2: z: p_T)$ approach

COMPAS

One dense plot out of many

spin2018

TMDs at STAR

STAR unique kinematics: from high to low x at high Q²

TSA of inclusive jets and π^{\pm} within jets from STARN IN

- The $P_{\text{jet }T}$ of the jet and the $P_{\pi^{\pm}T}$ momentum transverse to the jet axis provide the hard and soft scales for TMD factorization.
- These measurements extend the kinematic reach in both x and Q^2 beyond the existing SIDIS measurements
- Different mixing of flavors, and stronger gluon content

$$d\sigma^{\uparrow}(\phi_{S},\phi_{H}) - d\sigma^{\downarrow}(\phi_{S},\phi_{H}) \\ \sim d\Delta\sigma_{0}\sin\phi_{S} \\ + d\Delta\sigma_{1}^{-}\sin(\phi_{S} - \phi_{H}) + d\Delta\sigma_{1}^{+}\sin(\phi_{S} + \phi_{H}) \\ + d\Delta\sigma_{2}^{-}\sin(\phi_{S} - 2\phi_{H}) + d\Delta\sigma_{2}^{+}\sin(\phi_{S} + 2\phi_{H})$$

L. Adamczyk et al. (STAR Collaboration), Phys. Rev. D 97, 032004 (2018).

TSA of inclusive jets and π^\pm within jets from STARN IN

 A_N asymmetries consistent with zero in all rapidity intervals and over the full $P_{\pi^{\pm}T}$ range

TSA of inclusive jets and π^{\pm} within jets from STARNEN

COLLINS asymmetries: general agreement between data and predictions from SIDIS consistent with TMD factorization and universality of the Collins function

Interference fragmentation functions in pp

$$A_{UT}\sin{(\phi_{RS})} = rac{1}{Pol} rac{d\sigma^{\uparrow} \ - d\sigma^{\downarrow}}{d\sigma^{\uparrow} \ + d\sigma^{\downarrow}}$$

- Significant di-hadron asymmetries both at
 - \sqrt{s} =200GeV and \sqrt{s} =500GeV (arXiv:1710.10215)
 - Increasing with p_{T}
 - Access to transversity with a collinear observable

$|A_{Coll}^{p}$ on proton and ${}^{3}P_{0}$ model for FF

Albi Kerbizi et al. @ DSPIN17 <u>http://theor.jinr.ru/~spin/2017/</u> Phys. Rev. D 97, 074010 (2018)/<u>arXiv:1802.00962</u>

- The curves are fits of the Monte Carlo data, scaled by $\lambda \sim \langle h_1^u / f_1^u \rangle \sim 0.055$
- Agreement with the measured Collins asymmetry is quite satisfactory

2h asymmetries on p and ${}^{3}P_{0}$ model for FF $A_{UT}^{\sin(\phi_R + \phi_S - \pi)} = \frac{\sum_q e_q^2 h_1^q(x) H_{q \to h_1 h_2}^{\measuredangle} \left(z, \mathcal{M}_{h_1 h_2}^2 \right)}{\sum_q e_q^2 q(x) D_a^{h_1 h_2} \left(z, \mathcal{M}_{h_1 h_2}^2 \right)}$ $\uparrow \rightarrow h^{\pm} X$ $^{\rm A}{}^{\rm Si}_{C}$ 0.02COMPASS $1_{UT,p}^{sin\phi_{RS}}sin\Theta$ MC -0.05 $q^{\mu}\uparrow \rightarrow h^{+}h^{-}hX$ $A_{CL\,2h}^{\sin\Phi_{2h,1}}$ h^+h^-MC \square **h**⁺**h** -0.020.5 0.05 -0.04-0.06 $M_{inv}^{1.5} (GeV/c^2)$ 0.2 0.8 0.5 0.4 0.6 -20 2 Ζ $\Delta \phi$ $\Delta \phi$

 $a_P^{u\uparrow \to h^+h^-X} = \langle \sin(\phi_R + \phi_S - \pi) \rangle$ and $\vec{R} = \frac{z_2 \vec{P}_{h_1} - z_1 \vec{P}_{h_2}}{z_1 + z_2}$ and as before $\lambda \sim \langle h_1^u / f_1^u \rangle \sim 0.055$

Λ transverse spin transfer from COMPASS

$$P_{\Lambda(\overline{\Lambda})}(x,z) = \frac{\sum_{q} e_{q}^{2} h_{1}^{q}(x) H_{1}^{\Lambda(\overline{\Lambda})}(z)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1}^{\Lambda(\overline{\Lambda})}(z)}$$

$$\frac{dN}{d\cos\theta^*} \propto A \big(1 + \alpha P_{\Lambda(\overline{\Lambda})}\cos\theta^* \big)$$

Λ transverse spin transfer from STAR

$$D_{TT} = \frac{d\sigma^{p^{\uparrow}p \to \Lambda^{\uparrow}X} - d\sigma^{p^{\uparrow}p \to \Lambda^{\downarrow}X}}{d\sigma^{p^{\uparrow}p \to \Lambda^{\uparrow}X} + d\sigma^{p^{\uparrow}p \to \Lambda^{\downarrow}X}}$$

$$D_{TT} = -\frac{1}{\alpha P_B \langle \cos \theta^* \rangle} \frac{\sqrt{N_{\cos \theta^*}^{\uparrow} N_{-\cos \theta^*}^{\downarrow} - \sqrt{N_{\cos \theta^*}^{\downarrow} N_{-\cos \theta^*}^{\uparrow}}}}{\sqrt{N_{\cos \theta^*}^{\uparrow} N_{-\cos \theta^*}^{\downarrow} + \sqrt{N_{\cos \theta^*}^{\downarrow} N_{-\cos \theta^*}^{\uparrow}}}}$$

$$\frac{dN}{d\cos\theta^*} \propto A \left(1 + \alpha P_{\Lambda(\overline{\Lambda})}\cos\theta^*\right)$$

About 60% of Λ or $\overline{\Lambda}$ are not primary particles, but are from heavier hyperons decay.

 $D_{TT}(\Lambda) = +0.031 \pm 0.033_{\text{stat}} \pm 0.008_{\text{sys}}$ $D_{TT}(\overline{\Lambda}) = -0.034 \pm 0.040_{\text{stat}} \pm 0.009_{\text{sys}}$

Sivers Asymmetry

Sivers: correlates nucleon spin & quark transverse momentum k_T/T-ODD

at LO:

A _{Siv}	=	$\sum_{q} e_{q}^{2} f_{1Tq}^{\perp} \otimes D_{q}^{h}$				
		$\overline{\sum_{q} e_{q}^{2} q \otimes D_{q}^{h}}$				

$$\mu p^{\uparrow}
ightarrow \mu X h^{\pm}$$

The Sivers PDF					
1992	Sivers proposes f_{1T}^{\perp}				
1993	J. Collins proofs $f_{1T}^{\perp} = 0$ for T invariance				
2002	S. Brodsky, Hwang and Schmidt demonstrate that f_{1Tq}^{\perp} may be $\neq 0$ due to FSI				
2002	J. Collins shows that $(f_{1T}^{\perp})_{DY} = -(f_{1T}^{\perp})_{SIDIS}$				
2004	HERMES on p: $A_{Siv}^{\pi^+} \neq 0$ and $A_{Siv}^{\pi^-} = 0$				
2004	COMPASS on d: $A_{Siv}^{\pi^+} = 0$ and $A_{Siv}^{\pi^-} = 0$				
2008	COMPASS on p: $A_{Siv}^{\pi^+} \neq 0$ and $A_{Siv}^{\pi^-} = 0$				

Sivers Asymmetry

$$A_{Siv}(x,z) = \frac{F_{UT}^{sin\Phi_{Siv}}(x,z)}{F_{UU}(x,z)} = \frac{\sum_{q} e_{q}^{2} x f_{1T}^{\perp q}(x,k_{\perp}^{2}) \otimes D_{1q}^{h}(z, p_{\perp}^{2})}{\sum_{q} e_{q}^{2} x f_{1}^{-q}(x, k_{\perp}^{2}) \otimes D_{1q}^{h}(z, p_{\perp}^{2})}$$

- To evaluate it we need to solve the convolutions (i.e. make hypothesis on the transverse momenta dependences of the TMDs)
- Gaussian ansatz: $f_{1T}^{\perp q}(x) \frac{e^{-k_{\perp}^{2}/\langle k_{\perp}^{2} \rangle_{S}}}{\pi \langle k_{\perp}^{2} \rangle_{S}} \quad D_{1q}^{h}(z) \frac{e^{-p_{\perp}^{2}/\langle p_{\perp}^{2} \rangle}}{\pi \langle p_{\perp}^{2} \rangle}$ • Leading to: $A_{Siv,G}(x,z) = \frac{\sqrt{\pi}M}{\sqrt{z^{2} \langle k_{T}^{2} \rangle_{S} + \langle p_{T}^{2} \rangle}} \frac{\sum_{q} e_{q}^{2} x f_{1T}^{\perp(1)q}(x) z D_{1q}^{h}(z)}{\sum_{q} e_{q}^{2} x f_{1}^{\perp}(x) D_{1q}^{h}(z)}$ with $f_{1T}^{\perp(1)q}(x) = \int d^{2}\vec{k}_{T} \frac{k_{T}^{2}}{2M^{2}} f_{1T}^{\perp q}(x, k_{T}^{2})$

TMD PDFs

• The theoretical expression of TMDs has a more complicated structure of the gauge link, connecting two space-time points with a transverse separation

$$f_{q/N}(x, \mathbf{k}_{\perp}) = \frac{1}{8\pi} \int dr^{-} \frac{dr_{\perp}^{2}}{(2\pi)^{2}} e^{-iMxr^{-}/2 + i\mathbf{k}_{\perp} \cdot r_{\perp}}$$

 $\langle N(P)|\bar{q}(r^-,r_{\perp})\gamma^+W[r^-,r_{\perp};0]q(0)|N(P)\rangle|_{r^+\sim 1/\nu\to 0}$

• The Wilson line *W* is no longer on the light-cone axis and may introduce a **process dependence**

Parity and Time reversal invariance \Rightarrow

$$\left(f_{1Tq}^{\perp}\right)_{DY} = -\left(f_{1Tq}^{\perp}\right)_{SIDIS}$$

Most critical test to TMD approach to SSA

Sivers asymmetry on p

charged pions (and kaons), HERMES and COMPASS

Transverse Spin Asymmetry in Drell-Yan

190 GeV/c π -beam, transversely polarized NH₃ target

PRL119, 112002 (2017).

The weighted Sivers asymmetry

- If we weight the spin dependent part of the cross-section $F_{UT}^{sin\Phi_{Siv}}(x,z) = \Sigma_q \ e_q^2 \int d^2 \vec{P}_T P_T F_q(x,z,P_T^2)$
- with $w = P_T/zM$, i.e. $F_{UT}^{sin\Phi_{Siv},w}(x,z) = \Sigma_q \ e_q^2 \int d^2 \vec{P}_T \frac{P_T^2}{zM} F_q(x,z,P_T^2) = 2 \ \Sigma_q \ e_q^2 x f_{1T}^{\perp(1)q}(x) D_{1q}^h(z)$

and $F_q(x, z, P_T^2) = \int d^2 \vec{k}_T \int d^2 \vec{p}_T \, \delta^2 \left(\vec{P}_T - z\vec{k}_T - \vec{p}_T\right) \frac{\vec{P}_T \cdot \vec{k}_T}{M P_T^2} x f_{1T}^{\perp q}(x, k_T^2) \, D_{1q}(z, p_T^2)$

 we have no longer a convolution but a product of two integrals and we can write

$$A_{Siv}^{w}(x,z) = \frac{F_{UT}^{sin\Phi_{Siv},w}(x,z)}{F_{UU}(x,z)} = 2\frac{\sum_{q} e_{q}^{2} x f_{1T}^{\perp(1)q}(x) D_{1q}^{h}(z)}{\sum_{q} e_{q}^{2} x f_{1}^{q}(x) D_{1q}^{h}(z)}$$

with $f_{1T}^{\perp(1)q}(x) = \int d^2 \vec{k}_T \frac{k_T^2}{2M^2} f_{1T}^{\perp q}(x, k_T^2)$

The weighted Sivers asymmetry

standard cuts z>0.2

both $f_{1T}^{\perp(1)u}$ and $f_{1T}^{\perp(1)d}$ contribute

The weighted Sivers asymmetry

standard cuts z>0.2

The ratio between weighted and unweighted Sivers asymmetries follows the average of $4\langle x \rangle / \pi M \langle z P_T \rangle$ of the unpolarised sample

Sivers Asymmetry for Gluon from SIDIS

C. Adolph et al. (COMPASS Collaboration), Phys. Lett. B 772, 854 (2017).

spin2018

WHAT WILL COME NEXT

Already on tape

- COMPASS @ CERN:
 - 2016-17 DVCS and SIDIS on LH₂
 - 2018 DY run
- STAR @ RHIC
 - 2017 350 pb⁻¹ 14 times Run-11 for $-1 < \eta < 1.8 \rightarrow A_N, W^{\pm}/Z^0$, Collins,
- 2018 RUN @ Jlab 12
 - HALL A
 - HALL B
 - HALL C

JLab 12: valence maping of TMDs and GPDs

- HALL A
 - Ongoing GPDs: E12-06-114: Deeply Virtual Compton Scattering
 - Future SOLID experiment
- HALL B
 - Ongoing GPDs: E12-06-108 (hard exclusive electro-production of π^0 and η ,
 - Ongoing SIDIS: E12-06-112/A/B (SIDIS production of π , Λ in target region, nucleon structure at twist-3)
 - And much more in future
- HALL C
 - Ongoing TMDs E12-09-017 (range 0.02 < x < 0.5, 2 (GeV/c)² $< Q^2 < 5$ (GeV/c)² and $P_{hT} < 0.5$ GeV/c; ~60% of data acquired, remainder in late 2018).
 - A_1^n (E12-06-110) in late 2019

Physics in 2021+

Objective:

unique program addressing several fundamental questions in QCD

\rightarrow essential to

- □ the mission of the RHIC physics program in cold and hot QCD
- □ fully realize the scientific promise of the EIC
 - Iay the groundwork for the EIC, both scientifically and by refining the experimental requirements
 - > Test EIC detector technologies under real conditions, i.e SiPMs

pp, pA and AA program based on two pillars

- midrapidity program based on existing STAR detector utilizing iTPC, eToF and EPD upgrades
- \rightarrow forward rapidity program based on unique upgrade of STAR Upgrade consisting of Hcal + ECal + tracking (Si +sTGCs) at 2.5 < η < 4

Goal:

Have the forward upgrade operational for a polarized pp@500 GeV run in 2021 and run during the sPHENIX data taking campaign (≥ 2023)

SoLID Impact on h_1 and Tensor Charges

COMPASS deuteron data in 2021

• Expected gain in precision on u- and d-quark transversity

F. Bradamante/this conf.

To conclude

- Many important results both for the spin structure and the internal 3D structure of the nucleon have been provided by experiments at hera, cern, rhic and jlab
- And many will come in the future: Jlab will map the valence region with high precision; compass and rhic will complete their programs

The science

Finding 1: An EIC can uniquely address three profound questions about nucleons—neutrons and protons—and how they are assembled to form the nuclei of atoms

FINALLY, WE WILL NEED A DEDICATED POLARISED EN MACHINE GIVING ACCECC TO BOTH P AND N WITH HIGH INTENSITY AND LARGE PHASE SPACE COVERAGE TO MOVE FROM EXPLORATION TO PRECISION ALLOWING US TO ANSWER THE VERY CHALLENGING QUESTIONS WE ARE FACING

Thank you

Ennanna

#

M

FEEGH

TSA of inclusive jets and π^\pm within jets from STARN FN

COLLINS LIKE asymmetries: sensitive to linearly polarized gluons in a polarized proton, are found to be small and provide the first constraints on model calculations.

TSSA A_N studies at PHENIX

Described by twist 3 collinear approach (1 scale, high p_T) Suppression in $p^{\uparrow}A$ expected by gluon saturation ($\propto A^{1/3}$) Hybrid approach: twist-3 and CGC

New QCD facility at CERN M2

https://arxiv.org/abs/1808.00848

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Letter of Intent:

August 3, 2018

	A New QCD facility at the M2 beam line of the CERN SPS							
			O.Yu. Denisov on behalf of the working group: "A New QCD Facility at the M2 beam line of the CERN SPS""					
С	onter	its						
1	Intr	oductio	n	1				
2	2 Hadron physics with standard muon beams							
	2.1	Protor	radius measurement using $\mu - p$ elastic scattering	3				
		2.1.1	Experiments targeting the proton radius puzzle: the M2 beam line case	3				
		2.1.2	Formalism of Elastic lepton-proton scattering	5				
		2.1.3	Measurement at the CERN M2 beam line	6				
	2.2 Exclusive reactions with muon beams and transversely polarised target							
		2.2.1	Motivations for a measurement of the GPD E	7				
		2.2.2	Measurements of Deeply Virtual Compton Scattering	8				
		2.2.3	Measurements of Deeply Virtual Meson Production	10				
3	Had	ron Ph	ysics with Standard Hadron Beams	12				

*The final author list of the LoI will be finished in October 2018. Please send e-mail to NQF-M2@cern.ch for questions and requests.

Program	Physics Goals	Beam Energy [GeV]	Beam Intensity [s ⁻¹]	Trigger Rate [kHz]	Beam Type	Target	Earliest start time, duration	Hardware Additions
μp	Precision							active TPC,
elastic	proton-radius	100	$4 \cdot 10^{6}$	100	μ^{\pm}	high-pr.	2022	SciFi trigger,
scattering	measurement					H2	1 year	silicon veto,
Hard								recoil silicon,
exclusive	GPD E	160	$2 \cdot 10^{7}$	10	μ^{\pm}	NH_3^{\uparrow}	2022	modified
reactions						_	2 years	PT magnet
			_					
Input for	\overline{p} production	20-280	$5 \cdot 10^{\circ}$	25	p	LH2,	2022	LHe
DMS	cross section					LHe	1 month	target
			7					target spectr.:
\overline{p} -induced	Heavy quark	12, 20	$5 \cdot 10'$	25	\overline{p}	LH2	2022	tracking,
Spectroscopy	exotics						2 years	calorimetry
			7		+			
Drell-Yan	Pion PDFs	190	$7 \cdot 10^{\prime}$	25	π^+	C/W	2022	
							1-2 years	
			0		+	*		"active
Drell-Yan	Kaon PDFs &	~ 100	10°	25-50	K^{\pm}, \overline{p}	NH_3^{\dagger} ,	2026	absorber",
(RF)	Nucleon TMDs					C/W	2-3 years	vertex det.
	Kaon polarisi-		6				non-exclusive	
Primakoff	bility & pion	~ 100	$5 \cdot 10^{\circ}$	>10	K^{-}	Ni	2026	
(RF)	life time						1 year	
Prompt			6				non-exclusive	
Photons	Meson gluon	≥ 100	$5 \cdot 10^{\circ}$	10-100	K^{\pm}	LH2,	2026	hodoscope
(RF)	PDFs				π^{\pm}	Ni	1-2 years	
K-induced	High-precision		6					recoil TOF,
Spectroscopy	strange-meson	50-100	5 · 10°	25	K^{-}	LH2	2026	forward
(RF)	spectrum						1 year	PID
	Spin Density		6					
Vector mesons	Matrix	50-100	$5 \cdot 10^{\circ}$	10-100	K^{\pm}, π^{\pm}	from H	2026	
(RF)	Elements					to Pb	1 year	

12 GeV Upgrade Physics Instrumentation

<u>CLAS12 (Hall B):</u> understanding nucleon structure via generalized parton distributions

SHMS (Hall C): precision determination of valence quark properties in nucleons and nuclei

<u>Hall A:</u> nucleon form factors

& future new experiments like Moller & SOLID

spin2018

Global Analysis: Transversity

Z.-B. Kang et al., Phys. Rev. D 93, 014009 (2016). M. Anselmino et al., Phys. Rev. D 92, 114023 (2015). M. Radici and A. Bacchetta, arXiv: 1802.05212[hep-p₂]

spin2018

Kinematic coverage

