

Exclusive meson production at hermes

generalized parton distributions

reduced Wigner distribution (GTMDs)

GPDs in exclusive reactions

GPDs can be accessed through measurements of hard exclusive lepton-nucleon scattering processes.

deeply virtual Compton scattering

exclusive meson production

- GPDs convoluted with meson amplitude
- access to various quark-flavor combinations
- factorization proven for longitudinal photons
- generalized to transverse photons in GK model

GK ... S. Goloskokov \& P. Kroll, e.g., EPJ C50 (2007) 829; C53 (2008) 367

exclusive meson production

- GPDs convoluted with meson amplitude
- access to various quark-flavor combinations
- factorization proven for longitudinal photons
- generalized to transverse photons in GK model
- vector-meson cross section:

π^{0}	$2 \Delta u+\Delta d$
η	$2 \Delta u-\Delta d$
ρ^{0}	$2 u+d, 9 g / 4$
ω	$2 u-d, 3 g / 4$
ϕ	s, g
ρ^{+}	$u-d$
J / ψ	g

$\frac{\mathrm{d} \sigma}{\mathrm{d} x_{B} \mathrm{~d} Q^{2} \mathrm{~d} t \mathrm{~d} \phi_{S} \mathrm{~d} \phi \mathrm{~d} \cos \theta \mathrm{~d} \varphi}=\frac{\mathrm{d} \sigma}{\mathrm{d} x_{B} \mathrm{~d} Q^{2} \mathrm{~d} t} W\left(x_{B}, Q^{2}, t, \phi_{S}, \phi, \cos \theta, \varphi\right)$

$$
W=W_{U U}+P_{B} W_{L U}+S_{L} W_{U L}+P_{B} S_{L} W_{L L}+S_{T} W_{U T}+P_{B} S_{T} W_{L T}
$$

look at various angular (decay) distributions to study helicity transitions ("spin-density matrix elements", "amplitude ratios")

SDMEs from angular decay distribution

unpolarized long. polarized
beam
隆
beam
除
$\mathcal{W}^{U+L}(\Phi, \phi, \cos \Theta)=\mathcal{W}^{U}(\Phi, \phi, \cos \Theta)+\mathcal{W}^{L}(\Phi, \phi, \cos \Theta)$,
$\mathcal{W}^{U}(\Phi, \phi, \cos \Theta)=\frac{3}{8 \pi^{2}}\left[\frac{1}{2}\left(1-r_{00}^{04}\right)+\frac{1}{2}\left(3 r_{00}^{04}-1\right) \cos ^{2} \Theta-\sqrt{2} \operatorname{Re}\left\{r_{10}^{04}\right\} \sin 2 \Theta \cos \phi-r_{1-1}^{04} \sin ^{2} \Theta \cos 2 \phi\right.$
$-\epsilon \cos 2 \Phi\left(r_{11}^{1} \sin ^{2} \Theta+r_{00}^{1} \cos ^{2} \Theta-\sqrt{2} \operatorname{Re}\left\{r_{10}^{1}\right\} \sin 2 \Theta \cos \phi-r_{1-1}^{1} \sin ^{2} \Theta \cos 2 \phi\right)$
$-\epsilon \sin 2 \Phi\left(\sqrt{2} \operatorname{Im}\left\{r_{10}^{2}\right\} \sin 2 \Theta \sin \phi+\operatorname{Im}\left\{r_{1-1}^{2}\right\} \sin ^{2} \Theta \sin 2 \phi\right)$
$+\sqrt{2 \epsilon(1+\epsilon)} \cos \Phi\left(r_{11}^{5} \sin ^{2} \Theta+r_{00}^{5} \cos ^{2} \Theta-\sqrt{2} \operatorname{Re}\left\{r_{10}^{5}\right\} \sin 2 \Theta \cos \phi-r_{1-1}^{5} \sin ^{2} \Theta \cos 2 \phi\right)$
$\left.+\sqrt{2 \epsilon(1+\epsilon)} \sin \Phi\left(\sqrt{2} \operatorname{Im}\left\{r_{10}^{6}\right\} \sin 2 \Theta \sin \phi+\operatorname{Im}\left\{r_{1-1}^{6}\right\} \sin ^{2} \Theta \sin 2 \phi\right)\right]$,
$\mathcal{W}^{L}(\Phi, \phi, \cos \Theta)=\frac{3}{8 \pi^{2}} P_{\text {beam }}\left[\sqrt{1-\epsilon^{2}}\left(\sqrt{2} \operatorname{Im}\left\{r_{10}^{3}\right\} \sin 2 \Theta \sin \phi+\operatorname{Im}\left\{r_{1-1}^{3}\right\} \sin ^{2} \Theta \sin 2 \phi\right)\right.$
$+\sqrt{2 \epsilon(1-\epsilon)} \cos \Phi\left(\sqrt{2} \operatorname{Im}\left\{r_{10}^{7}\right\} \sin 2 \Theta \sin \phi+\operatorname{Im}\left\{r_{1-1}^{7}\right\} \sin ^{2} \Theta \sin 2 \phi\right)$

$$
\left.+\sqrt{2 \epsilon(1-\epsilon)} \sin \Phi\left(r_{11}^{8} \sin ^{2} \Theta+r_{00}^{8} \cos ^{2} \Theta-\sqrt{2} \operatorname{Re}\left\{r_{10}^{8}\right\} \sin 2 \Theta \cos \phi-r_{1-1}^{8} \sin ^{2} \Theta \cos 2 \phi\right)\right]
$$

vector-meson production

vector-meson production

vector-meson production

vector-meson production

H: nucleon-helicity non-flip amplitudes
E: nucleon-helicity flip amplitudes
-> transverse target polarization

vector-meson production

expressed in terms of helicity amplitudes:

$$
F_{\lambda_{V} \lambda_{N}^{\prime} \lambda^{\lambda} \lambda_{N}}=T_{\lambda_{V} \lambda_{N}^{\prime} \lambda_{\gamma \lambda_{N}}}+U_{\lambda_{V} \lambda_{N}^{\prime}{ }^{\lambda} \gamma \lambda_{N}}
$$

natural unnatural parity exchange
(NPE)
(UPE)
in total 10+8 complex helicity amplitudes

vector-meson production

expressed in terms of helicity amplitudes:

$$
F_{\lambda_{V} \lambda_{N}^{\prime} \lambda_{\gamma} \lambda_{N}}=T_{\lambda_{V} \lambda_{N}^{\prime} \lambda_{\gamma} \lambda_{N}}+U_{\lambda_{V} \lambda_{N}^{\prime} \lambda_{\gamma} \lambda_{N}}
$$

SDMEs: bilinear in helicity amplitudes helicity-amplitude ratios: e.g., normalized to dominant $T_{0, \frac{1}{2}, 0, \frac{1}{2}}$

The HERMES experiment (1995-2007)

 novel (pure) gas target:- internal to HERA 27.6 GeV et ring
- unpolarized (${ }^{1} \mathrm{H}$... Xe)
- longitudinally polarized: ${ }^{1} \mathrm{H},{ }^{2} \mathrm{H},{ }^{3} \mathrm{He}$
- transversely polarized: ${ }^{1} \mathrm{H}$

HERMES (1998-2005) schematically

HERMES (1998-2005) schematically

two (mirror-symmetric) halves
Particle ID detectors allow for

- lepton/hadron separation
- RICH: pion/kaon/proton discrimination $2 \mathrm{GeV}<\mathrm{p}<15 \mathrm{GeV}$

exclusivity: missing-energy technique

- recoiling proton not registered
- Mx ... mass of recoiling system
- missing energy vanishes when $X=$ proton
- fraction of BG estimate based on PYTHIA MC tuned to HERMES
subtracted
- 7% to 23% for increasing $t^{\prime}=-\left(t-t_{\text {min }}\right)$ in case of ρ^{0}

$$
\Delta E=\frac{M_{X}^{2}-M_{p}^{2}}{2 M_{p}}
$$

ρ^{0} SDMEs from HERMES

target-polarization independent SDMEs

ρ^{0} SDMEs from HERMES

ρ^{0} SDMEs from HERMES

ρ^{0} SDMEs from HERMES

SPIN 2018 - Ferrara - Sept. 11 th , 2018

ρ^{0} SDMEs from HERMES

[A. Airapetian et al., EPJ C62 (2009) 659]

SPIN 2018 - Ferrara - Sept. 11 th , 2018

ρ^{0} SDMEs from HERMES

[PLB 679 (2009) 100]

"transverse" SDMEs somevalus
SPIN 2018 - Ferrara - Sept. 11h, 2018
ρ^{0} SDMEs from HERMES

ρ^{0} SDMEs from HERMES

ρ^{0} SDMEs from HERMES: challenges

ω production

ω production

- helicity-conserving SDMEs dominate

ω production

ω production

- helicity-conserving SDMEs dominate
- hardly any violation of SCHC, except maybe for - r_{00}^{5}
- $r_{11}^{5}+r_{1-1}^{5}-\Im r_{1-1}^{6}$
- interference smaller than for ρ^{0}...

ω production

- helicity-conserving SDMEs dominate
- hardly any violation of SCHC, except maybe for - r_{00}^{5}
- $r_{11}^{5}+r_{1-1}^{5}-\Im r_{1-1}^{6}$
- interference smaller than for ρ^{0}...
... and opposite signs for

$$
r_{1-1}^{1} \& \Im r_{1-1}^{2}
$$

(un)natural-parity exchange contributions

$$
\Im r_{1-1}^{2}-r_{1-1}^{1}=\frac{1}{\mathcal{N}} \widetilde{\sum_{\text {UPE contribution }}^{\sim}\left(\left|U_{11}\right|^{2}-\left|T_{11}\right|^{2}\right)}
$$

- positive for omega -> large UPE contributions (unlike for rho)
- can construct various UPE quantities:

$$
\begin{aligned}
& u_{1}=1-r_{00}^{04}+2 r_{1-1}^{04}-2 r_{11}^{1}-2 r_{1-1}^{1} \\
& u_{2}=r_{11}^{5}+r_{1-1}^{5} \\
& u_{3}=r_{11}^{8}+r_{1-1}^{8}
\end{aligned}
$$

test of UPE

test of UPE

- large UPE contributions

- large UPE contributions
- modified GK model [EPJ A50 (2014) 146] can describe data when including
- pion pole contribution (red curve)
- corresponding $\pi \omega$ transition form factor (fit to these data)

impact of pion-pole contr. on SDMEs

- "class-A" - helicity-conserving transitions

[EPJ C74 (2014) 3110]

impact of pion-pole contr. on SDMEs
- "class-A" - helicity-conserving transitions

impact of pion-pole contr. on SDMEs
- "class-B" - interference of helicity-conserving transitions

impact of pion-pole contr. on SDMEs
- "class- B^{\prime} - interference of helicity-conserving transitions

in
$\stackrel{y}{\omega}$
$\underset{\sim}{\mid}$

long.-to-transverse cross-section ratio

$$
R=\frac{\mathrm{d} \sigma\left(\gamma_{\mathrm{L}}^{*} \rightarrow \omega\right)}{\mathrm{d} \sigma\left(\gamma_{\mathrm{T}}^{*} \rightarrow \omega\right)} \approx \frac{1}{\epsilon} \frac{r_{00}^{04}}{1-r_{00}^{04}}
$$

- significantly smaller for ω than for ρ
- again, data point to important contribution from pion pole

transverse-spin asymmetry

sensitive, in principle, to sign of $\pi \omega$ transition FF

[A. Airapetian et al., EPJ C75 (2015) 600]

slight preference for positive $\pi \omega$ transition FF (red/full line) vs. negative one (magenta/dash-dotted line)

helicity-amplitude ratios - formalism

- NPE: $\quad T_{\lambda_{V} \lambda_{N}^{\prime}{ }^{\lambda} \lambda_{N}}=\left[F_{\lambda_{V} \lambda_{N}^{\prime}{ }^{\prime} \gamma \lambda_{N}}+(-1)^{\lambda \gamma-\lambda_{V}} F_{-\lambda_{V} \lambda_{N}^{\prime}-\lambda_{\gamma} \lambda_{N}}\right] / 2$
- UPE: $\quad U_{\lambda_{V} \lambda_{N}^{\prime} \lambda^{\prime} \lambda_{N}}=\left[F_{\lambda_{V} \lambda_{N}^{\prime}{ }^{\prime} \gamma \lambda_{N}}-(-1)^{\lambda \gamma-\lambda_{V}} F_{-\lambda_{V} \lambda_{N}^{\prime}-\lambda_{\gamma} \lambda_{N}}\right] / 2$
- nucleon-helicity non-flip / flip amplitudes:

$$
\begin{aligned}
& T_{\lambda_{V} \lambda_{\gamma}}^{(1)} \equiv T_{\lambda_{V} \frac{1}{2} \lambda \frac{1}{2}}=T_{\lambda_{V}-\frac{1}{2} \lambda \gamma-\frac{1}{2}}, \quad U_{\lambda_{V} \lambda_{\gamma}}^{(1)} \equiv U_{\lambda_{V} \frac{1}{2} \lambda \gamma \frac{1}{2}}=-U_{\lambda_{V}-\frac{1}{2} \lambda \gamma-\frac{1}{2}} \\
& T_{\lambda_{V} \lambda_{\gamma}}^{(2)} \equiv T_{\lambda_{V} \frac{1}{2} \lambda \gamma-\frac{1}{2}}=-T_{\lambda_{V}-\frac{1}{2} \lambda \lambda \frac{1}{2}}, \quad U_{\lambda_{V} \lambda_{\gamma}}^{(2)} \equiv U_{\lambda_{V} \frac{1}{2} \lambda_{\gamma}-\frac{1}{2}}=U_{\lambda_{V}-\frac{1}{2} \lambda \frac{1}{2}}
\end{aligned}
$$

- 17 (complex amplitude) ratios in total:
$t_{\lambda_{V} \lambda_{\gamma}}^{(1)}=T_{\lambda_{V} \lambda \gamma}^{(1)} / T_{00}^{(1)}, t_{\lambda_{V} \lambda_{\gamma}}^{(2)}=T_{\lambda_{V} \lambda \gamma}^{(2)} / T_{00}^{(1)}, u_{\lambda_{V} \lambda_{\gamma}}^{(1)}=U_{\lambda_{V} \lambda_{\gamma}}^{(1)} / T_{00}^{(1)}, u_{\lambda_{V} \lambda_{\gamma}}^{(2)}=U_{\lambda_{V} \lambda_{\gamma}}^{(2)} / T_{00}^{(1)}$
- for longitudinally polarized beam and transversely polarized target 25 parameters can be reliably extracted
- phase shifts of $T_{11}^{(1)}$ and $U_{11}^{(1)}$ are fixed from previous HERMES data
- amplitude ratios parametrized according to low- \dagger behavior

Parametrization
Value of parameter
Statistical uncertainty
Total uncertainty
$\operatorname{Re}\left\{t_{11}^{(1)}\right\}=b_{1} / Q$
$\left|u_{11}^{(1)}\right|=b_{2}$
$b_{1}=1.145 \mathrm{GeV}$
$b_{2}=0.333$
$\operatorname{Re}\left\{u_{11}^{(2)}\right\}=b_{3}$
$\operatorname{Im}\left\{u_{11}^{(2)}\right\}=b_{4}$
$\xi=b_{5}$
$\zeta=b_{6}$
$\operatorname{Im}\left\{t_{00}^{(2)}\right\}=b_{7}$
$\operatorname{Re}\left\{t_{01}^{(1)}\right\}=b_{8} \sqrt{-t^{\prime}}$
$\operatorname{Im}\left\{t_{01}^{(1)}\right\}=b_{9} \frac{\sqrt{-t^{\prime}}}{Q}$
$\operatorname{Re}\left\{t_{01}^{(2)}\right\}=b_{10}$
$b_{3}=-0.074$
$b_{4}=0.080$
$b_{5}=-0.055$
$b_{6}=-0.013$
$b_{7}=0.040$
$b_{8}=0.471 \mathrm{GeV}^{-1}$
$b_{9}=0.307$
$\operatorname{Im}\left\{t_{01}^{(2)}\right\}=b_{11}$
$b_{10}=-0.074$
$\operatorname{Re}\left\{u_{01}^{(2)}\right\}=b_{12}$
$b_{11}=-0.067$
$\operatorname{Im}\left\{u_{01}^{(2)}\right\}=b_{13}$
$b_{12}=0.032$
$\operatorname{Re}\left\{t_{10}^{(1)}\right\}=b_{14} \sqrt{-t^{\prime}}$
$b_{13}=0.030$
$\operatorname{Im}\left\{t_{10}^{(1)}\right\}=b_{15} \sqrt{-t^{\prime}}$
$b_{14}=-0.025 \mathrm{GeV}^{-1}$
$\operatorname{Re}\left\{t_{10}^{(2)}\right\}=b_{16}$
$b_{15}=0.080 \mathrm{GeV}^{-1}$
$\operatorname{Im}\left\{t_{10}^{(2)}\right\}=b_{17}$
$b_{16}=-0.038$
$\operatorname{Re}\left\{u_{10}^{(2)}\right\}=b_{18}$
$b_{17}=0.012$
$\operatorname{Im}\left\{u_{10}^{(2)}\right\}=b_{19}$
$b_{18}=-0.023$
$\operatorname{Re}\left\{t_{1-1}^{(1)}\right\}=b_{20} \frac{\left(-t^{\prime}\right)}{Q}$
$b_{19}=-0.045$
$b_{20}=-0.008 \mathrm{GeV}^{-1}$
$\operatorname{Im}\left\{t_{1-1}^{(1)}\right\}=b_{21} \frac{\left(-t^{\prime}\right)}{Q}$
$\operatorname{Re}\left\{t_{1-1}^{(2)}\right\}=b_{22}$
$b_{21}=-0.577 \mathrm{GeV}^{-1}$
$\operatorname{Im}\left\{t_{1-1}^{(2)}\right\}=b_{23}$
$b_{22}=0.059$
$\operatorname{Re}\left\{u_{1-1}^{(2)}\right\}=b_{24}$
$b_{23}=0.020$
$\operatorname{Im}\left\{u_{1-1}^{(2)}\right\}=b_{25}$
$b_{24}=-0.047$
$b_{25}=0.007$
0.033 GeV
0.016
0.036
0.022
0.027
0.033
0.025
$0.033 \mathrm{GeV}^{-1}$
0.148
0.060
0.026
0.060
0.026
$0.034 \mathrm{GeV}^{-1}$
$0.063 \mathrm{GeV}^{-1}$
0.026
0.018
0.030
0.018
$0.096 \mathrm{GeV}^{-1}$
$0.196 \mathrm{GeV}^{-1}$
0.036
0.022
0.035
0.022
fit results
(for reference :-)
extracted using 2d binning in (t^{\prime}, Q^{2})
$3 \mathrm{GeV}<\mathrm{W}<6.3 \mathrm{GeV}$
$1 \mathrm{GeV}^{2}<Q^{2}<7 \mathrm{GeV}^{2}$
$t^{\prime}<0.4 \mathrm{GeV}^{2}$

helicity-amplitude ratios

- shaded: without nucleon-helicity flip [previously already extracted and published in EPJ C71 (2011) 1609]
- blue points from or extracted using previous results
- most nucleon-helicity flip amplitudes small, consistent with zero
- indications of nonvanishing helicity-flip $\mathrm{t}_{01}, \mathbf{u}_{10}$ and \mathbf{u}_{11}
[EPJ C77 (2017) 378]

helicity-amplitude ratios

- comparison with GK model [EPJ C77 (2017) 378]
- where missing, set to zero in GK model
- two sets of calculations using opposite signs for $\pi \rho$ transition form factors
- data clearly favors positive sign
- good agreement for most ratios, but clearly off for some
- problems with phases known already

SPIN 2018 - Ferrara - Sept. $11^{\text {th }}, 2018$

- amplitude ratios used to calculate SDMEs
- compared to directly extracted SDMEs [EPJ C62 (2009) 659]
- complimentary extractions and fully consistent
- note that SDME fits can not take into account underlying correlations (e.g., when involving same amplitudes)

comparison with SDMEs

comparison with SDMEs

[EPJ C77 (2017) 378]

- transverse-target SDMEs [from Phys. Lett. B679 (2009) 100]

- "transverse SDMEs" involving beam polarization measured here for first time

summary

- exclusive vector-meson electroproduction in DIS studied at HERMES using a longitudinally polarized $27.6 \mathrm{GeV} e^{ \pm}$beam and unpolarized p / d or transversely polarized p targets
- SDMEs for ρ^{0} confirm dominance of NPE, while large UPE contributions for $\boldsymbol{\omega}$-> important role of pion pole
- Aut for $\boldsymbol{\omega}$ favors positive sign of $\pi \omega$ form factor
- for first time, amplitude analysis performed for ρ^{0} electroproduction on transversely polarized protons
- important role of pion pole for UPE amplitudes
- positive sign of $\pi \rho$ form factor
- re-calculated SDMEs in good agreement with those extracted directly

backup slides

going into the details

Courtesy S.

QED : $\mathrm{e}(\lambda) \rightarrow \mathrm{e}^{\prime}\left(\lambda^{\prime}\right)+\gamma^{*}\left(\lambda_{\gamma}\right)$, $\mathrm{QCD}: \gamma^{*}\left(\lambda_{\gamma}\right)+\mathrm{N}\left(\lambda_{\mathrm{N}}\right) \rightarrow \mathrm{V}\left(\lambda_{\mathrm{V}}\right)+\mathrm{N}^{\prime}\left(\lambda_{\mathrm{N}}^{\prime}\right)$.
The helicity amplitude of the reaction $\gamma^{*}+N \rightarrow V+N$

$$
\begin{gathered}
F_{\lambda_{V} \lambda_{N}^{\prime}{ }_{N} \lambda_{N}} \\
=(-1)^{\lambda_{\gamma}}\left\langle v \lambda_{V} p^{\prime} \lambda_{N}^{\prime}\right| J_{(h)}^{\sigma}\left|p \lambda_{N}\right\rangle e_{\sigma}^{(\lambda \gamma)} .
\end{gathered}
$$

$J_{(h)}^{\sigma}$ is the electromagnetic current of hadrons;
$e_{\sigma}^{(\lambda \gamma)}$ is the photon polarization four-vector;
$\lambda_{\gamma}= \pm 1$ transverse virtual photon,
$\lambda_{\gamma}=0$ longitudinal virtual photon.
$E_{\sigma}^{\left(\lambda_{V}\right)}$ is the vecor meson polarization vector;
$\lambda_{V}= \pm 1$ transverse vector meson,
$\lambda_{V}=0$ longitudinal vector meson.
Amplitude decomposition into Natural (NPE) and Unnatural Parity Exchange (UPE)
Amplitudes $(18=10+8)$
$F_{\lambda_{V} \lambda_{N}^{\prime}{ }^{\lambda} \gamma \lambda_{N}}=T_{\lambda_{V} \lambda_{N}^{\prime} \lambda^{\prime} \lambda_{N}}+U_{\lambda_{V} \lambda_{N}^{\prime}{ }^{\prime} \gamma \lambda_{N}}$

