

Exclusive meson production at hermes

generalized parton distributions

reduced Wigner distribution (GTMDs)

GPDs in exclusive reactions

GPDs can be accessed through measurements of hard exclusive lepton-nucleon scattering processes.

exclusive meson production

- GPDs convoluted with meson amplitude
- access to various quark-flavor combinations
- factorization proven for longitudinal photons
- generalized to transverse photons in GK model

π^0	2∆u+∆d	
η	2∆u–∆d	
ρ	2u+d, 9 <mark>g</mark> /4	
ω	2u–d, 3 <mark>g</mark> /4	
φ	s, <mark>g</mark>	
ρ+	u–d	
J/ψ	g	

GK ... S. Goloskokov & P. Kroll, e.g., EPJ C50 (2007) 829; C53 (2008) 367

exclusive meson production

- GPDs convoluted with meson amplitude
- access to various quark-flavor combinations
- factorization proven for longitudinal photons
- generalized to transverse photons in GK model
- vector-meson cross section:

π^0	2∆u+∆d	
η	2∆u–∆d	
ρ	2u+d, 9 <mark>g</mark> /4	
ω	2u–d, 3 <mark>g</mark> /4	
φ	s, g	
ρ+	u–d	
J/ψ	g	

 $\frac{\mathrm{d}\sigma}{\mathrm{d}x_B\,\mathrm{d}Q^2\,\mathrm{d}t\,\mathrm{d}\phi_S\,\mathrm{d}\phi\,\mathrm{d}\cos\theta\,\mathrm{d}\varphi} = \frac{\mathrm{d}\sigma}{\mathrm{d}x_B\,\mathrm{d}Q^2\,\mathrm{d}t}W(x_B,Q^2,t,\phi_S,\phi,\cos\theta,\varphi)$

 $W = W_{UU} + P_B W_{LU} + S_L W_{UL} + P_B S_L W_{LL} + S_T W_{UT} + P_B S_T W_{LT}$

look at various angular (decay) distributions to study helicity transitions ("spin-density matrix elements", "amplitude ratios") gunar.schnell @ desy.de 5 SPIN 2018 - Ferrara - Sept. 11th, 2018

SDMEs from angular decay distribution

$$\begin{aligned} \begin{array}{c} \begin{array}{c} \begin{array}{c} \text{unpolarized long. polarized} \\ \hline \text{beam} \\ \hline \phi \\ \end{array} \end{aligned} \\ \mathcal{W}^{U+L}(\Phi,\phi,\cos\Theta) = \mathcal{W}^{U}(\Phi,\phi,\cos\Theta) + \mathcal{W}^{L}(\Phi,\phi,\cos\Theta), \\ \mathcal{W}^{U}(\Phi,\phi,\cos\Theta) = \frac{3}{8\pi^{2}} \bigg[\frac{1}{2} (1-r_{00}^{04}) + \frac{1}{2} (3r_{00}^{04}-1) \cos^{2}\Theta - \sqrt{2} \operatorname{Re} \{r_{10}^{04}\} \sin 2\Theta \cos\phi - r_{1-1}^{04} \sin^{2}\Theta \cos 2\phi \\ -\epsilon \cos 2\Phi (r_{11}^{1} \sin^{2}\Theta + r_{00}^{1} \cos^{2}\Theta - \sqrt{2} \operatorname{Re} \{r_{10}^{1}\} \sin 2\Theta \cos\phi - r_{1-1}^{1} \sin^{2}\Theta \cos 2\phi) \\ -\epsilon \sin 2\Phi (\sqrt{2} \operatorname{Im} \{r_{10}^{2}\} \sin 2\Theta \sin\phi + \operatorname{Im} \{r_{1-1}^{2}\} \sin^{2}\Theta \sin 2\phi) \\ + \sqrt{2\epsilon(1+\epsilon)} \cos\Phi (r_{11}^{5} \sin^{2}\Theta + r_{00}^{5} \cos^{2}\Theta - \sqrt{2} \operatorname{Re} \{r_{10}^{5}\} \sin 2\Theta \cos\phi - r_{1-1}^{5} \sin^{2}\Theta \cos 2\phi) \\ + \sqrt{2\epsilon(1+\epsilon)} \sin\Phi (\sqrt{2} \operatorname{Im} \{r_{10}^{6}\} \sin 2\Theta \sin\phi + \operatorname{Im} \{r_{1-1}^{6}\} \sin^{2}\Theta \sin 2\phi) \\ + \sqrt{2\epsilon(1-\epsilon)} \cos\Phi (\sqrt{2} \operatorname{Im} \{r_{10}^{7}\} \sin 2\Theta \sin\phi + \operatorname{Im} \{r_{1-1}^{7}\} \sin^{2}\Theta \sin 2\phi) \\ + \sqrt{2\epsilon(1-\epsilon)} \sin\Phi (r_{11}^{8} \sin^{2}\Theta + r_{00}^{8} \cos^{2}\Theta - \sqrt{2} \operatorname{Re} \{r_{10}^{8}\} \sin 2\Theta \cos\phi - r_{1-1}^{8} \sin^{2}\Theta \cos 2\phi) \\ \end{array} \right], \end{aligned}$$

gunar.schnell @ desy.de

natural-parity exchange J^p = 0⁺, 1⁻,... GPDs H&E unnatural-parity exchange J^p = 0⁻, 1⁺,... GPDs Ĥ&Ê © "pion-pole contribution"

H: nucleon-helicity non-flip amplitudes E: nucleon-helicity flip amplitudes -> transverse target polarization

N

е

V=ω, ρ⁰, φ, ...

Ν

V= ω , ρ^0 , ϕ , ... e $\gamma^*(\lambda_{\gamma}) + N(\lambda_N) \to V(\lambda_V) + N'(\Lambda'_N)$ λ_i ... helicities expressed in terms of helicity amplitudes: $F_{\lambda_V \lambda'_N \lambda_\gamma \lambda_N} = T_{\lambda_V \lambda'_N \lambda_\gamma \lambda_N} + U_{\lambda_V \lambda'_N \lambda_\gamma \lambda_N}$ Ν N 1 natural unnatural parity exchange (UPE) (NPE)

in total 10+8 complex helicity amplitudes

V=ω, $ρ^0$, φ, ... $\gamma^*(\lambda_{\gamma}) + N(\lambda_N) \to V(\lambda_V) + N'(\Lambda'_N)$ λ_i ... helicities expressed in terms of helicity amplitudes: $F_{\lambda_V \lambda'_N \lambda_\gamma \lambda_N} = T_{\lambda_V \lambda'_N \lambda_\gamma \lambda_N} + U_{\lambda_V \lambda'_N \lambda_\gamma \lambda_N}$ Ν Ν

SDMEs: bilinear in helicity amplitudes helicity-amplitude ratios: e.g., normalized to dominant $T_{0,\frac{1}{2},0,\frac{1}{2}}$

е

The HERMES experiment (1995-2007)

novel (pure) gas target:

- internal to HERA 27.6 GeV e[±] ring
- unpolarized (¹H ... Xe)
- Iongitudinally polarized: ¹H, ²H, ³He
- transversely polarized: ¹H

HERMES (1998-2005) schematically

two (mirror-symmetric) halves

HERMES (1998-2005) schematically

two (mirror-symmetric) halves

Particle ID detectors allow for

- lepton/hadron separation
- RICH: pion/kaon/proton discrimination 2GeV<p<15GeV

gunar.schnell @ desy.de

exclusivity: missing-energy technique

 $\frac{M_X^2 - M_p^2}{2M_p}$ recoiling proton not registered M_X ... mass of recoiling Yield [pb/GeV $ep \rightarrow e \rho^0 X$ system 40 missing energy vanishes when X=proton 30 fraction of BG estimate based on PYTHIA MC 20 tuned to HERMES subtracted 10 Pythia MC 7% to 23% for increasing $t' = -(t-t_{min})$ in case of ρ^0 0 15 5 10

∆**E [GeV]**

target-polarization independent SDMEs

p^o SDMEs from HERMES

p^o SDMEs from HERMES

^o SDMEs from HERMES

^o SDMEs from HERMES

p^o SDMEs from HERMES: challenges

$\dots \omega$ production

helicity-conserving
 SDMEs dominate

gunar.schnell @ desy.de

 $\dots \omega$ production

- helicity-conserving
 SDMEs dominate
- hardly any violation of SCHC, except maybe for

• r_{00}^5 • $r_{11}^5 + r_{1-1}^5 - \Im r_{1-1}^6$

• interference smaller than for ρ^0 ...

$\dots \omega$ production

- helicity-conserving
 SDMEs dominate
- hardly any violation of SCHC, except maybe for

• r_{00}^{5} • $r_{11}^{5} + r_{1-1}^{5} - \Im r_{1-1}^{6}$

• interference smaller than for ρ^0 ...

... and opposite signs for $r_{1-1}^1 \& \Im r_{1-1}^2$

(un)natural-parity exchange contributions

$$\Im r_{1-1}^2 - r_{1-1}^1 = \frac{1}{\mathcal{N}} \underbrace{\sum}_{\mathbf{V}} (|U_{11}|^2 - |T_{11}|^2)$$

$$(|U_{11}|^2 - |T_{11}|^2)$$

$$(VPE \text{ contribution})$$

$$(VPE \text{ contribution})$$

$$(VPE \text{ contribution})$$

positive for omega -> large UPE contributions (unlike for rho)

can construct various UPE quantities:

$$u_{1} = 1 - r_{00}^{04} + 2r_{1-1}^{04} - 2r_{11}^{1} - 2r_{1-1}^{1}$$
$$u_{2} = r_{11}^{5} + r_{1-1}^{5}$$
$$u_{3} = r_{11}^{8} + r_{1-1}^{8}$$

test of UPE

test of UPE

Iarge UPE contributions

test of UPE

- Iarge UPE contributions
- modified GK model [EPJ A50 (2014) 146] can describe data when including
 - pion pole contribution (red curve)
 - corresponding $\pi\omega$ transition form factor (fit to these data)

"class-B" - interference of helicity-conserving transitions

SPIN 2018 - Ferrara - Sept. 11th, 2018

"class-B" - interference of helicity-conserving transitions

long.-to-transverse cross-section ratio

• significantly smaller for ω than for ρ

• again, data point to important contribution from pion pole

transverse-spin asymmetry

sensitive, in principle, to sign of $\pi\omega$ transition FF

slight preference for positive $\pi \omega$ transition FF (red/full line) vs. negative one (magenta/dash-dotted line)

gunar.schnell @ desy.de

 $\mathbf{A}S_T$

 Φ_S

 ω_{λ}

0

 \mathbf{v}^*

helicity-amplitude ratios - formalism

• NPE:
$$T_{\lambda_V \lambda'_N \lambda_\gamma \lambda_N} = [F_{\lambda_V \lambda'_N \lambda_\gamma \lambda_N} + (-1)^{\lambda_\gamma - \lambda_V} F_{-\lambda_V \lambda'_N - \lambda_\gamma \lambda_N}]/2$$

• UPE:
$$U_{\lambda_V \lambda'_N \lambda_\gamma \lambda_N} = [F_{\lambda_V \lambda'_N \lambda_\gamma \lambda_N} - (-1)^{\lambda_\gamma - \lambda_V} F_{-\lambda_V \lambda'_N - \lambda_\gamma \lambda_N}]/2$$

nucleon-helicity non-flip / flip amplitudes:

$$\begin{split} T^{(1)}_{\lambda_V \lambda_\gamma} &\equiv T_{\lambda_V \frac{1}{2} \lambda_\gamma \frac{1}{2}} = T_{\lambda_V - \frac{1}{2} \lambda_\gamma - \frac{1}{2}}, \quad U^{(1)}_{\lambda_V \lambda_\gamma} \equiv U_{\lambda_V \frac{1}{2} \lambda_\gamma \frac{1}{2}} = -U_{\lambda_V - \frac{1}{2} \lambda_\gamma - \frac{1}{2}} \\ T^{(2)}_{\lambda_V \lambda_\gamma} &\equiv T_{\lambda_V \frac{1}{2} \lambda_\gamma - \frac{1}{2}} = -T_{\lambda_V - \frac{1}{2} \lambda_\gamma \frac{1}{2}}, \quad U^{(2)}_{\lambda_V \lambda_\gamma} \equiv U_{\lambda_V \frac{1}{2} \lambda_\gamma - \frac{1}{2}} = U_{\lambda_V - \frac{1}{2} \lambda_\gamma \frac{1}{2}} \end{split}$$

17 (complex amplitude) ratios in total:

$$t_{\lambda_V \lambda_\gamma}^{(1)} = T_{\lambda_V \lambda_\gamma}^{(1)} / T_{00}^{(1)}, \ t_{\lambda_V \lambda_\gamma}^{(2)} = T_{\lambda_V \lambda_\gamma}^{(2)} / T_{00}^{(1)}, \ u_{\lambda_V \lambda_\gamma}^{(1)} = U_{\lambda_V \lambda_\gamma}^{(1)} / T_{00}^{(1)}, \ u_{\lambda_V \lambda_\gamma}^{(2)} = U_{\lambda_V \lambda_\gamma}^{(2)} / T_{00}^{(1)}$$

- for longitudinally polarized beam and transversely polarized target
 25 parameters can be reliably extracted
- $\bullet\,$ phase shifts of $T_{11}^{(1)}$ and $U_{11}^{(1)}$ are fixed from previous HERMES data

• amplitude ratios parametrized according to low-t behavior gunar.schnell @ desy.de 24 SPIN 2018

Parametrization	Value of parameter	Statistical uncertainty	Total uncertainty
$\operatorname{Re}\{t_{11}^{(1)}\} = b_1/Q$	$b_1 = 1.145 \text{ GeV}$	0.033 GeV	0.081 GeV
$ u_{11}^{(1)} = b_2$	$b_2 = 0.333$	0.016	0.088
$\operatorname{Re}\{u_{11}^{(2)}\} = b_3$	$b_3 = -0.074$	0.036	0.054
$\operatorname{Im}\{u_{11}^{(2)}\} = b_4$	$b_4 = 0.080$	0.022	0.037
$\xi = b_5$	$b_5 = -0.055$	0.027	0.029
$\zeta = b_6$	$b_6 = -0.013$	0.033	0.044
$\operatorname{Im}\{t_{00}^{(2)}\} = b_7$	$b_7 = 0.040$	0.025	0.030
$\operatorname{Re}\{t_{01}^{(1)}\} = b_8 \sqrt{-t'}$	$b_8 = 0.471 \text{ GeV}^{-1}$	0.033 GeV^{-1}	$0.075 { m GeV}^{-1}$
$\operatorname{Im}\{t_{01}^{(1)}\} = b_9 \frac{\sqrt{-t'}}{Q}$	$b_9 = 0.307$	0.148	0.354
$\operatorname{Re}\{t_{01}^{(2)}\} = b_{10}$	$b_{10} = -0.074$	0.060	0.080
$\operatorname{Im}\{t_{01}^{(2)}\} = b_{11}$	$b_{11} = -0.067$	0.026	0.036
$\operatorname{Re}\{u_{01}^{(2)}\} = b_{12}$	$b_{12} = 0.032$	0.060	0.072
$\operatorname{Im}\{u_{01}^{(2)}\} = b_{13}$	$b_{13} = 0.030$	0.026	0.033
$\operatorname{Re}\{t_{10}^{(1)}\} = \frac{b_{14}\sqrt{-t'}}{}$	$b_{14} = -0.025 \text{ GeV}^{-1}$	0.034 GeV^{-1}	0.063 GeV^{-1}
$\{t_{10}^{(1)}\} = \frac{b_{15}\sqrt{-t'}}{}$	$b_{15} = 0.080 \text{ GeV}^{-1}$	0.063 GeV^{-1}	0.118 GeV^{-1}
$\operatorname{Re}\{t_{10}^{(2)}\} = b_{16}$	$b_{16} = -0.038$	0.026	0.030
$\operatorname{Im}\{t_{10}^{(2)}\} = b_{17}$	$b_{17} = 0.012$	0.018	0.019
$\operatorname{Re}\{u_{10}^{(2)}\} = b_{18}$	$b_{18} = -0.023$	0.030	0.039
$\operatorname{Im}\{u_{10}^{(2)}\} = b_{19}$	$b_{19} = -0.045$	0.018	0.026
$\operatorname{Re}\{t_{1-1}^{(1)}\} = b_{20} \frac{(-t')}{Q}$	$b_{20} = -0.008 \text{ GeV}^{-1}$	0.096 GeV^{-1}	0.212 GeV^{-1}
$\operatorname{Im}\{t_{1-1}^{(1)}\} = b_{21} \frac{\tilde{(-t')}}{Q}$	$b_{21} = -0.577 \text{ GeV}^{-1}$	$0.196 \mathrm{GeV}^{-1}$	0.4 <mark>28 GeV⁻¹</mark>
$\operatorname{Re}\{t_{1-1}^{(2)}\} = b_{22}$	$b_{22} = 0.059$	0.036	0.047
$\{t_{1-1}^{(2)}\} = b_{23}$	$b_{23} = 0.020$	0.022	0.026
$\operatorname{Re}\{u_{1-1}^{(2)}\} = b_{24}$	$b_{24} = -0.047$	0.035	0.039
$\operatorname{Im}\{u_{1-1}^{(2)}\} = b_{25}$	$b_{25} = 0.007$	0.022	0.029

fit results (for reference ;-)

extracted using 2d binning in (t', Q²)

3 GeV < W < 6.3 GeV 1 GeV² < Q² < 7 GeV² †' < 0.4 GeV²

gunar.schnell @ desy.de

ICDT (777 (2017) 2701

helicity-amplitude ratios

Re t₁₁⁽¹⁾ lm ť Re u lm u Re u lm u A: $\gamma_{T} \rightarrow \rho_{T}$ lm t Re t B: $\gamma_{I}^{*} \rightarrow \rho_{L}$ Im t₀₀ Re t $\lim_{t \to 0} t_{01}^{(1)}$ Re t $\vec{e} p^{\uparrow} \rightarrow e \rho p$ u⁽¹⁾₁₁ phase from EPJ C29 (2003) 171 Im t Re u EPJ C71 (2011) 1609 $C: \gamma_{\top} \rightarrow \rho_{L}$ $\operatorname{Im} u_{01}^{(-)}$ Re $t_{10}^{(1)}$ lm ť Re t lm Re u D: $\gamma_{1} \rightarrow \rho_{T}$ lm u Re Im t Re t lm t Re u E: γ_ Im u₁₋₁ $\rightarrow \rho_{-T}$ -0.2 0.2 0.4 0.6 0.8 26 Amplitude ratios gunar.schnell @ desy.de

[EPJ C77 (2017) 378]

shaded: without nucleon-helicity flip [previously already extracted and published in EPJ C71 (2011) 1609]

- blue points from or extracted using previous results
- most nucleon-helicity flip amplitudes small, consistent with zero
- indications of nonvanishing helicity-flip
 to1, u10 and u11

helicity-amplitude ratios

- comparison with GK model [EPJ C77 (2017) 378]
- where missing, set to zero in GK model
- two sets of calculations using opposite signs for $\pi\rho$ transition form factors
- data clearly favors positive sign
- good agreement for most ratios, but clearly off for some
 - problems with phases
 known already

comparison with SDMEs

- amplitude ratios
 used to calculate
 SDMEs
- compared to directly extracted SDMEs R [EPJ C62 (2009) 659]
- complimentary extractions and fully consistent
- note that SDME fits can not take into account underlying correlations (e.g., when involving same amplitudes)

comparison with SDMEs

[EPJ C77 (2017) 378]

transverse-target SDMEs [from Phys. Lett. B679 (2009) 100]

"transverse SDMEs" involving beam polarization measured here for first time

gunar.schnell @ desy.de

summary

- exclusive vector-meson electroproduction in DIS studied at HERMES using a longitudinally polarized 27.6 GeV e[±] beam and unpolarized p/d or transversely polarized p targets
- SDMEs for ρ^0 confirm dominance of NPE, while large UPE contributions for ω -> important role of pion pole
- AUT for ω favors positive sign of $\pi \omega$ form factor
- for first time, amplitude analysis performed for ρ^0 electroproduction on transversely polarized protons
 - important role of pion pole for UPE amplitudes
 - positive sign of $\pi \rho$ form factor
 - re-calculated SDMEs in good agreement with those extracted directly

backup slides

Courtesy S. Manaenkov

... going into the details

$$\begin{split} \mathrm{QED}: \ \ \mathrm{e}(\lambda) &\to \mathrm{e}'(\lambda') + \gamma^*(\lambda_\gamma), \\ \mathrm{QCD}: \gamma^*(\lambda_\gamma) + \mathrm{N}(\lambda_\mathrm{N}) \to \mathrm{V}(\lambda_\mathrm{V}) + \mathrm{N}'(\lambda'_\mathrm{N}). \end{split}$$

The helicity amplitude of the reaction $\gamma^* + N \rightarrow V + N$

$$F_{\lambda_V \lambda'_N \lambda_\gamma \lambda_N}$$

= $(-1)^{\lambda_\gamma} \langle v \lambda_V p' \lambda'_N | J^{\sigma}_{(h)} | p \lambda_N \rangle e^{(\lambda_\gamma)}_{\sigma}.$

$$\begin{split} J_{(h)}^{\sigma} & \text{ is the electromagnetic current of hadrons;} \\ e_{\sigma}^{(\lambda\gamma)} & \text{ is the photon polarization four-vector;} \\ \lambda_{\gamma} &= \pm 1 \text{ transverse virtual photon,} \\ \lambda_{\gamma} &= 0 \text{ longitudinal virtual photon.} \\ E_{\sigma}^{(\lambda_V)} & \text{ is the vecor meson polarization vector;} \\ \lambda_V &= \pm 1 \text{ transverse vector meson,} \\ \lambda_V &= 0 \text{ longitudinal vector meson.} \\ \text{Amplitude decomposition into Natural (NPE)} \\ \text{and Unnatural Parity Exchange (UPE)} \\ \text{Amplitudes (18=10+8)} \\ F_{\lambda_V \lambda'_N \lambda_\gamma \lambda_N} &= T_{\lambda_V \lambda'_N \lambda_\gamma \lambda_N} + U_{\lambda_V \lambda'_N \lambda_\gamma \lambda_N} \end{split}$$