Prospects for the spin structure study of hyperons using heavy quark decays at Belle II

Kiyoshi Tanida

(Advanced Science Research Center, Japan Atomic Energy Agency)

SPIN2018@Ferrara

Sep. 11, 2018

Physics motivation

- Baryon spin structure
 - Well studied for nucleon, but little for other baryons
- It is well known that quark spin contribution to proton spin is rather small
 - How is for other baryons?
 - E.g., $\Lambda:$ quark model predicts s quark carries all spin
- Excited baryons
 - How to identify exotic baryon from spin structure e.g., $\Lambda(1405)$: 3 quarks vs 5 quarks?
 - Spin structure gives strong information

PDF vs fragmentation

- Quark spin contribution to baryon: ∆q
 → Fraction of quark spin in baryon spin
- Analog in fragmentation: polarization transfer
 Polarized quark → polarized baryon
- Naïvely those two are equal [Augustin and Renard (1979)]

Quark polarization in weak decay

- Large quark polarization is expected in weak decays
 - 100% polarization for massless quarks neglecting spontaneous chiral symmetry breaking effect (PCAC)
- Quark → Baryon spin transfer can be obtained by measuring baryon spin in the final state
- Past measurements for Λ and $\Lambda_{\rm b}$ using Z decay at LEP with rather poor statistics

Past measurement at LEP

- OPAL and ALEPH measured Λ polarization in Z⁰ decay
 - $-Z^{0} \rightarrow s$: polarized by -0.94
 - Contamination by ss-bar pair creation during fragmentation
 - → treated in simulation, with sizable uncertainty
 - Consistent with quark model within the uncertainty

Quark polarization in weak decay

- Large quark polarization is expected in weak decays
 - 100% polarization for massless quarks neglecting spontaneous chiral symmetry breaking effect (PCAC)
- Quark → Baryon spin transfer can be obtained by measuring baryon spin in the final state
- Past measurements for Λ and $\Lambda_{\rm b}$ using Z decay at LEP with rather poor statistics
- Much larger statistics is expected with b and c decays at Belle II

→ Studies for excited baryons become possible

SuperKEKB and Belle II

Upgrade for SuperKEKB and Belle II to achieve 40x peak \mathcal{L} under 20x bkgd

- Reduction in the beam size by 1/20 at the IP.
- Doubling the beam currents.

- ► First turns achieved Feb. 2016
- ► Beam-background studies ongoing

Goal: x50 more statistics than Belle

K₁ and muon detector: The Belle II detector Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-caps, inner 2 barrel layers) **EM Calorimeter:** CsI(TI), waveform sampling Particle Identification: Time-of-Propagation counter (barrel) Prox. Focusing Aerogel RICH (fwd) electron (7 GeV) Beryllium beam pipe: positron (4 GeV) 2 cm diameter Vertex detector: 2 layers DEPFET + 4 layers DSSD Readout (TRG, DAQ): Max. 30kHz L1 trigger Central Drift Chamber: ~100% efficient for hadronic events. He(50%):C₂H₆(50%), Small cells, 1MB (PXD) + 100kB (others) per event long lever arm, fast electronics - over 30GB/sec to record Offline computing: Distributed over the world via the GRID First new particle collider since the LHC

(intensity rather than energy frontier; e⁺e⁻ rather than pp)

arXiv:1011.0352 [physics.ins-det] 20

Quick history of Belle II

- Phase 1 complete: Mostly devoted to accelerator
- Phase 2 just finished: Physics run with partial vertex detectors Lpeak =5.5x10³³ cm⁻²s⁻¹ and L_{int}~0.5 fb⁻¹ achieved

The first hadron event

0:38, April 26, 2018

Performance -- invariant masses

K_s, π⁰, D*, Λ, J/ψ... are clearly seen
 Detectors are working well!

Near future

- Installation of VXD in this Autumn/Winter
- Phase 3 run will start early 2019
 → Full physics run.

Luminosity projection

Measurement at Belle II

- Hyperon polarization in $\Lambda_{\rm c}$ decay
 - Semileptonic: $\Lambda_c \rightarrow Y + e(\mu) + v$
 - Non-leptonic: $\Lambda_{c} \rightarrow Y + \pi$
 - \rightarrow Measure polarization of hyperon Y
- Ground state hyperons (Λ , Σ)
 - Spin structure of these hyperons
 - Control samples for excited states
- Excited states
 - Exotic states? Especially $\Lambda(1405)$
- Also possibilities for charmed baryons from B decay

Ground states

• Existing data

$$-\Lambda_{c} \rightarrow \Lambda + e(\mu) + \nu: P = \alpha = -0.86 \pm 0.04$$
$$-\Lambda_{c} \rightarrow \Lambda + \pi^{+}: P = -0.91 \pm 0.15$$
$$-\Lambda_{c} \rightarrow \Sigma^{+} + \pi^{0}: P = -0.45 \pm 0.32$$

- Λ polarization can be understood well from the naïve quark model s quark carries all the spin
- Σ case is more complicated, and anyway the uncertainty is still large.
- Belle II can improve uncertainty to a few % level
 - Limited by systematics

Λ(1405) case

- 3 quark (uds) vs 5 quark?
- Bound state of $\overline{K}N$?
- Double-pole structure?
 Mysterious & interesting!
- We can distinguish these cases
 - If 3 quark state, P~+0.3
 - If 5 quark state (or $\overline{K}N$ bound state), P~0

Lattice calculation on $\Lambda(1405)$

 Λ (1405) spin is not carried by s-quark?

Semileptonic modes

- Theoretically clean, but experimentally difficult.
- No peak in invariant mass because of missing $\boldsymbol{\nu}.$
- Tagging $\Lambda_{\rm c}$ in missing mass?
 - 36k tagged $\Lambda_{\rm c}$ in Belle
 - If BR to $\Lambda(1405)$ + e(μ) + v is 3% \rightarrow 1000 decays
 - Acceptance & efficiency: 1%? \rightarrow 10 counts? (cf. Aev: 150 counts Aµv: 110 counts in Belle)
- → Belle II statistics (x50 of Belle) is certainly necessary

Nonleptonic modes

Opposite pros and cons

- Experimentally easier, but interpretation is difficult.

- Decay mode: $\Lambda_{c} \rightarrow \Lambda(1405)\pi^{+} \rightarrow \Sigma^{+}\pi^{+}\pi^{-}$
 - $-\Lambda_{c} \rightarrow \Sigma^{+}\pi^{+}\pi^{-}$ already observed in Belle [arXiv:1802.03421]
 - $-\,\Lambda(1405)$ and $\Lambda(1520)$ in Dalitz plot
 - Polarization can be determined as a function of mass with Belle II statistics

Summary

- Polarization transfer from quark to baryon
 \$\Lap{spin structure of baryon}\$
- s quark from charm weak decay is highly polarized

 → hyperon spin structure can be studied
- Main target: $\Lambda(1405)$
 - 3 quark vs 5 quark? Double-pole?
 - Can be distinguished by polarization study
- Belle II will acquire x50 more statistics of Belle
 - First collision on April 26th, took ~0.5 fb⁻¹ since then
 - Clear signals of $\mathrm{K}_{\mathrm{S}},\Lambda,$..., are already seen
 - Full physics run will start from early 2019

Backup

Existing data (from PDG)

- $\Lambda_c \rightarrow \Lambda + e(\mu) + v$: $P = \alpha = -0.86 \pm 0.04$ OK
- $\Lambda_c \rightarrow \Lambda + \pi^+$: P=-0.91±0.15 OK
- $\Lambda_c \rightarrow \Sigma^+ + \pi^0$: P = -0.45 ± 0.32 OK?
 - Contribution of strange quark should give P~+0.3, but there is a contribution of up quark P~-0.6, giving P~-0.3 in total

Seemingly, the naïve model can explain the existing data

Another analysis

- By Liu and Liang (arXiv:hep-ph/0005172v1)
 - Quark model (SU(6)) vs DIS + Hyperon- β + SU_f(3)
 - QM is favored, but uncertainty in pair creation is not taken into account

	Λ		
		SU(6)	DIS
ΔU	$\frac{1}{3}(\Sigma - D)$	0	- <mark>0.1</mark> 7
ΔD	$\frac{1}{3}(\Sigma - D)$	0	-0.17
ΔS	$\tfrac{1}{3}(\Sigma+2D)$	1	0.62

Past measurements (2) -- DIS

- Example in HERMES: polarization transfer from beam positron to $\Lambda.$ [PRD 74 (2006) 072004]
- Initially, u&d quarks dominate, and the result is not unexpected Interpretation is limited by fragmentation uncertainty

