

Electron Ion Collider in China

Xurong Chen

Email: xchen@impcas.ac.cn

Institute of Modern Physics, CAS, China

(Collaboration with X. Cao, Q. Fu, J. Xie, N. Xu, Z. Yang)

Spin 2018 – Ferrara, Italy September 10-14, 2018

Outline

I. Introduction

II. EicC Designs and Its Physics Goals

- Nucleon Structure(sea quark): 1D PDF, GPD, TMD
- Hadron spectroscopy
- The mass of proton

III. Summary

Lanzhou (HIRFL-CSR)

CEE: CSR External-target Experiment

1) Extreme high baryon density and low temperature region CEE
 2) Strong nucleonic interactions

CSRm

1000 AMeV (H.I.), ≤ 2.8 GeV (p)

High Intensity Heavy-ion Accelerator Facility

HIAF Timetable

II. EicC Designs and Its Physics Goals

Designed Energy and Luminosity

EicC-I: will be constructed at $\sqrt{s} \sim 15 \sim 20$ GeV region

- 1) Focus on nuclear physics
- 2) B-quark hadron production

EicC vs. JLab: Machine Kinematics

Compare the kinematic ranges of EicC with JLab 12 GeV and US EIC

Facilities	Main goals	
JLab 12 GeV	Valence quark	
EicC-I	Valence and Sea quark	
US and Europe EIC	gluon	8

EicC-I Main Physics Goals

Nucleon Structure (sea quark): 1D PDF, GPD, TMD

Hadron spectroscopy

proton mass

Physics I: Nucleon Structure (sea quark) 1D PDF, GPD, TMD

- Sea Quarks 1D Structure: quarks are poorly known!
- Current data: large uncertainties in nuclear sea quarks and gluons
- EicC: significantly reduces sea quark uncertainties

Unique opportunity for ∆s Significant improvement for ∆ubar, ∆dbar from SIDIS

4 weeks running at EicC-I

Plot Courtesy of B. Xiao

GPD Study at EicC

• Two ways to study GPD: DVCS vs. DVMP

- > DVCS: Low energy
- DVMP: needed by flavor decomposition: energy reaches Q² > 5~10 GeV², scaling region for exclusive light meson production
- •EicC:
- significantly increase the range for DVCS
- Unique opportunity for DVMP (pion/Kaon)

DVCS simulations

- polarized (3.5 GeV) e + (20 GeV) p collisions
- Simulated asymmetries is a function of azimuthal angle between hadron and electron planes
- cuts: $1 < Q^2 < 1.5$, $0.01 < x_B < 0.03$ and -0.05 < t < 0
- 80% of polarization for both electron and proton is assumed

• Results:

- a) polarized electrons (fig. a)
- b) polarized protons (fig. b)
- c) transversely polarized protons (fig. c)
- d) polarized electrons and protons (fig. d)

DVCS Simulation

TMD Study at EicC

EicC: Wide kinematic range for SIDIS

- 1. Significant increase in Q² range for valence region: energy reach Q² \sim 40 GeV² at x ~ 0.4
- 2. Unique opportunity for TMD in "sea quark" region: reach $x \sim 0.01$

Collins asymmetry projection of π^+ and K⁺ on electron proton colliding bins (0.30 < z < 0.35, 0.4 GeV < P_T < 0.6 GeV); W < 2.3 GeV and W' < 1.6 GeV

The position of the dots is according to the x - axis and the Q^2 - axis on the left the error bar of each dot: on the right

Physics II: Baryon States with Heavy Flavor

For Baryon States with bottom quark , EicC's advantages:

- 1. larger cross section comparing to e+e- collision
- 2. smaller background comparing to pp and ppbar collision
- 3. Especially, the polarized EicC can well pin down the quantum numbers of the observed particles

Bottomonium Spectrum

Charm and beauty plots

•EicC can:

 Search for Hidden "bottom

pentaquarks"

- 2. Search for Open Bottom Baryons
- 3. Search for other exotic particles

Predicted by Godfrey-Isgur quark model (black)
Experimental data (red (before 2003) and blue (after 2003)
black dashed line denotes the threshold to produce meson pairs with heavy flavor)

Penta-quark P_b search

EicC has unique advantage to search for Penta-quark P_b

J. J. Wu and B. S. Zou, Phys. Lett. B 709, 70 (2012)

Phyiscs III: Explore Proton Mass

Proton Mass Ji's decomposition: parameters a and b

Parameter a: related to PDFs, well constrained
 parameterb: related to quarkonium-proton scattering amplitude
 M_{\u03c6} near-thresbp
 A (b)

- Proton mass budget: about 22% comes from trace anomaly
- We know very little about it

$$M_q = \frac{3}{4} \left(a - \frac{b}{1 + \gamma_m} \right) M,$$

$$M_g = \frac{3}{4} (1 - a) M,$$

$$M_m = \frac{4 + \gamma_m}{4(1 + \gamma_m)} b M,$$

$$M_a = \frac{1}{4} (1 - b) M,$$

VMD Model Calculates parameter b

•VMD relates photo-production cross section to quarkonium-nucleon scattering amplitude

D. Kharzeev, nucl-th/9601029; D. Kharzeev, H. Satz, A. Syamtomov, and G. Zinovjev, Eur.Phys. J., C9, 1999

M_{\u03c6pp} Imaginary part, is related to the total cross section
 M_{\u03c6pp} Real part, contains the conformal (trace) anomaly (=>b)
 Dominate the near threshold region

Measure J/psi or Upsilon cross-section near threshold, then obtain b, hence get proton mass !

19

J/psi and Upsilon production cross-sections

O. Gryniuk and M. Vanderhaeghen, Phys. Rev. D 94, 074001 (2016)

• EicC will offer unique opportunity for precision measurement Upsilon near threshold

the heavier mass of the bottom could suppress the theoretical systematic uncertainties

Physics Summary: neucleon strucutre

- Nucleon Structure (sea quark): 1D PDF, GPD, TMD The EicC-I has unique advantages comparing to the existing and planning fixed target experiments, especially in the polarized cases
- Baryon States with Heavy Flavor
- proton mass study

EicC-I also has the potential to make important contributions to other topics, such as:

- medium effects (hadronization, EMC, SRC, color transparency)
- > pion and kaon structure functions
- ➤etc.

EicC Conceptual Detector

EicC detector systems design and simulation in early stage 22

EicC Timetable

EicC-I whitepaper draft: End of 2019

EicC Location

Location

Huizhou city and Guangdong province will cover the expenses for buying land, preparing land, building roads, building electricity and water supply stations, ...

Location

About 5 km to downtown of Huizhou City. Construction will start soon.

Summary

- EicC-I focuses on valence- and sea-quark region, addresses nuclear physics:
- **1.** nucleon structure: 1D and 3D imaging of quarks
- **2.** Exotic hadrons
- **3.** proton mass
- **4.** Medium effects, pion and kaon structure function, etc.
 - Complements to the world EIC physics programs:
- JLab12: Valence quark region
- **U.S. and Europe's EIC: Higher energy for gluon saturation**

Worldwide efforts, theoretical and experimental, are needed You are ALL invited to join the scientific endeavor: EicC

Thank You !