Electromagnetic Dipole Moments of Heavy Baryons with bent crystals at the LHC

Joan Ruiz Vidal

IFIC (Universitat de València-CSIC)

September 12, 2018

for E. Bagli, L. Bandiera, G. Cavoto, V. Guidi, L. Henry, D. Marangotto, F. Martinez Vidal, A. Mazzolari, A. Merli, N. Neri Talk based on Eur. Phys. J. C77(12):828, 2017

Joan Ruiz Vidal (IFIC Valencia)

Heavy baryon EDM and MDM at LHC

- Motivation
- Experiment Concept @ LHCb
- Sensitivity Reach
- Conclusions

Motivation

Electric Dipole Moment (EDM)

- Matter–antimatter asymmetry
- \bullet Sakharov conditions \supset C and CP violation
- Sources of CP Violation: SM (not enough) and BSM
- A golden observable for new CPV sources: Electric Dipole Moment (EDM)

Magnetic Moment (MDM)

- Contains information on the internal spin structure
- Quark model yielded good phenomenological description
- Different non-perturbative QCD methods obtain uncompatible results for charm baryons
 → MDM provide input fixing points

Electric Dipole Moment (EDM)

Definition

$$\delta = \int \boldsymbol{r} \rho(\boldsymbol{r}) d^3 r$$

Quantum systems

$$\delta = d\mu_N \frac{\mathbf{S}}{2}$$
 $\mu = g\mu_N \frac{\mathbf{S}}{2}$

Energy of a system

$$H = -\delta \cdot \mathbf{E} - \mu \cdot \mathbf{B} \qquad \xrightarrow{T} \qquad +\delta \cdot \mathbf{E} - \mu \cdot \mathbf{B}$$
$$\xrightarrow{P} \qquad +\delta \cdot \mathbf{E} - \mu \cdot \mathbf{B}$$

The EDM violates T and P \Rightarrow **CP violation**

Map of the EDM Field

DOI: 10.1007/978-4-431-54544-6

- EDM field: interplay atomic \leftrightarrow nuclear \leftrightarrow high energy physics
- The SM predicts negligible flavor-diagonal CPV
- Any signal \rightarrow clear sign of new physics
- Current limits strongly constrain speculative models of CPV

Joan Ruiz Vidal (IFIC Valencia)

Heavy baryon EDM and MDM at LHC

Baryon EDM in non-perturbative QCD

- No calculation for EDM of Λ_c^+ (or c,b-baryons) found in the literature
- Estimations (NDA) point to $d_{\Lambda_c^+} \sim d_c \pm rac{e}{4\pi} ilde d_c$
- **Theoretical uncertainties** are key to understand the constraining power of heavy baryon EDM searches
- Non-perturbative methods: Chiral theories, sum rules, lattice (?),

. . .

Sources of baryon EDM

• The measurement of the Λ_c^+ EDM is **directly sensitive** to

charm EDM $\delta_q \, \bar{q} i \sigma^{\mu\nu} \gamma_5 q \, F_{\mu\nu}$

charm chromo-EDM $\delta_q \, \bar{q} i \sigma^{\mu\nu} \gamma_5 t_a q \, G^a_{\mu\nu}$

7/21

• All other contributions are suppressed

Sources of baryon EDM

• The measurement of the Λ_c^+ EDM is **directly sensitive** to

charm EDM $\delta_q \, \bar{q} i \sigma^{\mu\nu} \gamma_5 q \, F_{\mu\nu}$

charm chromo-EDM $\delta_q \, \bar{q} i \sigma^{\mu\nu} \gamma_5 t_a q \; G^a_{\mu\nu}$

7/21

• All other contributions are suppressed

Indirect limits

The dipole couplings of the **charm quark** are bounded indirectly by different observables using some model assumptions. These bounds, at the level of $< 10^{-15} - 10^{-17}e$ cm, can be challenged with this proposal.

The indirect limits on **b quarks**, $\leq 10^{-14} - 10^{-16}$ ecm, are beyond the reach of this proposal. Ultimate sensitivity from a dedicated experiment (see slide 19).

Potential to constrain BSM theories

Standard Model has its leading contribution at 3-loop level

Beyond SM contributions at 1,2 loops

Enhanced for heavy flavours

 $egin{aligned} & d_c \sim 10^{-17} \mathrm{ecm} \ & d_c \sim 10^{-17} \mathrm{ecm} \ & d_c \sim 10^{-19} \mathrm{ecm} \ & d_c \sim 10^{-19} \mathrm{ecm} \end{aligned}$

S.-M. Zhao et al. Z. Z. Aydin et al. X.-J. Bi et al. EPJ C77 (2017), no.2 102 PR D67 (2003) 036006 arXiv:hep-ph/0412360

. . .

Joan Ruiz Vidal (IFIC Valencia)

Heavy baryon EDM and MDM at LHC

How to access EDMs ?

• Spin precession:

In the presence of an electromagnetic field, the spin-polarization rotates due to the magnetic moment. A change on the orthogonal direction signals the presence of an electric dipole moment.

How to access EDMs ?

• Spin precession:

In the presence of an electromagnetic field, the spin-polarization rotates due to the magnetic moment. A change on the orthogonal direction signals the presence of an electric dipole moment.

How to access EDMs ?

• Spin precession:

In the presence of an electromagnetic field, the spin-polarization rotates due to the magnetic moment. A change on the orthogonal direction signals the presence of an electric dipole moment.

• A source of **polarized baryons**

• Electromagnetic field intense enough to induce precession

• A detector to measure the polarization

Experiment concept: Requirements

Case of **short-lived charmed baryons**

A source of polarized baryons

Strong production in a **fixed target**

- **Electromagnetic field** intense enough to induce precession Interatomic electric field in **bent crystals**
- A detector to measure the polarization

Angular distribution of baryon decay products at LHCb

EPJ C77 (2017) 181

LHCb Detector

Spectrometer for flavor physics

Excellent particle identification. Closest tracking detectors to the LHC beam

- Fully instrumented in forward region
 - \rightarrow a fixed-target-like geometry!

Channelling in Bent Crystals

- $\, \bullet \,$ Very short-lived $\, \rightarrow \,$ Need large EM field of $\sim 10^3 \mbox{ T}$
- Electric field between atomic planes of a bent crystal
- Precession induced by the net EM field

$$m{s} pprox s_0 \left(rac{m{d}}{m{g}-2} (\cos \Phi -1), \ \cos \Phi, \ \sin \Phi
ight) \ , \ \ \Phi pprox rac{m{g}-2}{2} \gamma heta_{m{C}} pprox \pi$$

Courtesy of A.Mazzolari

- Potential well between crystallographic planes
- Incident positively-charged particles can be trapped if their transverse energy is small
 ⇒ Small incident angle w.r.t the crystal planes (few µrad)

- To induce a net EM field, the crystal must be bent
- The E field must compensate the centrifugal force which increases with the *momentum* ⇒ The energy determines a critical radius (~ 5 m)

Proof of principle at E761

 \bullet E761 Fermilab experiment firstly observed spin precession in bent crystals and measured MDM of Σ^+

Phys. Rev. Lett 69 (1992) 3286

- $\,$ $\,$ 350 GeV/c Σ^+ produced from 800 GeV/c proton beam on a Cu target
- Used up- and down-bend silicon crystals L = 4.5 cm, $\theta_C = 1.6 mrad$ to induce opposite spin precession

First Observation of Magnetic Moment Precession of Channeled Particles in Bent Crystals

FIG. 3. Measured polarizations and uncertainties (1 σ statistical errors) after spins have been precessed by the two crystals. The dashed arrows show the expected precessions.

Experimental Setup

- How to *put* polarized Λ_c^+ inside the crystal
 - Fixed-target + bent crystal in LHCb beam pipe
 - ► Incident beam: 7 TeV protons extracted from LHC beam halo using bent crystals ≈ 100m upstream of the target
 - Feasibility proven by UA9 collaboration Physics Letters B 758 (2016) 129
 - \blacktriangleright Initial transversal polarization $s_0\approx 50\%$
- How to measure the spin precession • Angular distribution of the decay $\Lambda^+ \rightarrow nK^-\pi^+$
 - Angular distribution of the decay $\Lambda_c^+ \rightarrow p K^- \pi^+ dN/d\Omega \propto 1 + \alpha \mathbf{s} \cdot \mathbf{k}$

Phys. Lett. B 757 (2016) 426 CERN-SPSC-2016-030 Eur. Phys. J. C 77 (2017) 181 JHEP 1708 (2017) Eur. Phys. J. C 77 (2017) 828

Joan Ruiz Vidal (IFIC Valencia)

Heavy baryon EDM and MDM at LHC

September 12, 2018 16 / 21

Crystal specifications

- Optimization of the crystal includes
 - Λ_c^+ from fixed target (Pythia & EvtGen)
 - Channeling efficiency (parametrization)
 - Fits to spin precession (Toy MC)
 - Sensitivities

 $\theta_{\rm c}$ [mrad]

Regions of maximum sensitivity (20 % increase)

Germanium (L=5cm, $\theta_C = 15$ mrad)

Silicon (L=7cm, $\theta_C = 14$ mrad)

• Very long crystals needed \Rightarrow R&D ongoing at INFN Ferrara

EPJ C77 (2017) 828

Sensitivity

• The EDM uncertainty dominated by statistics,

$$\sigma_{d} pprox rac{g-2}{lpha s_{0} \left(\cos \Phi -1
ight)} rac{1}{\sqrt{N_{c}^{
m reco}}}$$

$$\begin{array}{c} \gamma = 1000 \; (\mathsf{E} \approx 2 \; \mathsf{TeV}) \\ L \approx 10 \; \mathsf{cm} \\ \theta_C \approx 10 \; \mathsf{mrad} \\ F = 10^8 \; \mathsf{p/s} \end{array}$$

EPJ C77 (2017) 181

• g-2, α and $\mathbf{s_0}$ for c-baryons poorly known

• g-2 , $\mathbf{s_0}$ to be measured by proposed experiment

• α measurable by LHCb

- With few weeks of data taking ($\approx 10^{15}$ protons on target) the EDM sensitivity would reach $\sigma_{\delta} \approx 10^{-17} ecm$
- The Λ_c^+ magnetic moment can be measured, for the first time, with $\sigma_{g-2} \approx 4 \times 10^{-3}$

Extension to other baryons

• The same technique applies to all positive baryons with $\tau \gtrsim 10^{-13} s$ \rightarrow rich physics program ahead!

- Direct spin precession on charm baryons
- First EDM search, at $\approx 10^{-17}$ ecm First measurement of magnetic moment, at 1% accuracy level
 - Fixed target and bent crystals in front of LHCb
- Can be extended to other positively-charged baryons such as Ω^+ , Ξ^+ , Ξ_b^+ , ... extending the physics program. EPJ C77 (2017) 828
- Complementary to other EDM searches in different systems

Prospects

- Accurate studies for installation of device are currently under evaluation within the LHCb Collaboration
- Proposal included in the Physics Beyond Colliders study group

• The proposed experiment will greatly benefit from the **LHCb Upgrade**, planned for Run 3

http://lhc-commissioning.web.cern.ch/lhc-commissioning /schedule/LHC-schedule-update.pdf

Joan Ruiz Vidal (IFIC Valencia)

Heavy baryon EDM and MDM at LHC

September 12, 2018 21 / 21

Backup

Electromagnetic form factors

All electromagnetic properties parametrized in four EM form factors

$$P_{\mu} = \overline{u}(p') \left\{ \gamma^{\nu} F_{1}\left(q^{2}\right) - \frac{i F_{2}\left(q^{2}\right)}{2m_{B}} \sigma^{\mu\nu} q_{\mu} - \frac{F_{3}\left(q^{2}\right)}{2m_{B}} \sigma^{\mu\nu} q_{\mu} \gamma_{5} + i \left(\gamma^{\nu} q^{2} \gamma_{5} - 2m_{B} q^{\nu} \gamma_{5}\right) F_{A}\left(q^{2}\right) \right\} u(p)$$
Charge Magnetic Moment Electric Dipole Moment, P / T Anapole Moment, P

 $F_1(0) = Q \qquad \frac{1}{2m_B} [F_1(0) + F_2(0)] = \mu \qquad \frac{1}{2m} F_3(0) = \delta \qquad F_A(0) = Q$

EJP 26 (2005) 545

JHEP 12 at (2012) 097

Heavy baryon EDM and MDM at LHC

Charm (chromo-)EDM bounds

Bound	Ref.	Measurement	Method		
$ d_c < 4.4 imes 10^{-17} \ m ecm$	Sala:2013osa	neutron EDM	Considers threshold contributions of d_c into d_d . Neglects all other contributions to the d_n .		
$ d_c < 3.4 imes 10^{-16} \text{ ecm}$	Sala:2013osa	$BR(B \rightarrow X_s \gamma)$	Considers contributions from d_c to the Wilson coefficient C_7 .		
$ d_c < 3 imes 10^{-16} \ m ecm$	Grozin:2009jq	electron EDM	Extracted from d_c threshold contribution to d_e through light-by-light scattering diagrams.		
$ d_c < 1 imes 10^{-15} \ m ecm$	Grozin:2009jq	neutron EDM	Similar approach than ref. Sala:2013osa. Evaluates contributions in two steps: c-quark \rightarrow d-quark \rightarrow neutron.		
$ d_c < 5 \times 10^{-17} \text{ ecm}$	Blinov:2008mu	$e^+e^- ightarrow c\overline{c}$	The total cross section (LEP) might be enhanced by the charm qEDM vertex $c\overline{c}\gamma$.		
$ d_c < 8.9 imes 10^{-17} \ ecm$	Escribano:1993×r	$\Gamma(Z ightarrow c\overline{c})$	Measurement at the Z peak (LEP). Uses model dependent relationships to weight contributions from d_c and d_c^w .		
charm chromo-EDM					
$ ilde{d}_c < 1.0 imes 10^{-22}$ ecm	Sala:2013osa	neutron EDM	Considers threshold contributions of d_c into the light quark EDMs $d_{u,d}$ and the Weinberg operator w		
$ ilde{d}_c < 3 imes 10^{-14}$ ecm	Kuang:2012wp	$\psi' \to J/\psi \pi^+\pi^-$	The \tilde{d}_c contributes to the static potential betwen c and \bar{c} both in ψ' and J/ψ . It also affects the dynamical transition amplitudes		

Ordered by year of publication

References can be found by copying the abbreviations in inspire-hep

Bottom (chromo-)EDM bounds

Bound	Ref.	Measurement	Method	
$ d_b < 7 imes 10^{-15}$ ecm	Grozin:2009jq	electron EDM	From the b-quark EDM threshold contribution to d_e through light-by-light scattering diagrams	
$ d_b < 2 imes 10^{-12}$ ecm	Grozin:2009jq	neutron EDM	Similar estimation but evaluating contributions in two steps: b-quark \rightarrow up-quark \rightarrow neutron	
$ d_b < 2 imes 10^{-17} \ ecm$	Blinov:2008mu	$e^+e^- ightarrow b\overline{b}$	The total cross section (LEP) might be enhanced by the charm qEDM vertex $b\overline{b}\gamma$.	
$ d_b < 1.22 \times 10^{-13} \text{ ecm}$	CorderoCid:2007uc	neutron EDM	Similar estimation than Grozin:2009jq. But neglects longitudinal component in the <i>W</i> propagator, thus missing emerging diver- gences.	
$ d_b < 8.9 imes 10^{-17} \ ecm$	Escribano:1993×r	$\Gamma(Z o b\overline{b})$	Measurement at the Z peak (LEP). Uses model dependent relationships to weight contributions from d_b and d_b^w .	
bottom chromo-EDM				
$ ilde{d}_b \lesssim 1.1 imes 10^{-21}$ cm	Konig:2014iqa	neutron EDM	Numerical result based on the the contribu- tion of the beauty CEDM into the Weinberg operator derived in Chang:1990jv	

Ordered by year of publication

References can be found by copying the abbreviations in inspire-hep

Charmed Baryons: initial polarization

- Strong production of Λ_c^+ in fixed target: p - N collision with $\sqrt{s} = 115 \text{ GeV/c}$ from 7 TeV p
- Polarization orthogonal to the $p \Lambda_c^+$ production plane (parity conservation)
- Increases with Λ_c^+ transverse momentum $p_T(\Lambda_c^+)$

• E791 measured sizeable polarization for $p_T > 1 \text{ GeV/c} (\approx 50\%)$

Channeling conditions. Parametrization

A SIGNAL event (completely channeled particle) requires

• Entrance to the crystal: Lindhard angle: $\theta < \theta_L \equiv \sqrt{\frac{2U_0}{p}}$

• Critical radius:
$$R > R_c \equiv \frac{pc}{U'(x_c)}$$

- Exit the crystal: $z_{orig.} + c \tau \gamma \beta > L$
- Dechanneling probability (event-by-event):

$$\varepsilon_{dechan} = (1 - \frac{R_c}{R})^2 \exp\left(-\frac{\theta_c}{\theta_D \frac{R_c}{R}(1 - \frac{R_c}{R})^2}\right)$$

Channeling conditions. Full simulation

- Full simulations using GEANT4 toolkit performed in EPJ C77 (2017) 828
 - Including channeling phenomenon (deflection efficiency)
 - And spin precession
- Checked agreement with channeling parametrization

Negative baryons (e.g. Ξ_b^-)

- Crystal channeling
 - Around a plane of positive atoms (planar channeling)
 - Around a string of positive atoms (axial channeling)
- Lower efficiencies in long crystals (wrt. positive baryons)
 - Collision with nuclei
 - Non-harmonic potential
- Still, b-baryons are accesible
 - Ξ_b^- particle \rightarrow lower efficiencies
 - Ξ_b^+ antiparticle \rightarrow lower production rate

Crystal production

- R&D ongoing at INFN Ferrara. Two methods to bend the crystal
 - Anticlastic deformation

Self-bent crystal

A. Mazzolari, Channeling 2016

Heavy baryon EDM and MDM at LHC