
TMD evolution
as

a double-scale evolution

Alexey A. Vladimirov

Universität Regensburg

in collaboration with Ignazio Scimemi
based on [1803.11089]

A.Vladimirov TMD evolution September 12, 2018 1 / 20



Motivation

TMD evolution
is

a double-scale evolution

F (x, b;µµµ,ζζζ)

This aspect has been completely overlooked. Its account reveals completely novel
picture of TMD evolution.

Outlook

Review of TMD evolution status
Evolution plane and the general solution
Induced path dependence of the solution
Evolution potential
ζ-prescription and optimal TMD
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TMD evolution

TMD evolution is used for two practical purposes

Compare different experiments
Modeling TMD distribution

dσ

dX
∼
∫
d2b ei(bqT )Hff ′ (Q,µ)Ff←h(x1, b;µ, ζ1)Ff ′←h(x2, b;µ, ζ2)

Minimize ln(Q/µ)
µ = Q

ζ1ζ2 = Q4

or
ζ1 = ζ2 = Q2

F (x, b;µ, ζ) ∼ C(x, b;µ, ζ)⊗ PDF(x, µ)

Typical model for TMD includes matching

Minimize Lµ, L√ζ
µ ∼
√
ζ ∼ b−1

F (x, b;µf , ζf ) = R[b, (µf , ζf )→ (µi, ζi)]F (x, b;µi, ζi)

Initial
scale

Final
scale

TMD evolution factor
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TMD evolution

TMD evolution equations

µ2
d

dµ2
Ff←h(x, b;µ, ζ) =

γfF (µ, ζ)

2
Ff←h(x, b;µ, ζ), (1)

ζ
d

dζ
Ff←h(x, b;µ, ζ) = −Df (µ, b)Ff←h(x, b;µ, ζ), (2)

Solution: F (x,b;µf , ζf ) = R[b; (µf , ζf )→ (µi, ζi)]F (x,b;µi, ζi)

γF – TMD anomalous dimension

D – rapidity anomalous dimension (= − K̃
2
[Collins’ book], = K[Bacchetta, at

al,1703.10157])
Anomalous dimensions are universal, i.e. depend only on flavor (gluon/quark).
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TMD evolution

D(µ, b) = Dperp(µ, b∗) + dNP (b)

Perturbative part

Soft/rapidity correspondence D ↔ γs [AV,PRL 118(2017)]
Everything at NNLO (+Γ-cusp at N3LO [Vogt et al.,1808.08981])

2 4 6 8

1

2

3

4

5

6 D

b[GeV−1]

µ = 10GeV

Pure PT

Bacchetta et al.
[1703.101157]

Bertone,Scimemi,AV
in preparation.

dNP is a universal non-perturbative function. In many aspects more fundamental
then TMDs.
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TMD evolution

Global extraction of F1 at NNLO by [Scimemi & AV,1706.01473]

Drell-Yan at Q = 5− 6GeV

ATLAS 8TeV
46-66 GeV

model 2 NNLO
χ2/points=0.21

Ν=1.08

ATLAS 8TeV
116-150 GeV

model 2 NNLO
χ2/points=0.30

Ν=0.98
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Drell-Yan at Q = 116− 150GeV
TMD evolution is a key

element
χ2
global
d.o.f.

' 1.25

Here:
3-loop evolution
2-loop coefficient
function
2-loop matching
ζ-prescription

plots from [1706.01473]

ζ-prescription consistently separates the
TMD evolution from TMDs, and makes
all the theory elements work together.

It is the consiquence of
2D nature of TMD evolution.
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TMD evolution: theory

TMD evolution is two-dimensional

µ
2 d

dµ2

ζ
d

dζ

F =


γF

2

−D

F

−→
∇∇∇F =

−→
EF

−→
E is 2D evolution field
in −→ννν = (lnµ2, ln ζ)

coordinates

ln ζ

ln μ2

NLO b=0.5GeV
-1

Solution

R[(µf , ζf )→ (µi, ζi)] = exp

(∫
P
d−→ννν ·

−→
E

)
(µf , ζf )

(µi, ζi)

The integration path
is unimportant!
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TMD evolution: theory

Examples

ζ

µ

(µf , ζf )

(µi, ζi)

Solution 1

lnR =

∫ µf

µi

dµ

µ
γF (µ, ζf )−D(µi, b) ln

(
ζf

ζi

)
[Collins’ textbook],[Aybat,Rogers,1101.5057],...

99% popular

ζ

µ

(µf , ζf )

(µi, ζi)

Solution 2

lnR =

∫ µf

µi

dµ

µ
γF (µ, ζi)−D(µf , b) ln

(
ζf

ζi

)

ζ

µ

(µf , ζf )

(µi, ζi)

Solution 3

lnR =

∫ 1

0

(
γF (µ(t), ζ(t))

µf − µi
(µf − µi)t+ µi

−D(µ(t), b)
ζf − ζi

(ζf − ζi)t+ ζi

)
dt

A.Vladimirov TMD evolution September 12, 2018 8 / 20



TMD evolution: theory

Examples

ζ

µ

(µf , ζf )

(µi, ζi)

Solution 1

lnR =

∫ µf

µi

dµ

µ
γF (µ, ζf )−D(µi, b) ln

(
ζf

ζi

)
[Collins’ textbook],[Aybat,Rogers,1101.5057],...

99% popular

ζ

µ

(µf , ζf )

(µi, ζi)

Solution 2

lnR =

∫ µf

µi

dµ

µ
γF (µ, ζi)−D(µf , b) ln

(
ζf

ζi

)

ζ

µ

(µf , ζf )

(µi, ζi)

Solution 3

lnR =

∫ 1

0

(
γF (µ(t), ζ(t))

µf − µi
(µf − µi)t+ µi

−D(µ(t), b)
ζf − ζi

(ζf − ζi)t+ ζi

)
dt

A.Vladimirov TMD evolution September 12, 2018 8 / 20



TMD evolution: theory

Examples

ζ

µ

(µf , ζf )

(µi, ζi)

Solution 1

lnR =

∫ µf

µi

dµ

µ
γF (µ, ζf )−D(µi, b) ln

(
ζf

ζi

)
[Collins’ textbook],[Aybat,Rogers,1101.5057],...

99% popular

ζ

µ

(µf , ζf )

(µi, ζi)

Solution 2

lnR =

∫ µf

µi

dµ

µ
γF (µ, ζi)−D(µf , b) ln

(
ζf

ζi

)

ζ

µ

(µf , ζf )

(µi, ζi)

Solution 3

lnR =

∫ 1

0

(
γF (µ(t), ζ(t))

µf − µi
(µf − µi)t+ µi

−D(µ(t), b)
ζf − ζi

(ζf − ζi)t+ ζi

)
dt

A.Vladimirov TMD evolution September 12, 2018 8 / 20



TMD evolution: theory

Examples

ζ

µ

(µf , ζf )

(µi, ζi)

Solution 1

lnR =

∫ µf

µi

dµ

µ
γF (µ, ζf )−D(µi, b) ln

(
ζf

ζi

)
[Collins’ textbook],[Aybat,Rogers,1101.5057],...

99% popular

ζ

µ

(µf , ζf )

(µi, ζi)

Solution 2

lnR =

∫ µf

µi

dµ

µ
γF (µ, ζi)−D(µf , b) ln

(
ζf

ζi

)

ζ

µ

(µf , ζf )

(µi, ζi)

Solution 3

lnR =

∫ 1

0

(
γF (µ(t), ζ(t))

µf − µi
(µf − µi)t+ µi

−D(µ(t), b)
ζf − ζi

(ζf − ζi)t+ ζi

)
dt

A.Vladimirov TMD evolution September 12, 2018 8 / 20



TMD evolution: theory

Unique solution

Solution exist only if
integrability condition holds

ζ
dγF

dζ
= −µ2

dD
dµ2

−→
∇∇∇ ×

−→
E = 0

−→
E is conservative field

Integrability condition is trivially satisfied due to
collinear overlap of divergences

ζ
d

dζ
γF (µ, ζ) = −Γ(µ),

In fixed order PT integrability condition is violated.
The restoration procedure is ambigous

(large impact at large-b)
See extended dicussion in [Scimemi,AV;1803.11089]
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TMD evolution: theory

Numerical effect of path dependence

Evolution from MZ to 1/b∗

Without Log-resummation O(an+1
s Ln)

b[GeV]

LOlnR

0.5 1.0 1.5 2.0 2.5 3.0

-1.5

-1.0

-0.5

b[GeV]

NLOlnR

0.5 1.0 1.5 2.0 2.5 3.0

-2.0

-1.5

-1.0

-0.5 b[GeV]

NNLOlnR

0.5 1.0 1.5 2.0 2.5 3.0

-2.5

-2.0

-1.5

-1.0

-0.5

With Log-resummation O(an+1
s L)

b[GeV]

LOlnR

0.5 1.0 1.5 2.0 2.5 3.0

-2.0

-1.5

-1.0

-0.5

b[GeV]

NLOlnR

0.5 1.0 1.5 2.0 2.5 3.0

-2.5
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-0.5 b[GeV]

NNLOlnR

0.5 1.0 1.5 2.0 2.5 3.0

-2.5

-2.0

-1.5

-1.0

-0.5

There are methods to eliminate path-dependence by adding higher-PT terms in anomalous
dimension. For detailed discussion see [1803.11089].
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TMD evolution: theory

Evolution potential
Solution exist only if

integrability condition holds

ζ
dγF

dζ
= −µ2

dD
dµ2

−→
∇∇∇ ×

−→
E = 0

−→
E is conservative field

1 10 102

1

10

102

μ2 [GeV
2]

ζ
[G

e
V

2
]

Conservative field is determined
by a potential

−→
E =

−→
∇∇∇U

Evolution is a difference
between potentials

R[(µf , ζf )→ (µi, ζi)] = exp
(
Uf − Ui

)

(µf , ζf )

(µi, ζi)

This absolutely standard picture
contains an important message.
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TMD evolution: theory

TMD distribution is not defined by a scale (µ, ζ)
It is defined by an equipotential line.

1 10 102

1

10

102

μ2 [GeV
2]

ζ
[G

e
V

2
]

The scaling is defined by
a difference between scales

a difference between potentials

TMD(x, b, 1)

TMD(x, b, 2)

TMD(x, b, 3)

We can enumerate them by a lines
not by (µ, ζ)

F (x, b;µ, ζ)→ F (z, b; line)

Initially in [Scimemi,AV,1706.01473]
we call it ζ-prescription,

which is, probably, not the best name.
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TMD evolution: theory

TMD distributions on the same equipotential line are equivalent.
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Singularities of E

In ζ-prescription we set
ζ → ζµ(ννν)

TMDs are "enumerated" by ννν (the number of line)
TMDs are "naive" scale-independent

µ
d

dµ
F (x, b;µ, ζµ) = 0 ⇒ No double-logs in the matching.

TMD distribution depends only on the "number" of equipotential line

F (x,b;µ, ζ)→ F (x,b; ν)

dF (x,b; ν)

dν
=
dU(b; ν)

dν
F (x,b; ν)

m

F (x,b; ν) = eU(b;ν)−U(b;ν0)F (x,b; ν0)
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Singularities of E

The simplest way to measure the difference between potentials
ln ζ

ln μ2

3

2

1

Im
p
ro
ve
d
D

fi
xe
d
μ

(μ f ,ζ f )

(μi,ζi)

(μ f ,ζμ f )

μ0

Integration "difficult"

In
te
gr
at
io
n
el
em

en
ta
ry

R =
( ζf

ζµf

)−D(µf ,b)

Numerically simple (and fast).
Compare to

µf = Q thus as is small
It is different representation
of the Sudakov exponent.

Different solutions converge with increase of PT order

b[GeV-1]lnR

LO
improved D
improved γ
fixed μ

0.5 1.0 1.5 2.0 2.5 3.0

-3.0

-2.5

-2.0

-1.5
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-0.5

b[GeV-1]lnR

NLO
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improved γ
fixed μ
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-1

b[GeV-1]lnR

NNLO
improved D
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Compare to

µf = Q thus as is small
It is different representation
of the Sudakov exponent.

Different solutions converge with increase of PT order
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Universal TMD

Universal scale-independent TMD

There is a unique line which passes though all µ’s

The optimal TMD distribution

F (x, b) = F (x, b;µ, ζµ)

where ζµ is the special line.

b=0.2GeV
-1

(-,-)

(+,-)

(-,+)

(+,+)

1 10 102

1

10

102

μ2 [GeV
2]

ζ
[G

e
V

2
]

b=1.5GeV
-1

(-,-)

(+,-)

1 10 102

1

10

102

μ2 [GeV
2]

ζ
[G

e
V

2
]

b=3.5GeV
-1

(-,-)

(+,-)

1 10 102

1

10

102

μ2 [GeV
2]

ζ
[G

e
V

2
]

A.Vladimirov TMD evolution September 12, 2018 15 / 20



TMD cross-section

TMD cross-section

dσ

dX
= σ0

∑
f

∫
d2b

4π
ei(b·qT )Hff ′ (Q){R̃f [b;Q]}2F̃f←h(x1, b)F̃f ′←h(x2, b),

with ζf = µ2f = Q2

R̃f [b;Q] = (Qb)−D
f (Q,b) exp{−Df (Q, b)vf (Q, b)}

v is given by the perturbative series, v = 3
2

+ as...

F̃ is TMD in the "naive" ζ-prescription

There are only (µf , ζf ) scales and no solution dependence.
Clear separation of TMD evolution from the model for TMD
distribution.
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TMD cross-section

Evolution with b-dependent scale (CSS-like)
(Q,Q2)→ (µb, µ

2
b)

Here µb =
C0

b∗
with bmax = 1.2GeV−1
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Analogy in DIS
Scale depends on paremeter ↔ dσ = C(Q)R[Q→ ch(x)]f(x, ch(x))

PDF f(x, ch(x)) has no interpretation, no sense, and
depends on the order of evolution in use.
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TMD cross-section

Optimal version
(Q,Q2)→ (Q, ζQ)
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Analogy in DIS
Scale (potential) is fixed ↔ dσ = C(Q)R[Q→ 2GeV]f(x, 2GeV)

PDF f(x, 2GeV) is just a model and
is dependent on the order of evolution in use.
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TMD cross-section

The evolution potential depends on b.
Relative position of its elements (saddle-point, special lines) dictates the shape of evolution

factor.

b=3.5GeV
-1

1 10 102

1

10

102

μ [GeV]

ζ
[G

e
V
]

b=1.5GeV
-1

1 10 102

1

10

102

μ [GeV]

ζ
[G

e
V
]

b=0.1GeV
-1

1 10 102

1

10

102

μ [GeV]

ζ
[G

e
V
]

1 2 3 4 5
b

0.5

1.0

1.5

R

1 2 3 4 5

b

0.2

0.4

0.6

0.8

1.0

R

1 2 3 4 5
b

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R µ = 1GeVµ = 3GeVµ = 10GeV

b

Q

A.Vladimirov TMD evolution September 12, 2018 18 / 20



TMD cross-section

arTeMiDe v1.3

Variety of evolutions
LO, NLO, NNLO
No restriction for NP models
Fast code
DY cross-sections
SIDIS cross-sections (not tuned yet)
Theory uncertainty bands

https://teorica.fis.ucm.es/artemide/
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Conclusion

Conclusion

Main message:
TMD evolution is a double scale evolution.

Therefore, it should be considered with care, and then it
grants many simplifications.

TMD distributions on a same equipotential line are
equivalent. Enumerate them with lines!

Universal for all quantum numbers
Very simple practical formula (no integrations!)
Guarantied absence of (large) logarithms in the matching
coefficient
TMD model is independent on evolution order.
E.g You can use NNLO unpolarized and LO Sivers together,

without theory tensions

CDF run2
dσ

pT [GeV]

66 GeV<Q< 116 GeV

Drell-Yan

0 5 10 15 20 25

0
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20

Double-scale evolution is not unique for TMD case. It also appears in kT -resummation,
joint resummation, DPDs, etc.
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Backup

Which line is the best?
b=0.2GeV
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Some non-interesting singularities at µ, ζ →∞
Landau pole at µ = Λ

Saddle point (blue dot)

D(µsaddle, b) = 0, γM (µsaddle, ζsaddle, b) = 0
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