TMD evolution as
a double-scale evolution

Alexey A. Vladimirov

Universität Regensburg
in collaboration with Ignazio Scimemi
based on [1803.11089]

TMD evolution
 is
 a double-scale evolution
 $$
F(x, b ; \boldsymbol{\mu}, \boldsymbol{\zeta})
$$

This aspect has been completely overlooked. Its account reveals completely novel picture of TMD evolution.

Outlook

- Review of TMD evolution status
- Evolution plane and the general solution
- Induced path dependence of the solution
- Evolution potential
- ζ-prescription and optimal TMD

TMD evolution is used for two practical purposes

- Compare different experiments
- Modeling TMD distribution

$$
\frac{d \sigma}{d X} \sim \int d^{2} b e^{i\left(b q_{T}\right)} H_{f f^{\prime}}(Q, \mu) F_{f \leftarrow h}\left(x_{1}, b ; \mu, \zeta_{1}\right) F_{f^{\prime} \leftarrow h}\left(x_{2}, b ; \mu, \zeta_{2}\right)
$$

Universitãt Regensburg

TMD evolution is used for two practical purposes

- Compare different experiments
- Modeling TMD distribution

$$
\begin{gathered}
\frac{d \sigma}{d X} \sim \int d^{2} b e^{i\left(b q_{T}\right)} H_{f f^{\prime}}(\underline{Q}, \mu) \\
\downarrow
\end{gathered} F_{f \leftarrow h}\left(x_{1}, b ; \mu, \zeta_{1}\right) F_{f^{\prime} \leftarrow h}\left(x_{2}, b ; \mu, \zeta_{2}\right)
$$

TMD evolution is used for two practical purposes

- Compare different experiments
- Modeling TMD distribution

$$
\begin{gathered}
\frac{d \sigma}{d X} \sim \int d^{2} b e^{i\left(b q_{T}\right)} H_{f f^{\prime}}(\underline{Q}, \mu) \\
\downarrow
\end{gathered} F_{f \leftarrow h}\left(x_{1}, b ; \mu, \zeta_{1}\right) F_{f^{\prime} \leftarrow h}\left(x_{2}, b ; \mu, \zeta_{2}\right), ~ \begin{gathered}
\zeta_{1} \zeta_{2}=Q^{4} \\
\text { or } \\
\zeta_{1}=\zeta_{2}=Q^{2}
\end{gathered}
$$

Typical model for TMD includes matching

TMD evolution is used for two practical purposes

- Compare different experiments
- Modeling TMD distribution

TMD evolution equations

$$
\begin{align*}
\mu^{2} \frac{d}{d \mu^{2}} F_{f \leftarrow h}(x, b ; \mu, \zeta) & =\frac{\gamma_{F}^{f}(\mu, \zeta)}{2} F_{f \leftarrow h}(x, b ; \mu, \zeta), \tag{1}\\
\zeta \frac{d}{d \zeta} F_{f \leftarrow h}(x, b ; \mu, \zeta) & =-\mathcal{D}^{f}(\mu, b) F_{f \leftarrow h}(x, b ; \mu, \zeta), \tag{2}
\end{align*}
$$

Solution: $\quad F\left(x, \mathbf{b} ; \mu_{f}, \zeta_{f}\right)=R\left[\mathbf{b} ;\left(\mu_{f}, \zeta_{f}\right) \rightarrow\left(\mu_{i}, \zeta_{i}\right)\right] F\left(x, \mathbf{b} ; \mu_{i}, \zeta_{i}\right)$

- γ_{F} - TMD anomalous dimension
- \mathcal{D} - rapidity anomalous dimension $\left(=-\frac{\tilde{K}}{2}[\right.$ Collins' book $],=K[$ Bacchetta, at al,1703.10157])
- Anomalous dimensions are universal, i.e. depend only on flavor (gluon/quark).

$$
\mathcal{D}(\mu, b)=\mathcal{D}_{\operatorname{perp}}\left(\mu, b^{*}\right)+d_{N P}(b)
$$

Perturbative part

- Soft/rapidity correspondence $\mathcal{D} \leftrightarrow \gamma_{s}$ [AV,PRL 118(2017)]
- Everything at NNLO ($+\Gamma$-cusp at N^{3} LO [Vogt et al.,1808.08981])

$d_{N P}$ is a universal non-perturbative function. In many aspects more fundamental then TMDs.

Global extraction of F_{1} at NNLO by [Scimemi \& AV,1706.01473]

Drell-Yan at $Q=5-6 \mathrm{GeV}$

Drell-Yan at $Q=116-150 \mathrm{GeV}$

TMD evolution is a key element
$\frac{\chi_{\text {global }}^{2}}{\text { d.o.f. }} \simeq 1.25$
Here:

- 3-loop evolution
- 2-loop coefficient function
- 2-loop matching
- ζ-prescription
plots from [1706.01473]

Global extraction of F_{1} at NNLO by [Scimemi \& AV,1706.01473]

Drell-Yan at $Q=5-6 \mathrm{GeV}$

TMD evolution is a key element

$$
\frac{\chi_{\text {global }}^{2}}{\text { d.o.f. }} \simeq 1.25
$$

Here:
TMD evolution from TMDs, and makes all the theory elements work together.

It is the consiquence of 2D nature of TMD evolution.
-loop evolution
-loop coefficient unction
-loop matching -prescription
plots from [1706.01473]

TMD evolution is two-dimensional

TMD evolution is two-dimensional

TMD evolution is two-dimensional

Examples

Solution 1

$$
\ln R=\int_{\mu_{i}}^{\mu_{f}} \frac{d \mu}{\mu} \gamma_{F}\left(\mu, \zeta_{f}\right)-\mathcal{D}\left(\mu_{i}, b\right) \ln \left(\frac{\zeta_{f}}{\zeta_{i}}\right)
$$

[Collins' textbook],[Aybat,Rogers,1101.5057],... 99% popular
$\times \exp \left\{\ln \frac{\sqrt{\zeta_{A}}}{\mu_{b}} \tilde{K}\left(b_{*} ; \mu_{b}\right)+\int_{\mu_{n}}^{\mu} \frac{\mathrm{d} \mu^{\prime}}{\mu^{\prime}}\left[\gamma \nu\left(g\left(\mu^{\prime}\right) ; 1\right)-\ln \frac{\sqrt{\zeta_{A}}}{\mu^{\prime}} \gamma_{K}\left(g\left(\mu^{\prime}\right)\right)\right]\right\}$.
(13.70)

Examples

Solution 1

$$
\ln R=\int_{\mu_{i}}^{\mu_{f}} \frac{d \mu}{\mu} \gamma_{F}\left(\mu, \zeta_{f}\right)-\mathcal{D}\left(\mu_{i}, b\right) \ln \left(\frac{\zeta_{f}}{\zeta_{i}}\right)
$$

[Collins' textbook],[Aybat,Rogers,1101.5057],... 99% popular

Examples

Solution 1

$$
\ln R=\int_{\mu_{i}}^{\mu_{f}} \frac{d \mu}{\mu} \gamma_{F}\left(\mu, \zeta_{f}\right)-\mathcal{D}\left(\mu_{i}, b\right) \ln \left(\frac{\zeta_{f}}{\zeta_{i}}\right)
$$

[Collins' textbook],[Aybat,Rogers,1101.5057],... 99% popular

Examples

Solution 1

$$
\ln R=\int_{\mu_{i}}^{\mu_{f}} \frac{d \mu}{\mu} \gamma_{F}\left(\mu, \zeta_{f}\right)-\mathcal{D}\left(\mu_{i}, b\right) \ln \left(\frac{\zeta_{f}}{\zeta_{i}}\right)
$$

[Collins' textbook],[Aybat,Rogers,1101.5057],... 99\% popular

Solution 3

$$
\begin{aligned}
& \ln R=\int_{0}^{1}\left(\gamma_{F}(\mu(t), \zeta(t)) \frac{\mu_{f}-\mu_{i}}{\left(\mu_{f}-\mu_{i}\right) t+\mu_{i}}\right. \\
&\left.-\mathcal{D}(\mu(t), b) \frac{\zeta_{f}-\zeta_{i}}{\left(\zeta_{f}-\zeta_{i}\right) t+\zeta_{i}}\right) d t
\end{aligned}
$$

Unique solution

Unique solution

Solution exist only if
integrability condition holds

$$
\zeta \frac{d \gamma_{F}}{d \zeta}=-\mu^{2} \frac{d \mathcal{D}}{d \mu^{2}}
$$

Integrability condition is trivially satisfied due to collinear overlap of divergences

$$
\zeta \frac{d}{d \zeta} \gamma_{F}(\mu, \zeta)=-\Gamma(\mu), \quad \quad \mu^{2} \frac{d}{d \mu^{2}} \mathcal{D}(\mu, b)=\Gamma(\mu)
$$

Unique solution

Solution exist only if
integrability condition holds

$$
\zeta \frac{d \gamma_{F}}{d \zeta}=-\mu^{2} \frac{d \mathcal{D}}{d \mu^{2}}
$$

Integrability condition is trivially satisfied due to collinear overlap of divergences

$$
\zeta \frac{d}{d \zeta} \gamma_{F}(\mu, \zeta)=-\Gamma(\mu), \quad \quad \mu^{2} \frac{d}{d \mu^{2}} \mathcal{D}(\mu, b) \neq \Gamma(\mu)
$$

In fixed order PT integrability condition is violated.
 The restoration procedure is ambigous
 (large impact at large-b)
 See extended dicussion in [Scimemi,AV;1803.11089]

Universitãt Regensburg

Numerical effect of path dependence

Evolution from M_{Z} to $1 / b^{*}$

Without Log-resummation $\mathcal{O}\left(a_{s}^{n+1} L^{n}\right)$

With Log-resummation $\mathcal{O}\left(a_{s}^{n+1} L\right)$

There are methods to eliminate path-dependence by adding higher-PT terms in anomalous dimension. For detailed discussion see [1803.11089].

Evolution potential

$$
\begin{aligned}
& \text { Solution exist only if } \\
& \text { integrability condition holds } \\
& \qquad \zeta \frac{d \gamma_{F}}{d \zeta}=-\mu^{2} \frac{d \mathcal{D}}{d \mu^{2}}
\end{aligned}
$$

$$
\vec{\nabla} \times \overrightarrow{\mathbf{E}}=0
$$

$\overrightarrow{\mathbf{E}}$ is conservative field

Conservative field is determined by a potential

$$
\overrightarrow{\mathbf{E}}=\vec{\nabla} U
$$

Evolution is a difference
between potentials

$$
R\left[\left(\mu_{f}, \zeta_{f}\right) \rightarrow\left(\mu_{i}, \zeta_{i}\right)\right]=\exp \left(U_{f}-U_{i}\right)
$$

Evolution potential

$$
\begin{aligned}
& \text { Solution exist only if } \\
& \text { integrability condition holds } \\
& \quad \zeta \frac{d \gamma_{F}}{d \zeta}=-\mu^{2} \frac{d \mathcal{D}}{d \mu^{2}}
\end{aligned}
$$

$$
\vec{\nabla} \times \overrightarrow{\mathbf{E}}=0
$$

$\overrightarrow{\mathbf{E}}$ is conservative field

Conservative field is determined by a potential

$$
\overrightarrow{\mathbf{E}}=\vec{\nabla} U
$$

Evolution is a difference
between potentials

$$
R\left[\left(\mu_{f}, \zeta_{f}\right) \rightarrow\left(\mu_{i}, \zeta_{i}\right)\right]=\exp \left(U_{f}-U_{i}\right)
$$

This absolutely standard picture contains an important message.

TMD distribution is not defined by a scale (μ, ζ)
It is defined by an equipotential line.

The scaling is defined by a difference between scales
a difference between potentials

TMD distribution is not defined by a scale (μ, ζ)
It is defined by an equipotential line.

The scaling is defined by a difference between scales
a difference between potentials

Evolution factor to both points is the same
although the scales are different by $10^{2} \mathrm{GeV}^{2}$

TMD distributions on the same equipotential line are equivalent.

TMD distributions on the same equipotential line are equivalent.

In ζ-prescription we set $\zeta \rightarrow \zeta_{\mu}(\boldsymbol{\nu})$

- TMDs are "enumerated" by $\boldsymbol{\nu}$ (the number of line)
- TMDs are "naive" scale-independent

$$
\mu \frac{d}{d \mu} F\left(x, b ; \mu, \zeta_{\mu}\right)=0 \quad \Rightarrow \text { No double-logs in the matching. }
$$

Universitāt Regensburg

In ζ-prescription we set

$$
\zeta \rightarrow \zeta_{\mu}(\boldsymbol{\nu})
$$

- TMDs are "enumerated" by $\boldsymbol{\nu}$ (the number of line)
- TMDs are "naive" scale-independent

$$
\mu \frac{d}{d \mu} F\left(x, b ; \mu, \zeta_{\mu}\right)=0 \quad \Rightarrow \text { No double-logs in the matching. }
$$

TMD distribution depends only on the "number" of equipotential line

$$
F(x, \mathbf{b} ; \mu, \zeta) \rightarrow F(x, \mathbf{b} ; \nu)
$$

$$
\begin{gathered}
\frac{d F(x, \mathbf{b} ; \nu)}{d \nu}=\frac{d U(\mathbf{b} ; \nu)}{d \nu} F(x, \mathbf{b} ; \nu) \\
F(x, \mathbf{b} ; \nu)=e^{U(\mathbf{b} ; \nu)-U\left(\mathbf{b} ; \nu_{0}\right)} F\left(x, \mathbf{b} ; \nu_{0}\right)
\end{gathered}
$$

The simplest way to measure the difference between potentials

$$
R=\left(\frac{\zeta_{f}}{\zeta_{\mu_{f}}}\right)^{-\mathcal{D}\left(\mu_{f}, b\right)}
$$

- Numerically simple (and fast).

Compare to

- $\mu_{f}=Q$ thus a_{s} is small
- It is different representation of the Sudakov exponent.

The simplest way to measure the difference between potentials $A \ln \zeta$

$$
R=\left(\frac{\zeta_{f}}{\zeta_{\mu_{f}}}\right)^{-\mathcal{D}\left(\mu_{f}, b\right)}
$$

- Numerically simple (and fast).

Compare to

- $\mu_{f}=Q$ thus a_{s} is small
- It is different representation of the Sudakov exponent.
Different solutions converge with increase of PT order

Universal scale-independent TMD

There is a unique line which passes though all μ 's
The optimal TMD distribution
$F(x, b)=F\left(x, b ; \mu, \zeta_{\mu}\right)$
where ζ_{μ} is the special line.

Universităt Regensburg

TMD cross-section

$$
\frac{d \sigma}{d X}=\sigma_{0} \sum_{f} \int \frac{d^{2} b}{4 \pi} e^{i\left(b \cdot q_{T}\right)} H_{f f^{\prime}}(Q)\left\{\tilde{R}^{f}[b ; Q]\right\}^{2} \tilde{F}_{f \leftarrow h}\left(x_{1}, b\right) \tilde{F}_{f^{\prime} \leftarrow h}\left(x_{2}, b\right),
$$

with $\zeta_{f}=\mu_{f}^{2}=Q^{2}$

$$
\tilde{R}^{f}[b ; Q]=(Q b)^{-\mathcal{D}^{f}(Q, b)} \exp \left\{-\mathcal{D}^{f}(Q, b) v^{f}(Q, b)\right\}
$$

- v is given by the perturbative series, $v=\frac{3}{2}+a_{s} \ldots$
- \tilde{F} is TMD in the "naive" ζ-prescription
- There are only $\left(\mu_{f}, \zeta_{f}\right)$ scales and no solution dependence.
- Clear separation of TMD evolution from the model for TMD distribution.

Evolution with b－dependent scale（CSS－like） $\left(Q, Q^{2}\right) \rightarrow\left(\mu_{b}, \mu_{b}^{2}\right)$

$$
\text { Here } \mu_{b}=\frac{C_{0}}{b^{*}} \text { with } b_{\max }=1.2 \mathrm{GeV}^{-1}
$$

Analogy in DIS
Scale depends on paremeter $\quad \leftrightarrow \quad d \sigma=C(Q) R[Q \rightarrow \operatorname{ch}(x)] f(x, \operatorname{ch}(x))$
PDF $f(x, \operatorname{ch}(x))$ has no interpretation，no sense，and
depends on the order of evolution in use．

Optimal version $\left(Q, Q^{2}\right) \rightarrow\left(Q, \zeta_{Q}\right)$

Analogy in DIS
Scale (potential) is fixed $\quad \leftrightarrow \quad d \sigma=C(Q) R[Q \rightarrow 2 \mathrm{GeV}] f(x, 2 \mathrm{GeV})$
PDF $f(x, 2 \mathrm{GeV})$ is just a model and
is dependent on the order of evolution in use.

The evolution potential depends on b.

Relative position of its elements (saddle-point, special lines) dictates the shape of evolution factor.

- Variety of evolutions
- LO, NLO, NNLO
- No restriction for NP models
- Fast code
- DY cross-sections
- SIDIS cross-sections (not tuned yet)
- Theory uncertainty bands
https://teorica.fis.ucm.es/artemide/

Conclusion

Main message:

TMD evolution is a double scale evolution. Therefore, it should be considered with care, and then it grants many simplifications.

TMD distributions on a same equipotential line are

 equivalent. Enumerate them with lines!- Universal for all quantum numbers
- Very simple practical formula (no integrations!)
- Guarantied absence of (large) logarithms in the matching coefficient
- TMD model is independent on evolution order.
E.g You can use NNLO unpolarized and LO Sivers together, without theory tensions

Double-scale evolution is not unique for TMD case. It also appears in k_{T}-resummation, joint resummation, DPDs, etc.

- Some non-interesting singularities at $\mu, \zeta \rightarrow \infty$
- Landau pole at $\mu=\Lambda$
- Saddle point (blue dot)

$$
\mathcal{D}\left(\mu_{\text {saddle }}, b\right)=0, \quad \gamma_{M}\left(\mu_{\text {saddle }}, \zeta_{\text {saddle }}, b\right)=0
$$

