Nuclear Spin Physics via Polarization Measurements

Tomotsugu Wakasa Department of Physics, Kyushu University

Contents

Three nucleon force effects in few-nucleon systems

- Clear signature of three nucleon forces and defects in spin-dependence
- Comparison with chiral-EFT predictions
- Isospin dependence

Spin-isospin responses for stable and unstable nuclei

- Isospin dependence of spin-isospin responses and residual interactions
- Spin-isospin incompressibility and neutron skin thickness

New spin-isospin mode and application to neutrino physics

- Double Gamow-Teller transition 0vββ matrix element
- Double Gamow-Teller resonance

Emphasis on recent experimental data from RIKEN/RIBF, RCNP, NSCL/MSU (high-precision polarization observables and spin-isospin excitations)

Three nucleon force effects in few-nucleon systems

3NF effects in finite nuclei

J. Carlson et al., Rev. Mod. Phys. 87, 1067 (2015).

Ab Initio calculations for light nuclei

Green's function Monte Carlo, no-core shell model, etc.

- 2NF : provide less binding energies
- 3NF : well reproduce the data (ex. ⁴He)

Different predictions for UIX and IL7 3NFs → What is different ?

Isospin dependence of 3NF effects

UIX and IL7 3NF $V_{ijk}^{\mathrm{UIX}} = V_{ijk}^{2\pi,P} + V_{ijk}^{R}$ $V_{ijk}^{\mathrm{ILx}} = V_{ijk}^{2\pi,P} + V_{ijk}^{R} + V_{ijk}^{2\pi,S} + V_{iik}^{3\pi}$ p-wave πN scattering term (Fujita-Miyazawa type) isospin-independent repulsive term • s-wave πN scattering term (~3-4%) -20 • 3π rings with Δ 's (~10%) -30 different isospin dependence more attraction for N>Z -40 **General structure of 3NF** • 22 structure func./generators are needed under some invariances/symmetries

Need a systematic theoretical approach \rightarrow chiral EFT

J. Carlson et al., Rev. Mod. Phys. 87, 1067 (2015).

$\mathcal{G}_1 = 1$	$\mathcal{G}_{12} = \boldsymbol{\tau}_2 \cdot \boldsymbol{\tau}_3 \vec{q}_1 \cdot \vec{\sigma}_1 \vec{q}_3 \cdot \vec{\sigma}_2$
$\mathcal{G}_2 = \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_3$	$\mathcal{G}_{13} = \boldsymbol{\tau}_2 \cdot \boldsymbol{\tau}_3 \vec{q}_3 \cdot \vec{\sigma}_1 \vec{q}_1 \cdot \vec{\sigma}_2$
$\mathcal{G}_3 = \vec{\sigma}_1 \cdot \vec{\sigma}_3$	$\mathcal{G}_{14} = \boldsymbol{\tau}_2 \cdot \boldsymbol{\tau}_3 \vec{q}_3 \cdot \vec{\sigma}_1 \vec{q}_3 \cdot \vec{\sigma}_2$
$\mathcal{G}_4 = \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_3 \vec{\sigma}_1 \cdot \vec{\sigma}_3$	$\mathcal{G}_{15} = \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_3 \vec{q}_2 \cdot \vec{\sigma}_1 \vec{q}_2 \cdot \vec{\sigma}_3$
$\mathcal{G}_5 = \boldsymbol{\tau}_2 \cdot \boldsymbol{\tau}_3 \vec{\sigma}_1 \cdot \vec{\sigma}_2$	$\mathcal{G}_{16} = \boldsymbol{\tau}_2 \cdot \boldsymbol{\tau}_3 \vec{q}_3 \cdot \vec{\sigma}_2 \vec{q}_3 \cdot \vec{\sigma}_3$
$\mathcal{G}_6 = \boldsymbol{\tau}_1 \cdot (\boldsymbol{\tau}_2 \times \boldsymbol{\tau}_3) \vec{\sigma}_1 \cdot (\vec{\sigma}_2 \times \vec{\sigma}_3)$	$\mathcal{G}_{17} = \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_3 \vec{q}_1 \cdot \vec{\sigma}_1 \vec{q}_3 \cdot \vec{\sigma}_3$
$\mathcal{G}_7 = \boldsymbol{\tau}_1 \cdot (\boldsymbol{\tau}_2 \times \boldsymbol{\tau}_3) \vec{\sigma}_2 \cdot (\vec{q}_1 \times \vec{q}_3)$	$\mathcal{G}_{18} = \boldsymbol{\tau}_1 \cdot (\boldsymbol{\tau}_2 \times \boldsymbol{\tau}_3) \vec{\sigma}_1 \cdot \vec{\sigma}_3 \vec{\sigma}_2 \cdot (\vec{q}_1 \times \vec{q}_3)$
$\mathcal{G}_8 = \vec{q}_1 \cdot \vec{\sigma}_1 \vec{q}_1 \cdot \vec{\sigma}_3$	$\mathcal{G}_{19} = \boldsymbol{\tau}_1 \cdot (\boldsymbol{\tau}_2 \times \boldsymbol{\tau}_3) \vec{\sigma}_3 \cdot \vec{q}_1 \vec{q}_1 \cdot (\vec{\sigma}_1 \times \vec{\sigma}_2)$
$\mathcal{G}_9 = \vec{q}_1 \cdot \vec{\sigma}_3 \vec{q}_3 \cdot \vec{\sigma}_1$	$\mathcal{G}_{20} = \boldsymbol{\tau}_1 \cdot (\boldsymbol{\tau}_2 \times \boldsymbol{\tau}_3) \vec{\sigma}_1 \cdot \vec{q}_1 \vec{\sigma}_2 \cdot \vec{q}_1 \vec{\sigma}_3 \cdot (\vec{q}_1 \times \vec{q}_3)$
$\mathcal{G}_{10} = \vec{q}_1 \cdot \vec{\sigma}_1 \vec{q}_3 \cdot \vec{\sigma}_3$	$\mathcal{G}_{21} = \boldsymbol{\tau}_1 \cdot (\boldsymbol{\tau}_2 \times \boldsymbol{\tau}_3) \vec{\sigma}_1 \cdot \vec{q}_2 \vec{\sigma}_3 \cdot \vec{q}_2 \vec{\sigma}_2 \cdot (\vec{q}_1 \times \vec{q}_3)$
$\mathcal{G}_{11} = \boldsymbol{\tau}_2 \cdot \boldsymbol{\tau}_3 \vec{q}_1 \cdot \vec{\sigma}_1 \vec{q}_1 \cdot \vec{\sigma}_2$	$\mathcal{G}_{22} = \boldsymbol{\tau}_1 \cdot (\boldsymbol{\tau}_2 \times \boldsymbol{\tau}_3) \vec{\sigma}_1 \cdot \vec{q}_1 \vec{\sigma}_3 \cdot \vec{q}_3 \vec{\sigma}_2 \cdot (\vec{q}_1 \times \vec{q}_3)$

H. Krebs, A. Gasparyan, and E. Epelbaum, Phys. Rev. C 87, 054007 (2013).

Chiral expansion of nuclear forces

Can chiral nuclear force at N²LO (consistent 2N+3N forces) reproduce 3N scattering data?

3NF effects in p+d elastic scattering

E. Epelbaum et al., arXiv:1807.02848 [nucl-th].

Differential cross section at 70-250 MeV/nucleon

- Exp. data : RIKEN, RCNP, KVI
- Theor. calc : Faddeev calc. with chiEFT potential up to N²LO
 - Red : NN potential only
 - Green : NN potential + 3NF

Theoretical calculations reproduce the exp. data up to 135 MeV/A w/o free parameter!
Discrepancy at 250 MeV would be due to higher-order effects at higher energies
→ How about polarization observables?

3NF effects in polarization observables

Reasonable description within theor. uncertainties except for T_{21} at backward angles

- Need to go to higher chiral orders (N⁴LO) to improve the theoretical accuracy
- T₂₁ might be sensitive to higher-order effects

Frontiers & challenges for the future

Chiral expansion of 3NF

Faddeev calc. for scattering states is limited up to N²LO

- N³LO (Q⁴): parameter-free, but large N⁴LO contributions by Δ is expected
- N⁴LO (Q⁵): new 10 LECs
 - Need *high-precision N-d scattering data* in wide energy region → partial wave analysis

E. Epelbaum. presentation in IHEP, Peking (2014).

3NF effects at higher energies

K. Sekiguchi et al., Phys. Rev. C 96, 064001 (2017). Comparison with data (RIKEN/IUCF) and predictions using chiral NN force (w/o 3NF)

3NF effects are clearly needed and spin-dependent:

- At 70 MeV : Clear discrepancy for T₂₁ and T₂₂
- At higher energies : Generally different at backward angles
- * Limited to T=1/2 for N-d \rightarrow *Four nucleon system* (p+³He, etc.) for T=3/2 3NF

Useful for

3NF-LECs at N⁴LO

p+³He scattering and T=3/2 3NFs. M. Viviani et al., Phys. Rev. Lett. 111, 172302 (2013).

Now, it is interesting to study at higher energies for pol. observables with high accuracy!

New p-³He A_y data at 70 MeV

New ³He analyzing power exp./data for p-³He by Tohoku group (Sekiguchi-Gr.)

Spin-isospin responses for stable and unstable nuclei

GT studies on stable nuclei and collectivity

Ex

~10 MeV

GTGR

concentration

by g'_{NN}

β+

Gamow-Teller → Most fundamental spin-isospin mode

- GTGR : collectivity by repulsive residual interaction
 - Well described by Landau Migdal parameter g'_{NN}
- Nuclear astrophysics : weak processes in Type Ia, II SNe
- Deeper understanding of nuclear structures
 → nuclear ME in double beta decays

Landau-Migdal g'_{NN} is the important key parameter and almost const. for stable nuclei → Extension to RI beam (isospin/density dependence?)

Overview of (p,n) studies for RI beam

Why 132Sn ?

¹³²Sn is the doubly-magic nucleus between ⁹⁰Zr and ²⁰⁸Pb (well studied nuclei)

Benchmarking nucleus for nuclear models in medium heavy region

- NR-RPA, R-RPA, R-TBA, NR-RPA+PVC, etc.
- Long isotope chain (A=112 \rightarrow 132)
- Isospin-dependence of GTGR peak (g'_{NN})
- GTGR peak for ¹³²Sn might be deviate from the systematic trend.

(p,n) cross sections @ $\theta=0^{\circ}$

GTGR

IAS:

Experimental setup at SAMURAI in RIKEN/RIBF

Experimental results

J. Yasuda, M. Sasano, R.G.T. Zegers et al., accepted for publication in PRL. Experimental results and multipole decomposition analysis

• GTR(ΔL=0) is observed/identified:

B(GT) and Landau-Migdal parameter g'NN

B(GT) distribution

 $g'_{\mathsf{N}\mathsf{N}}$ is sensitive to GT peak and evaluated in RPA

- $g'_{NN} = 0.68 \pm 0.07$
- Consistent with 0.6 for ⁹⁰Zr and 0.64 for ²⁰⁸Pb

g'_{NN} is constant for isospin asymmetry (N-Z)/A of 0.11(⁹⁰Zr) to 0.24(¹³²Sn)

Comparison with theoretical models

- Reasonably reproduce the GTR in ¹³²Sn
- The shoulder structure depends on shell structure

Total strength of B(GT) up to 25 MeV (up to GTR)

 $S_{\rm GT}^- = 53 \pm 5({\rm stat})^{+11}_{-10}({\rm syst})$

- 56% of sum-rule value of 3(N-Z)=96
- Consistent with the systematics in stable nuclei
 - A future study for higher excitations is challenging

J. Yasuda, M. Sasano, R.G.T. Zegers et al., submitted to PRL.

GT resonance for neutron-rich nuclei

Gamow-Teller resonance for very neutron-rich nuclei, ⁸He and ¹²Be

- ⁸He: (N-Z)/A = 0.50 \rightarrow *Largest isospin asymmetry* (cf. 0.21 for ²⁰⁸Pb)
- ¹²Be: (N-Z)/A = 0.33

⁸He and ¹²Be can be used to study isospin dependence of residual interaction

- How to change (or NOT change) the repulsive spin-isospin interaction, g'_{NN}?
- How about the effects on Gamow-Teller resonance (collectivity)?

Also interesting:

- Halo/skin/cluster effects
- Deformation effects (ex. ellipsoid ratio = 2:1 for ¹²Be)

First (p,n) measurements in inverse kinematics at RIBF

courtesy of Y. Kanada-Enkyo

Systematics for stable nuclei

Existing data for stable nuclei support the constancy of $g'_{NN}=0.6\pm0.1$ up to (N-Z)/A=0.21 \rightarrow How about very neutron-rich nuclei for ¹²Be and ⁸He with (N-Z)/A=0.33 and 0.50

Experimental results

Gamow-Teller resonances have been *successfully observed* for ⁸He and ¹²Be

M. Kobayashi et al., JPS Conf. Proc. 1, 013034 (2014). courtesy of K. Yako

Collectivity in (N-Z)/A > 0.21; Very neutron-rich nuclei

Data are consistent with predictions employing g'_{NN}=0.6±0.1

 \rightarrow Suggests the constancy of residual interaction for up to (N-Z)/A=0.5 (very neutron-rich)

Isovector (IV) spin-monopole (IVSM) response

Spin-isospin ($\Delta S = \Delta T = 1$) modes with $\Delta L = 0$

- Gamow-Teller
- IV spin monopole (IVSM) $0\hbar\omega + 2\hbar\omega$ $\mathrm{IVSM}^{\pm}(\mu) = \sum t_{\pm}(k)\sigma_{\mu}(k)r(k)^{2}$

 $\mathrm{GT}^{\pm}(\mu) = \sum_k t_{\pm}(k) \sigma_{\mu}(k)$

Compression mode

 $0\hbar\omega$

Energy centroid E and width Γ of IVSMR

Isovector spin-incompressibility

• Effective interaction in spin-isospin channel: Landau-Migdal parameter g'NN

Sum-rule (model-independent)

$$S_{-} - S_{+} = 3(N \langle r^{4} \rangle_{n} - Z \langle r^{4} \rangle_{p})$$
neutron proton
Neutron skin thickness: $\delta_{np} \equiv \sqrt{\langle r^{2} \rangle_{n}} - \sqrt{\langle r^{2} \rangle_{p}}$
 δ_{np} constrains L and J in EOS
 $\simeq \frac{\sqrt{3/5}}{\sqrt[4]{3/7}} \left(\sqrt[4]{\langle r^{4} \rangle_{n}} - \sqrt[4]{\langle r^{4} \rangle_{p}} \right)$

IVSM and sum-rule give constraint on neutron matter equation of state (EOS)

IVSM probed by HI charge-exchange

courtesy of S. Noji

Surface absorption in HI charge-exchange enhances monopole cross section

New data for IVSM by (12N,12C) and (t,3He) on 90Zr at RIKEN/RIBF with SHARAQ

Experimental results

β+: ⁹⁰Zr(t, ³He)

K. Miki et al., PRL 108, 262503 (2012).

- Significant enhancement Ex≈20 MeV by IVSM compared with (p,n) data
- Consistent with HF-RPA (blue)

→ Clearest identification of β +-IVSM

Sum-rule and neutron skin thickness

New spin-isospin mode and application to neutrino physics

Ονββ decay and double charge exchange

Linear corr. b/w $0\nu\beta\beta$ and DGT matrix elements \rightarrow DCX (¹⁸O,¹⁸Ne) could provide $M^{0\nu\beta\beta}$

HI double charge exchange (DCX) reaction I

F. Cappuzzello et al., *Eur. Phys. J. A* 51, 145 (2015).

J. Area et al., Phys. Rev. Lett. 109, 042501 (2012).

Double GT (DGT) resonance by double charge exchange

E. Carrier et al., Phys. Lett. B, 711 (2012). 2vββ decay matrix element: M^{2v} $M^{(2\nu)}$ (MeV⁻¹) $T_{1/2}^{2\nu}(y)$ Decay 48 Ca \rightarrow 48 Ti 4.4×10^{19} 0.047 ± 0.003 • Exhaust only less than 0.1% of sum-rule $^{76}\text{Ge} \rightarrow ^{76}\text{Se}$ 1.5×10^{21} 0.140 ± 0.005 82 Se $\rightarrow ^{82}$ Kr 9.2×10^{19} 0.098 ± 0.004 • Similar to delay of single β -decay (missing strength) 96 Zr \rightarrow 96 Mo 0.096 ± 0.004 < 0.1% 100 Mo $\rightarrow ^{100}$ Ru 0.246 ± 0.007 • Missing strength \rightarrow GT resonance (GTR) $^{116}Cd \rightarrow ^{116}Sn$ 0.136 ± 0.005 128 Te $\rightarrow ^{128}$ Xe 1.9×10^{24} 0.049 ± 0.006 • Observed by single charge exchange, (p,n) etc. $^{130}\text{Te} \rightarrow ^{130}\text{Xe}$ 6.8×10^{20} 0.034 ± 0.003 136 Xe $\rightarrow ^{136}$ Ba 0.019 ± 0.002 2.1×10^{21} Missing strength would be found as Double GTR 150 Nd $\rightarrow ^{150}$ Sm 8.2×10^{18} 0.063 ± 0.003 ~99.9% • **DGT** : new spin-isospin mode predicted 30y ago DGTR Excited by double charge exchange (DCX) DIAS **GTR**

250keV

COUNTS

Promissing

DGTR data

DCX reaction

(π⁺,π⁻)

- Successfully observe Double IAS
- Populates Spin-flip states (DGT) only weakly

New idea/probe: (12C,12Be[02+]) at RCNP/RIBF

- Large projectile transition
- Clear identification by γ-tagging

M. Takaki et al., JPS Conf. Proc. 6, 020038 (2015).

of sum-rule IAS $^{A}Z +$ ^{A}Z $\beta\beta$ ~0.1% ^AZ + 2 70 60 ${}^{48}\text{Ca}(\pi^+,\pi^-){}^{48}\text{Ti}$ $\theta_{lab} = 5^{\circ}$ 50 ⁴⁸Ca(π+,π-)⁴⁸T 40 Missing 30 DGTR 20 ᡔ<mark>ᡔᢇᡐ᠋ᢩᡁᡕᢏ᠕</mark>ᡪ᠋ᡁᠺᠬᡘ 10 5 0 20 -5 10 15 25 30 35 M. Kaletka et al., Phys. Lett. B 199, 336 (2012).

HI double charge exchange (DCX) reaction II

35

DGT and its relation to 0vßß decay

Theoretical prediction of DGT of ⁴⁸Ca

Shell-model predictions with GXPF1B int.

- Double peaks \rightarrow consistent with exp. data
- Double GT resonance at $E_x \approx 26$ MeV
 - Consistent with exp. result of ≈ 27 MeV

Theoretical prediction b/w E_x and $M^{0\nu\beta\beta}$

- DGT dist. \rightarrow sensitive to paring corr.: G⁽⁰¹⁾
- $M^{0\nu\beta\beta}$ \rightarrow sensitive to $G^{(01)}$

N. Shimizu et al., Phys. Rev. Lett. 120, 142502 (2018).

Summary and Outlook

Three nucleon force effects in few nucleon systems

Data is accumulating \rightarrow 3NF effects are clear

3NFs at N²LO are insufficient especially for spin-isospin dependence (pol. obs.)

- Push the chiral expansion to N⁴LO
- More N-d scattering data for phase-shift analysis and p-³He data for T=3/2 3NFs

Spin-isospin responses for stable and unstable nuclei

Observe Gamow-Teller resonances for ⁸He&¹²Be (n-rich) and ¹³²Sn (double magic) **Constancy of g'_{NN}** in wide nuclear chart region with A \approx 8–208 and (N-Z)/A \approx 0.1–0.5

• Further investigations for the total strength and higher multipole modes such as SD

IVSM \rightarrow clearly observed by HI charge-exchange

Double charge-exchange/Gamow-Teller and neutrino-related physics

DCX reaction \rightarrow constraint on M^{0vββ}; the double beta-decay nuclear matrix element Candidate of Double GT resonance \rightarrow useful to observe new collective motion

Acknowledgement

Thanks to all collaborators and friends involved with relevant experiments.

In particular to:

- K. Sekiguchi (Tohoku University)
- K. Yako (CNS, University of Tokyo)
- M. Sasano (RIKEN Nishina Center)
- S. Noji (NSCL/MSU)
- K. Miki (Tohoku University)
- M. Takaki (CNS, University of Tokyo)

for valuable comments and figure preparation.

Thank you for your attention.