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Three nucleon force effects  
in few-nucleon systems



3NF effects in finite nuclei
Ab Initio calculations for light nuclei 

Green’s function Monte Carlo, no-core shell model, etc.

• 2NF : provide less binding energies

• 3NF : well reproduce the data (ex. 4He)

Light nuclei spectrum computed with GFMC
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Many other observables (radii, densities, transitions, ...) also well
described, Carlson, et al, RMP (2015)

Stefano Gandolfi (LANL) - stefano@lanl.gov The EOS of neutron matter and neutron star structure 13 / 40

J. Carlson et al., Rev. Mod. Phys. 87, 1067 (2015).

Different predictions for UIX and IL7 3NFs  
→ What is different ?

NN only
NN + 3NF exp.

Argonne v18 
with UIX or Illinois-7 
GFMC Calculations 

1 June 2011

Light nuclei spectrum computed with GFMC
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Light nuclei spectrum computed with GFMC
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UIX and IL7 3NF 

• p-wave πN scattering term (Fujita-Miyazawa type)

• isospin-independent repulsive term

• s-wave πN scattering term (～3-4%)


• 3π rings with Δ’s (～10%) 

• different isospin dependence 

• more attraction for N>Z


General structure of 3NF 
• 22 structure func./generators are needed  

under some invariances/symmetries

Isospin dependence of 3NF effects

Light nuclei spectrum computed with GFMC
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NUCLEAR HAMILTONIAN – URBANA Vijk

V UIXijk = V 2π,P
ijk + V R

ijk

V 2π,P
ijk : Fujita-Miyazawa ∼ p-wave πN scattering; in all realistic Vijk

• Longest ranged Vijk

• Attractive in all nuclei studied.

V 2π,P
ijk = A2π,P

X

cyclic

{Xij, Xjk}{τi · τj , τj · τk} +
1
4
[Xij , Xjk][τi · τj , τj · τk]

Xij = Y (mπrij) σi · σj + T (mπrij) Sij

Y (x) =
e−x

x
ξ(r)

T (x) =

„

3
x2

+
3
x

+ 1

«

e−x

x
ξ2(r)

ξ(r) = (1 − e−Cr2

)

Δ

π

π

V R
ijk: represents all else including relativistic effects – purely central and repulsive

V R
ijk = AR

X

cyclic

T 2(rij)T
2(rjk)

Two couplings fit to 3H and nuclear matter saturation density

NUCLEAR HAMILTONIAN – ILLINOIS Vijk

V ILxijk = V 2π,P
ijk + V 2π,S

ijk + V 3π
ijk + V R

ijk

V 2π,P
ijk & V R

ijk: Same form as Urbana, new coupling constants
V 2π,S

ijk : s-wave πN scattering term

• From Tuscon-Melbourne Vijk

• We use chiral-perturbation theory coupling
• Not different from V 2π,P

ijk dependence on A, Z, J, T

• but only 3%-4% of V 2π,P
ijk

π

π

V 3π
ijk: 3π rings with∆’s; new in Illinois Vijk

• Extra p-shell, |N − Z| attraction
• One∆ in energy denominator
• 2∆, 3∆ denominators not yet considered
• ⟨V 3π

ijk⟩ ∼
< 0.1⟨V 2π

ijk⟩

V 3π
ijk = A3π

ˆ

50
3 SτSσ + 26

3 AτAσ

˜

Sτ = 2 + 2
3 (τ i · τ j + τ j · τ k + τ k · τ i) = 4PT=3/2

Aτ = − 1
6 [τi · τj , τj · τk]

Δ

Δ
Δ

π

π

π

π
π π
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J. Carlson et al., Rev. Mod. Phys. 87, 1067 (2015).

H. Krebs, A. Gasparyan, and E. Epelbaum, Phys. Rev. C 87, 054007 (2013).
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TABLE I. The set of 22 generating operators Gi and their relation to 89 independent operators O1, . . . , O89 which parametrize the most
general structure of a local 3NF. The operators Oi are generated by application of one of the six functions S, A, G11, G12, G21, or G22 on
the corresponding operator Gj . The 22 operators are constructed to be totally symmetric, symmetric under 1 ↔ 3, or unsymmetric.

Generators G of 89 independent operators S A G12 G22 G11 G21

G1 = 1 O1 0 0 0 0 0
G2 = τ 1 · τ 3 O2 0 O3 O4 0 0
G3 = σ⃗1 · σ⃗3 O5 0 O6 O7 0 0
G4 = τ 1 · τ 3σ⃗1 · σ⃗3 O8 0 O9 O10 0 0
G5 = τ 2 · τ 3σ⃗1 · σ⃗2 O11 O12 O13 O14 O15 O16

G6 = τ 1 · (τ 2 × τ 3)σ⃗1 · (σ⃗2 × σ⃗3) O17 0 0 0 0 0
G7 = τ 1 · (τ 2 × τ 3)σ⃗2 · (q⃗1 × q⃗3) O18 0 O19 O20 0 0
G8 = q⃗1 · σ⃗1q⃗1 · σ⃗3 O21 O22 O23 O24 O25 O26

G9 = q⃗1 · σ⃗3q⃗3 · σ⃗1 O27 0 O28 O29 0 0
G10 = q⃗1 · σ⃗1q⃗3 · σ⃗3 O30 0 O31 O32 0 0
G11 = τ 2 · τ 3q⃗1 · σ⃗1q⃗1 · σ⃗2 O33 O34 O35 O36 O37 O38

G12 = τ 2 · τ 3q⃗1 · σ⃗1q⃗3 · σ⃗2 O39 O40 O41 O42 O43 O44

G13 = τ 2 · τ 3q⃗3 · σ⃗1q⃗1 · σ⃗2 O45 O46 O47 O48 O49 O50

G14 = τ 2 · τ 3q⃗3 · σ⃗1q⃗3 · σ⃗2 O51 O52 O53 O54 O55 O56

G15 = τ 1 · τ 3q⃗2 · σ⃗1q⃗2 · σ⃗3 O57 0 O58 O59 0 0
G16 = τ 2 · τ 3q⃗3 · σ⃗2q⃗3 · σ⃗3 O60 O61 O62 O63 O64 O65

G17 = τ 1 · τ 3q⃗1 · σ⃗1q⃗3 · σ⃗3 O66 0 O67 O68 0 0
G18 = τ 1 · (τ 2 × τ 3)σ⃗1 · σ⃗3σ⃗2 · (q⃗1 × q⃗3) O69 0 O70 O71 0 0
G19 = τ 1 · (τ 2 × τ 3)σ⃗3 · q⃗1q⃗1 · (σ⃗1 × σ⃗2) O72 O73 O74 O75 O76 O77

G20 = τ 1 · (τ 2 × τ 3)σ⃗1 · q⃗1σ⃗2 · q⃗1σ⃗3 · (q⃗1 × q⃗3) O78 O79 O80 O81 O82 O83

G21 = τ 1 · (τ 2 × τ 3)σ⃗1 · q⃗2σ⃗3 · q⃗2σ⃗2 · (q⃗1 × q⃗3) O84 0 O85 O86 0 0
G22 = τ 1 · (τ 2 × τ 3)σ⃗1 · q⃗1σ⃗3 · q⃗3σ⃗2 · (q⃗1 × q⃗3) O87 0 O88 O89 0 0

where we made a change of variable P ′′ = P ′P in the last
line. This equation has the form of Eq. (5.7) with

Fi :=
∑

P∈S3

⎧
⎨

⎩
1

36
P −1(Mi) + 1

36
(−1)w(P )P −1(Ni)

+
2∑

j,k=1

1
18

Djk(P )P −1(Li
jk

)
⎫
⎬

⎭ . (5.10)

VI. CHIRAL EXPANSION OF THE LONG-RANGE
TAIL OF THE 3NF

With these preparations we are now in the position to
address the convergence of the chiral expansion for the
long-range tail of the 3NF. It is clear that all arguments of the
previous section can also be applied to operators in coordinate
space. Here and in what follows, we use the following basis of
22 operators:7

G̃1 = 1,

G̃2 = τ 1 · τ 3,

G̃3 = σ⃗1 · σ⃗3,

G̃4 = τ 1 · τ 3 σ⃗1 · σ⃗3,

G̃5 = τ 2 · τ 3 σ⃗1 · σ⃗2,

7Note that the coordinate-space operators are not just the conjugates
of momentum-space operators according to Eq. (2.3).

G̃6 = τ 1 · (τ 2 × τ 3) σ⃗1 · (σ⃗2 × σ⃗3),

G̃7 = τ 1 · (τ 2 × τ 3) σ⃗2 · (r̂12 × r̂23),

G̃8 = r̂23 · σ⃗1 r̂23 · σ⃗3,

G̃9 = r̂23 · σ⃗3 r̂12 · σ⃗1,

G̃10 = r̂23 · σ⃗1 r̂12 · σ⃗3,

G̃11 = τ 2 · τ 3 r̂23 · σ⃗1 r̂23 · σ⃗2,
(6.1)

G̃12 = τ 2 · τ 3 r̂23 · σ⃗1 r̂12 · σ⃗2,

G̃13 = τ 2 · τ 3 r̂12 · σ⃗1 r̂23 · σ⃗2,

G̃14 = τ 2 · τ 3 r̂12 · σ⃗1 r̂12 · σ⃗2,

G̃15 = τ 1 · τ 3 r̂13 · σ⃗1 r̂13 · σ⃗3,

G̃16 = τ 2 · τ 3 r̂12 · σ⃗2 r̂12 · σ⃗3,

G̃17 = τ 1 · τ 3 r̂23 · σ⃗1 r̂12 · σ⃗3,

G̃18 = τ 1 · (τ 2 × τ 3) σ⃗1 · σ⃗3 σ⃗2 · (r̂12 × r̂23),

G̃19 = τ 1 · (τ 2 × τ 3) σ⃗3 · r̂23 r̂23 · (σ⃗1 × σ⃗2),

G̃20 = τ 1 · (τ 2 × τ 3) σ⃗1 · r̂23 σ⃗2 · r̂23 σ⃗3 · (r̂12 × r̂23),

G̃21 = τ 1 · (τ 2 × τ 3) σ⃗1 · r̂13 σ⃗3 · r̂13 σ⃗2 · (r̂12 × r̂23),

G̃22 = τ 1 · (τ 2 × τ 3) σ⃗1 · r̂23 σ⃗3 · r̂12 σ⃗2 · (r̂12 × r̂23),

where r̂ij ≡ r⃗ij /|r⃗ij | and r⃗ij = r⃗i − r⃗j denotes the position
of nucleon i with respect to nucleon j . The 3NF is a
linear combination of the operators G̃i with the coefficients
given by scalar functions Fi(r12, r23, r31). These functions
have the dimension of energy and can be interpreted as the
potential energy between three static nucleons projected onto
the corresponding operator. The profile functions Fi receive

054007-11

Need a systematic theoretical approach → chiral EFT

Light nuclei spectrum computed with GFMC

-100

-90

-80

-70

-60

-50

-40

-30

-20

En
erg

y (
M

eV
)

AV18
AV18
+UIX

AV18
+IL7 Expt.

0+

4He
0+
2+

6He 1+
3+
2+
1+

6Li
3/2−
1/2−
7/2−
5/2−
5/2−
7/2−

7Li

0+
2+

8He 2+
2+

2+
1+

0+

3+
1+

4+

8Li

1+

0+
2+

4+
2+
1+
3+
4+

0+

8Be
3/2−
1/2+
5/2−
1/2−
5/2+
3/2+

7/2−
3/2−

7/2−
5/2+
7/2+

9Be 3+
1+

2+

4+

1+

3+
2+

3+

10B

3+

1+

2+

4+

1+

3+
2+

0+

12C

Argonne v18
with UIX or Illinois-7
GFMC Calculations

 1 June 2011

Many other observables (radii, densities, transitions, ...) also well
described, Carlson, et al, RMP (2015)

Stefano Gandolfi (LANL) - stefano@lanl.gov The EOS of neutron matter and neutron star structure 13 / 40

+IL7

+UIX

AV18

exp 0+

2+

8He

CHIRAL THREE-NUCLEON . . . . II. INTERMEDIATE- ... PHYSICAL REVIEW C 87, 054007 (2013)
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general structure of a local 3NF. The operators Oi are generated by application of one of the six functions S, A, G11, G12, G21, or G22 on
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Generators G of 89 independent operators S A G12 G22 G11 G21
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G̃21 = τ 1 · (τ 2 × τ 3) σ⃗1 · r̂13 σ⃗3 · r̂13 σ⃗2 · (r̂12 × r̂23),

G̃22 = τ 1 · (τ 2 × τ 3) σ⃗1 · r̂23 σ⃗3 · r̂12 σ⃗2 · (r̂12 × r̂23),

where r̂ij ≡ r⃗ij /|r⃗ij | and r⃗ij = r⃗i − r⃗j denotes the position
of nucleon i with respect to nucleon j . The 3NF is a
linear combination of the operators G̃i with the coefficients
given by scalar functions Fi(r12, r23, r31). These functions
have the dimension of energy and can be interpreted as the
potential energy between three static nucleons projected onto
the corresponding operator. The profile functions Fi receive
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Chiral expansion of nuclear forces

Two-nucleon force

✦ Short-range: LECs fit to NN data

✦ Long-range: LECs fixed from πN data 

Zwei-Nukleon-Kraft

Führender Beitrag 

Korrektur 1. Ordnung

Korrektur 2. Ordnung

Korrektur 3. Ordnung

Drei-Nukleon-Kraft Vier-Nukleon-KraftTwo-nucleon force Three-nucleon force Four-nucleon force

LO (Q0)   

NLO (Q2)

N2LO (Q3)

N3LO (Q4)

Two nucleon force Three nucleon force Four nucleon force

LO (Q0)

NLO (Q2)

N2LO (Q3)

N3LO (Q4)

2π-1π ring 2π
Illinois-type 3NF

appears at N3LO

2 LECs in 3NF at N2LO 
✦ B.E. of 3H

✦ c.s. minimum in Nd scattering 

Can chiral nuclear force at N2LO (consistent 2N+3N forces) reproduce 3N scattering data?

E. Epelbaum, presentation at YKIS2018b Symposium on Recent Development in Quark-Hadron Sciences.

Faddeev calc. frontier



Differential cross section at 70-250 MeV/nucleon 
• Exp. data : RIKEN, RCNP, KVI

• Theor. calc : Faddeev calc. with chiEFT potential up to N2LO


• Red    : NN potential only

• Green : NN potential + 3NF 

3NF effects in p+d elastic scattering
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FIG. 3: (Color online) The nd elastic scattering cross section at the incoming neutron laboratory energies E = 70, 108 and
135 MeV. In the left panel, the solid (red) lines are predictions of the N2LO SCS NN potential with the regulator R = 0.9 fm.
Combining this NN potential with the N2LO 3NF using five di↵erent (cD, cE) combinations leads to results shown by the
(brown) double-dashed-dotted, (magenta) dashed-dotted, (maroon) dotted, (cyan) solid and (red) double-dotted-dashed lines
for cD = �2.0, 0.0, 2.0, 4.0 and 6.0, respectively. The (green) bands show the estimated theoretical uncertainty of predictions
at N2LO with cD = 2.0. The corresponding cE-values are in all cases taken from the correlation line shown in Fig. 1. The
(black) dots depict pd data from Ref. [41] at E = 70 and E = 135 MeV and from Ref. [42] at E = 108 MeV. In the right panel,
the �2 fits to the experimental data in the indicated angular regions based of on these five pairs of (cD, cE) values are shown
by dashed (green) lines. The legends in the right pannel provide the best fit cD values to the data at each laboratory energy
over the indicated angular range.

order to cover a broader kinematical range up to Elab = 250 MeV 2 and focus on a very restricted set of observables. A
more detailed discussion of Nd elastic and breakup scattering at N2LO will be published elsewhere. Since we are going

2 The results for low-energy scattering observables using R = 1.0 fm are comparable to the ones using R = 0.9 fm, see also Ref. [22] for a
similar conclusion for calculations based on NN forces only. More details will be given in a separate publication [29].
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FIG. 5: (Color online) The nd elastic scattering cross section at En = 250 MeV. The lines and bands in the left (right) panel
are the same as in the left (left) panel of Fig. 4 (Fig. 3). (Black) dots depict the pd data from Ref. [58] while (blue) squares
are nd data from Ref. [59].

fact that the basic mechanism underlying these 3NF’s is the 2⇡-exchange. It is also interesting to observe that the
N2LO theoretical predictions are rather insensitive to the variation of cD, cE . Clearly, the convergence of the chiral
expansion at such high energies is expected to be rather slow as reflected by the broad error band in the right panel
of this figure. In fact, given the theoretical uncertainty of our N2LO results, the description of the experimental data
appears to be adequate at this chiral order.

Finally, as a representative example, we show in Fig. 6 our predictions for the complete set of analyzing powers
at E = 70 MeV together with the estimated theoretical uncertainty. Except for the tensor analyzing power T21 at
backward angles, we observe a reasonably good description of the data given the uncertainty of our results. Clearly,
one will have to go to higher chiral orders in order to improve the accuracy of the calculations and to perform more
quantitative tests of the theory. Work along these lines is in progress.

IV. GROUND STATE ENERGIES FOR p-SHELL NUCLEI

For p-shell nuclei, we use No-Core Configuration Interaction (NCCI) methods to solve the many-body Schrödinger
equation. These methods have advanced rapidly in recent years and one can now accurately solve fundamental
problems in nuclear structure and reaction physics using realistic interactions, see e.g., Ref. [61] and references therein.
Here we follow Refs. [62, 63] where, for a given interaction, we diagonalize the resulting many-body Hamiltonian in
a sequence of truncated harmonic-oscillator (HO) basis spaces. The goal is to achieve convergence as indicated by
independence of the basis parameters, but in practice we use extrapolations to estimate the binding energy in the
complete (but infinite-dimensional) space [62, 64–67]. These NCCI calculations were performed on the Cray XC30
Edison and Cray XC40 Cori at NERSC and the IBM BG/Q Mira at Argonne National Laboratory, using the code
MFDn [68–70].

In order to improve the convergence behavior of the bound state calculations we employ the Similarity Renormaliza-
tion Group (SRG) [71–74] approach that provides a straightforward and flexible framework for consistently evolving
(softening) the Hamiltonian and other operators, including three-nucleon interactions [75–78]. In the presence of
explicit 3NFs, this additional softening of the chiral interaction is necessary in order to obtain su�ciently converged
results on current supercomputers for p-shell nuclei. The flow equation for the three-body system is solved using a
HO Jacobi-coordinate basis [78]. The SRG evolution and subsequent transformation to single-particle coordinates
were performed on a single node using an e�cient OpenMP parallelized code.

As a consequence of the softening of the interaction, our results may depend on the SRG parameter ↵, because
we do not incorporate any induced interactions beyond 3NFs. Without explicit 3NFs, this dependence appears to be
negligible, see Fig. 7: for 4He the results with and without SRG evolution are within about 10 keV of each other, and
for 12C the di↵erence between the ground state energies at ↵ = 0.04 and ↵ = 0.08 fm4 is significantly less than the
estimated extrapolation uncertainty. Once we add explicit 3NFs to the NN potential we find that the results for 4He
do depend on the SRG parameter, and that this dependence increases as we evolve the interaction further (↵ = 0
corresponds to the interaction without SRG). However, for A � 6 this dependence becomes of the same order as (or
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LEC, cD,  
has been determined.

Theoretical calculations reproduce the exp. data up to 135 MeV/A w/o free parameter! 
• Discrepancy at 250 MeV would be due to higher-order effects at higher energies

→ How about polarization observables?

Parameter-free predictions
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FIG. 3: (Color online) The nd elastic scattering cross section at the incoming neutron laboratory energies E = 70, 108 and
135 MeV. In the left panel, the solid (red) lines are predictions of the N2LO SCS NN potential with the regulator R = 0.9 fm.
Combining this NN potential with the N2LO 3NF using five di↵erent (cD, cE) combinations leads to results shown by the
(brown) double-dashed-dotted, (magenta) dashed-dotted, (maroon) dotted, (cyan) solid and (red) double-dotted-dashed lines
for cD = �2.0, 0.0, 2.0, 4.0 and 6.0, respectively. The (green) bands show the estimated theoretical uncertainty of predictions
at N2LO with cD = 2.0. The corresponding cE-values are in all cases taken from the correlation line shown in Fig. 1. The
(black) dots depict pd data from Ref. [41] at E = 70 and E = 135 MeV and from Ref. [42] at E = 108 MeV. In the right panel,
the �2 fits to the experimental data in the indicated angular regions based of on these five pairs of (cD, cE) values are shown
by dashed (green) lines. The legends in the right pannel provide the best fit cD values to the data at each laboratory energy
over the indicated angular range.

order to cover a broader kinematical range up to Elab = 250 MeV 2 and focus on a very restricted set of observables. A
more detailed discussion of Nd elastic and breakup scattering at N2LO will be published elsewhere. Since we are going

2 The results for low-energy scattering observables using R = 1.0 fm are comparable to the ones using R = 0.9 fm, see also Ref. [22] for a
similar conclusion for calculations based on NN forces only. More details will be given in a separate publication [29].
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E. Epelbaum et al., arXiv:1807.02848 [nucl-th].

E = 70 MeV E = 108 MeV E = 250 MeVE = 135 MeV



p+d polarization observables at 70 MeV/nucleon 
• Exp. data : RIKEN(70 MeV), RCNP(65 MeV)

• Theor. calc. : Faddeev calc. with chiEFT potential up to N2LO


• Red : NN potential only, Green : NN potential + 3NF 

3NF effects in polarization observables

Reasonable description within theor. uncertainties except for T21 at backward angles 
• Need to go to higher chiral orders (N4LO) to improve the theoretical accuracy

• T21 might be sensitive to higher-order effects

E. Epelbaum et al., arXiv:1807.02848 [nucl-th].
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FIG. 6: (Color online) The nd elastic scattering neutron (Ay) and deuteron (iT11) vector analyzing powers as well as deuteron
tensor analyzing powers T20, T21 and T22 at the incoming neutron laboratory energy E = 70 MeV. The solid red lines are
predictions of the N2LO SCS NN potential with the regulator R = 0.9 fm. Combining that NN potential with N2LO 3NF with
strengths of the contact terms (cD = 2.0,cE = �0.3446) leads to results shown by the dotted maroon lines with their estimated
theoretical uncertainty depicted by the green bands. The black dots depict pd data for Ay at E = 65 MeV from Ref. [60] and
for other analyzing powers at E = 70 MeV from Ref. [41].

smaller than) our extrapolation uncertainty estimate. We can combine the extrapolation uncertainty and the SRG
dependence (estimated by taking the di↵erence between the binding energies at ↵ = 0.04 and ↵ = 0.08 fm4) into a
single numerical uncertainty estimate, treating them as independent.

In Fig. 7 we also see that the binding energies depend in a nontrivial way on the values of cD and cE . In particular,
as we increase cD (and change the corresponding cE accordingly) the ground state energy of 4He increases, whereas
that of 12C decreases with increasing cD. It turns out that for A = 6 and 7 the binding energy is nearly independent
(within our numerical uncertainty estimates) of the actual value of cD, whereas starting from A = 8 we do see a
systematic decrease of the ground state energy with increasing cD, at least for R = 1.0 fm and values of cD between
2 and 8 [28]. Furthermore, this dependence on cD seems to be stronger as one moves away from N = Z.

We have visualized our results for the ground state energies of A = 4 to 12 nuclei in Fig. 8, for the regulator of
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Frontiers & challenges for the future
Chiral expansion of 3NF 

• N3LO (Q4): parameter-free, but large N4LO contributions by Δ is expected

• N4LO (Q5): new 10 LECs


• Need high-precision N-d scattering data in wide energy region→partial wave analysis� Chiral expansion of the 3NF (Δ-less EFT)
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Girlanda, Kievski, Viviani ’11
10 LECs

parameter-free!!
Δ-effects are missing (except for the!
2π 3NF)  →  expect large N4LO corrections

parameter-free!!
Δ-effects are missing (except for the!
2π 3NF)  →  expect large N4LO corrections

long range parameter-free !
(after determination of LECs in πN)!
converged?? (graphs ~ ci2, ci3…)

E. Epelbaum. 
presentation in IHEP, 

Peking (2014).
parameter-free!

10 LECs

Faddeev calc. for scattering states is limited up to N2LO
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Comparison with data (RIKEN/IUCF) and predictions using chiral NN force (w/o 3NF) 
• Faddeev calculations with NN potential only at N4LO
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3NF effects at higher energies
K. Sekiguchi et al., Phys. Rev. C 96, 064001 (2017).

3NF effects are clearly needed and spin-dependent: 
• At 70 MeV              : Clear discrepancy for T21 and T22

• At higher energies  : Generally different at backward angles

✤ Limited to T=1/2 for N-d → Four nucleon system (p+3He, etc.) for T=3/2 3NF           
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Useful for  
3NF-LECs at N4LO
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Pisa Gr. succeeds in 4-body calc. 
AV18 + UIX/IL 3NF

• Difference b/w UIX and IL predictions

• importance of 3π-ring with Δ in IL-3NF

chiEFT (3NF@N2LO)

• 3NF plays an important role, 

but is insufficient

• 3π-ring terms @ N3LO would  

resolve the discrepancy
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p+3He scattering and T=3/2 3NFs
M. Viviani et al., Phys. Rev. Lett. 111, 172302 (2013).
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Now, it is interesting to study at higher energies for pol. observables with high accuracy!

IL-3NF

phenomenological 3NF prediction

N2LO

N3LO

chiral EFT prediction up to N2LO

3NF 
@N2LO

UIX-3NF

IL-3NF

UIX-3NF

3NF@N2LO

NN only



TOHOKU UNIVERSITY�

Results of experiment�

�	�

p + 3He scattering experiment�

Ø  We obtained 3He analyzing power 
from the asymmetry of yields. 

Ø  The experimental data was 
compared with the theoretical 
calculations*. 
-  Total momentum j ≤ 2 were taken 

into account. 
-  The angular distribution has a 

moderate agreement with the 
calculation. 

-  Large discrepancies at around  
minimum and maximum angles. 

* A. Deltuva, private communication�

In the future, 
it is necessary to compare the data with the theoretical calculations including 3NFs. �
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Analysis is in progress now.�

New 3He analyzing power exp./data for p-3He by Tohoku group (Sekiguchi-Gr.)  
TOHOKU UNIVERSITY�
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Pick-up Coil

Diode Laser

Drive Coils

Oven

Schematic view�

�	�

The polarized 3He target�

1000 mm�

B0 �

Power : 60 W 
Wavelength : 795 nm�

BRF �
àStatic magnetic field 
    (~1.2 mT)�

àRF field �

àDetect NMR signal�

àHeat the target cell �
Beam�

New p-3He Ay data at 70 MeV

TOHOKU UNIVERSITY�

Polarized 3He target system�

��

The polarized 3He target�

Ø  Measurement of 3He polarization�AFP–NMR 

RF + sweeping static magnetic field 

à�Reverse 3He nuclear spin & detect NMR signal 

Ø  Calibration of AFP−NMR�Rb–ESR�

ESR freq. shift of Rb  3He polarization 

àWe obtained the absolute 3He polarization 

(measurement error : ~1 %) 

Recently, 3He polarization of ~50 %  
was achieved.�

•  3He gases � 3 atm, ~2 mg/cm2 

•  N2 gases � ~ 0.1 atm 
•  a small amount of Rb, K 

Target glass cell�

beam axis�

150 mm�

circularly polarized light�

B0 � pol-3He target 
• 3 atm (≈2 mg/cm2) 
• ≈50% polarization

Side view TOHOKU UNIVERSITY�

Experimental setup�

���

p  70 MeV 
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Vacuum Chamber�

to F.C.�

Right Detectors 
 (∆E-E detector)�

Left Detectors 
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p + 3He scattering experiment�

Schematic view @CYRIC, Tohoku Univ.�Top view
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(ΔE-E detector)

70-MeV p

70-MeV p

0 45 90 135 180
θc.m. [deg]

0

0.1

0.2

0.3

0.4

0.5

0 45 90 135 180
θc.m. [deg]

-0.05

0.00

0.05

0.10

0.15

0.20

<latexit sha1_base64="kv7FI3LmXQ9hpSCPMHHOp5DKjQY="></latexit>

TOHOKU UNIVERSITY�

Results of experiment�

�	�

p + 3He scattering experiment�

Ø  We obtained 3He analyzing power 
from the asymmetry of yields. 

Ø  The experimental data was 
compared with the theoretical 
calculations*. 
-  Total momentum j ≤ 2 were taken 

into account. 
-  The angular distribution has a 

moderate agreement with the 
calculation. 

-  Large discrepancies at around  
minimum and maximum angles. 

* A. Deltuva, private communication�

In the future, 
it is necessary to compare the data with the theoretical calculations including 3NFs. �

0 20 40 60 80 100 120 140 160 180
[deg]   cmθ

1−

0.5−

0

0.5

1yA
   

H
e 

A
na

ly
zi

ng
 P

ow
er

3

INOY(Doleschall)
CD-Bonn
exp. data
stat. error
sys. error

Prelim
inary

Analysis is in progress now.�3NF effect at 70 MeV is large and is useful for understanding T=3/2 3NFs

NN only

(CD-Bonn/INOY)

@ 70 MeV (new) @ 5 MeV

3NF effect 
≈ 0.05

3NF effect 
≈ 0.2

courtesy of A. Watanabe and K. Sekiguchi



Spin-isospin responses 
for stable and unstable nuclei



Gamow-Teller → Most fundamental spin-isospin mode 
• GTGR : collectivity by repulsive residual interaction 


• Well described by Landau Migdal parameter g’NN 
• Nuclear astrophysics : weak processes in Type Ia, II SNe

• Deeper understanding of nuclear structures 
→ nuclear ME in double beta decays

GT studies on stable nuclei and collectivity

(N,Z) (N-1,Z+1)

β+

β-

GTGR

Ex

~10 MeV

concentration 
by g’NN

Landau-Migdal g’NN is the important key parameter and almost const. for stable nuclei 
→ Extension to RI beam (isospin/density dependence?)
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GTGR for 90Zr Syst. study at NSCL/RCNP GT for 116Cd ßß decay

RAPID COMMUNICATIONS

M. SASANO et al. PHYSICAL REVIEW C 85, 061301(R) (2012)

Here the contributions from different intermediate states are
added constructively, i.e., neglecting the phase of the GT
matrix elements, because there is no experimental means
to determine the phase. The parameter E represents the
excitation-energy upper limit of the summation. Values of
B(GT−) and B(GT+) can be determined by measuring the
charge-exchange (CE) reactions of the (p,n) and (n,p) types
on the initial and final nuclei, respectively. The !L = 0 cross
section at 0◦, σ!L=0(0◦), can be converted to B(GT) by using
the well-established proportionality relation

σ!L=0(0◦) = σ̂GTF (q,ω)B(GT), (3)

where σ̂GT is the GT unit cross section and F (q,ω) is the
kinematic correction factor [7].

Recently, Yako et al. have studied the B(GT±) distributions
in the intermediate nucleus 48Sc of the 48Ca ββ decay via the
48Ca(p,n) and 48Ti(n,p) reactions at 300 MeV [8]. Therein,
unexpectedly large strengths were found in the continuum
above 8 MeV of the (n,p) spectra, where almost no GT
strength is predicted with a shell-model calculation within
the full fp shell-model space. This discrepancy suggests
that the present shell-model description of M2ν may need
to be refined. It is compelling to know whether such high-
lying intermediate states exist in heavier ββ-decay nuclei,
because all the ββ-decay nuclei studied by the large-scale
experiments lie in the mass region of A ! 76, except
for 48Ca.

The 116Cd 0νββ decay has been intensively studied by
several groups [9]. These studies also lead to the half-life
of the 2νββ decay, (3.0 ± 0.2) × 1019 y [5], from which
the M2ν value is derived as 0.127 MeV−1 with an accuracy
of 3% by following the method in Ref. [10]. Nevertheless,
the situation regarding studies of B(GT±) [11–15] is rather
unsatisfactory; low-lying GT states in 116In up to 3 MeV were
successfully identified by the high-resolution measurement of
the 116Sn(d,2He) reaction [15], and were combined with the
data by the 116Cd(3He,t) reaction [12]. Recently, however, the
B(GT−) data reported in Ref. [12] have been found to be
incorrect, because, in the experiment, a Cd target with natural
isotopic abundance was improperly used instead of a 116Cd
target.

In this Rapid Communication, the B(GT−) and B(GT+)
distributions in 116In are derived for a wide excitation energy
region up to 30 MeV by the 116Cd(p,n) and 116Sn(n,p)
reactions at 300 MeV, respectively. At 300 MeV, the spin-flip
cross sections are large and distortion effects are minimal [16]
so that the characteristic shapes of the angular distributions
for each angular momentum transfer are very distinct. These
favorable features allow us to extract the B(GT±) distributions
in the continuum by multipole decomposition (MD) analysis
[17]. The MD analysis of the (n,p) spectra is less reliable at
higher energies, while that of the (p,n) spectra is stable up to
40 MeV.

The extraction of B(GT+) in the continuum is often
hampered by the existence of an isovector spin monopole
resonance (IVSM) [8]. This mode is a 2h̄ω excitation via
the r2σ t± operator, being mixed with the GT excitation by
the residual interaction because it has the same J π = 1+

[18]. This mixing can affect the CE cross sections through

the interference effect between the GT and IVSM scattering
amplitudes. Nevertheless, in Ref. [8], the IVSM contribution
is estimated rather simply by assuming IVSM to be a normal
mode excitation [19]. Herein, we employ a new approach based
on a microscopic method [20] to compare our experimental
spectra directly with the calculated ones, which take into
account the IVSM components as well as their interference
with the GT components.

Both (p,n) and (n,p) experiments were carried out at the
Research Center for Nuclear Physics (RCNP) of Osaka Uni-
versity, by using 295-MeV proton beams. The (p,n) data were
obtained by using the neutron time-of-flight (NTOF) facility
[21] in conjunction with the neutron detection system NPOL3
[22]. A self-supporting metallic foil isotopically enriched to
116Cd (>99.5%) with a thickness of 103 ± 5 mg/cm2 was
used. The scattering angle varied from 0◦ to 14◦ in step of 2◦ in
the laboratory frame. The (n,p) data were taken with the (n,p)
facility [23]. A neutron beam at 293 MeV with an intensity
of 1 × 106 s−1 was produced by using a proton beam with
a current of 300 nA through the 7Li(p,n) reaction and, then,
incident on the three enriched 116Sn (99.6%) target foils with
thicknesses of 310 ± 12, 338 ± 13, and 419 ± 16 mg/cm2

mounted in a multitarget system. The spectra obtained over
an angular range of 0◦–12◦ were divided into 12 spectra of
double-differential cross sections in 1◦ bins. The overall energy
resolutions were about 500 keV and 2.2 MeV in the (p,n) and
(n,p) spectra, respectively.

The dots in Fig. 1 show the spectra for the 116Cd(p,n)
and 116Sn(n,p) reactions near 0◦, 4◦, and 10◦ as a function
of the excitation energy in 116In. The vertical bars indicate
the statistical uncertainties, which are typically 2% per each
energy bin with the widths of 0.5 and 1.0 MeV in the
(p,n) and (n,p) spectra, respectively. The hatched areas in
Fig. 1 show the result of the MD analysis, where the cross
sections are decomposed into multipole components from
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FIG. 1. (Color) Double-differential cross sections and the MD-
analysis results for the 116Cd(p,n) (a)–(c) and for the 116Sn(n,p)
(d)–(f) reactions near 0◦ (a), (d), 4◦ (b), (e), and 10◦ (c), (f).
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Overview of (p,n) studies for RI beam
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Invariant mass spectroscopy 
14Be: Y. Satou et al., PLB 697 (2011) 459

Missing mass spectroscopy  
8He: H.Sakai et al.@RIBF, 12Be: K. Yako et al.@RIBF

11Li, 14Be: L. Stuhl et al.@RIBF(performed in this May)

16C: S. Lipshutz et al.@NSCL

56Ni: M.Sasano et al.@NSCL

PRC 86 (2012) 034324

132Sn:  
double-magic nuclei far from stability

→ Key nucleus for 
    nuclear models in A～100 region

performed @RIBF 
(spokesperson: M Sasano & R. Zegers)

Z

N

Isospin dependence

Very neutron-rich system



Why 132Sn ?
132Sn is the doubly-magic nucleus between 90Zr and 208Pb (well studied nuclei) 

Benchmarking nucleus for nuclear models in medium heavy region 
• NR-RPA, R-RPA, R-TBA, NR-RPA+PVC, etc.

Long isotope chain (A=112→132)

• Isospin-dependence of GTGR peak (g’NN) 
• GTGR peak for 132Sn might be deviate from the systematic trend.  

Your proposal should be sent to User Support Office (UserSupportOffice@ribf.riken.jp) 
 

Detailed Description of the proposed experiment 
 

Please describe in details about the proposed experiment, where the format is free. They should include; 
 
1. Goals and methods of the proposed experiment 
2. Estimation of beam time requested 
3. Experimental conditions such as beam conditions, targets and detectors 
4. Readiness  

 
--------------------------------------------------------------------------------------------------------------------- 
 

I. Scientific Motivation 
 
One of the main objectives of fundamental nuclear physics studies is the creation of comprehensive models 
of the forces that bind nucleons into nuclei and the response of nuclei to a variety of probes. Such models 
are preferably based on first principles, but ab initio theories are computationally expensive and can only be 
applied to light nuclei and a limited number of observables (see Fig. 1(a)). Fortunately, great strides have 
been made in the development of configuration interaction models. In particular, shell-models with 
phenomenological interactions for particular regions of the chart of nuclei have been very successful in 

accurately describing a wide variety of properties of nuclei, and their excitations. Beyond N=Z|40, 
computational limitations restrict their use to regions close to magic numbers for properties at low excitation 
energies and to narrow regions around doubly-magic nuclei for more comprehensive studies. To cover the 
full nuclear landscape and excitations at higher excitation energies, additional approaches are required and 
density functional theories and mean-field models are used for that purpose. Configuration-interaction and 
density functional theories must be tested against experiment so that they can be further developed and 
applied to solve a wide range of scientific questions, for example related to astrophysics.       

a)

 

b)

 

Fig. 1 (a) Chart of the nuclei in which the applicability of various classes of theoretical models is indicated. Ab 
initio models can only be used for light nuclei. Depending on which property is being investigated, 

configuration-interaction models can be applied to N=Z|40, and to regions close to shell-closures for heavier 
nuclei. Density-functional theories are best-suited for the description of (medium)-heavy nuclei. 
In particular, for Gamow-Teller transitions (b), the regions in which shell-models can be applied are limited to 
nuclei with A<70 and to narrow regions around doubly-magic nuclei for heavier nuclei, such as 132Sn. 

Gamow-Teller transitions, which are associated with transfers of spin ('S=1) and isospin ('T=1), but without 
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Experimental setup at SAMURAI in RIKEN/RIBF

132Sn
216 MeV/u

SAMURAI

WINDS
- neutron detector

132Sb*

n

Liq. H
60mmφ
11mmt

FDC2
drift chamber

FDC1BDC
SBT

HODS
plastic counter

TED
crystal

ICF
ion chamber

NEBULA

T. Kobayashi et al., NIM B371, 294 (2013).

Wide momentum acceptance～50% 
→ Measure 128-132Sb simultaneously  
     (c.f. S800@NSCL～5%, SHARAQ@RIBF～2%)

132Sn 132Sb*

nLiq. H

60 mm φ

11 mmt

Wide angle acceptance & low threshold 
→ Measure θ = 1°～12° and Ex ≤ 30 MeV 
     (GTGR is predominantly excited)



Experimental results
Experimental results and multipole decomposition analysis 

• GTR(∆L=0) is observed/identified: 
• Ex = 16.3 ± 0.4(stat) ± 0.4(syst), Γ = 4.7 ± 0.8 MeV

• has a shoulder at Ex ≈ 10 MeV


• SDR(∆L=1) is also observed/identified: 
• Ex ≈ 25 MeV


Extraction of GT strength B(GT) 
Proportionality relation


• Systematic study at 200 MeV yields:


• Known B(GT) values yield:

3

was 1.4 × 104 pps and the purity of 132Sn was about
45%. In the present data analysis, events associated
with 132Sn incoming beam particles were selected. The
secondary beam was transported onto an 11-mm thick
liquid hydrogen target. The target had an average thick-
ness of 70.9 mg/cm3 and was contained by 19-µm thick
Havar foils. The beam energy at the target midpoint was
216 MeV/u.

Figure 1(a) shows the setup around the target. Recoil
neutrons from the (p, n) reaction were detected using the
WINDS neutron detector [22, 23]. The scattering an-
gles (θlab) from 20◦ to 122◦ in the laboratory frame were
covered. The neutron energy (En) was determined by
measuring the neutron time of flight (TOF). The light-
output threshold was set to 40 keVee (electron equiva-
lent). Neutron-detection efficiencies, ranging from 70%
at En = 0.6 MeV to 50% at En = 4 MeV, were calcu-
lated using the simulation code geant4 [24]. The valid-
ity of the simulations was confirmed by comparing with
measured efficiencies using a 252Cf fission source.

For tagging the CE-reaction channel, the residues were
analyzed by the SAMURAI spectrometer [21]. The mag-
netic field of the spectrometer was set to 2.54 T. The
particle identification (PID) was performed through the
TOF-Bρ-∆E method (see Ref. [23] for details). Us-
ing the PID plot shown in Fig. 1(b), events associated
with 128−132Sb isotopes were selected, covering the decay
channels by 1n–4n emissions after the (p, n) reaction.

The excitation energy (Ex) and center-of-mass scatter-
ing angle (θc.m.) were reconstructed from the measured
En and θlab values. The excitation-energy resolution
∆Ex varies from 1.0 MeV to 2.5 MeV (FWHM) with
increasing θc.m. from 2◦ to 10◦. Background events due
to reactions on the target-cell windows and beam detec-
tors were evaluated from measurements with an empty
target cell. A second source of background was due to
neutrons hitting WINDS indirectly after scattering off
surrounding objects [19, 20]. This background was esti-
mated and subtracted in the same manner as described
in Refs. [19, 20] by using 132Sb →

127Sb + 5n events,
because 127Sb cannot be created in the decay of 132Sb
excited to energies under consideration.

The left panel of Fig. 2 shows the obtained double-
differential cross sections for the 132Sn(p, n) reaction at
216 MeV/u. The data points represent the sums of the
events associated with the detection of 128−132Sb in the
SAMURAI spectrometer. It should be noted that the
decay branches associated with one-proton emission to
131Sn were found to be small: 7 ± 4% for Ex = 12–
20 MeV. In this analysis, these small contributions are
neglected. Since the excitation-energy resolution deterio-
rated with increasing scattering angle, for the purpose of
multi-pole decomposition analysis (MDA) described be-
low, the spectra were smeared with Gaussians to achieve
a resolution of 2.5 MeV (FWHM) at each angle, as done

in Refs. [19, 20].
To apply the proportionality, the∆L = 0 contributions

must be isolated from contributions with ∆L > 0. This
was done by performing an MDA [8]. The experimen-
tal angular distribution of the differential cross section
for each excitation energy bin was fitted with a linear
combination of theoretical angular distributions associ-
ated with ∆L = 0, 1, and 2, as shown in the right panels
of Fig. 2. The theoretical angular distributions were ob-
tained by employing the DWIA formalism described in
Ref. [25] with the use of the computer code crdw, in
conjunction with the effective interaction from Ref. [26]
and optical potentials from Refs. [27–29]. Transition den-
sities based on the RPA formalism described in Ref. [14]
were used, as described below. The MDA result in Fig. 2
shows that the yield at forward angles is predominantly
due to GT (∆L = 0) transitions for excitation energies
up to 20 MeV. Above that, there are contributions from
dipole ∆L = 1 and quadrupole ∆L = 2 excitations.
The extracted B(GT) distribution is shown in

Fig. 3(a). The value of σ̂GT was set to 2.7 ±

0.5 mb/sr based on the mass-number dependence studied
at 200 MeV [30]. The kinematic factor F was obtained
through the above mentioned DWIA calculations. The
spectrum clearly exhibits a strong GTR peak at 16 MeV
with a shoulder structure around 12 MeV. The spectrum
includes a contribution from the isobaric analog state
(IAS) of the 132Sn ground state in 132Sb. The IAS peak
position was estimated to be EIAS = 15.6 ± 0.2 MeV
by using the phenomenological function [31]. The IAS
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B(GT) and Landau-Migdal parameter g’NN

B(GT) distribution 
g’NN is sensitive to GT peak and evaluated in RPA

•  

•  Consistent with 0.6 for 90Zr and 0.64 for 208Pb


Comparison with theoretical models 
• Reasonably reproduce the GTR in 132Sn 

• The shoulder structure depends on shell structure


Total strength of B(GT) up to 25 MeV (up to GTR) 

• 56% of sum-rule value of 3(N-Z)=96

• Consistent with the systematics in stable nuclei 

• A future study for higher excitations is challenging

g’NN is constant for isospin asymmetry  
(N-Z)/A of 0.11(90Zr) to 0.24(132Sn) 

4

contribution corresponding to the GT strength unit was
estimated as 1.8± 0.2 from the Fermi sum rule strength
of N − Z = 32. Here we took into account the ratio of
the Fermi unit cross section, σ̂F = 0.15 mb/sr [30], to
the σ̂GT value, 2.7 mb/sr. The contribution of the un-
observed one-proton emission branch to the IAS, ∼0.18
in the GT strength unit, was neglected. The shaded
bands represent the systematic uncertainties, which are
dominated by the uncertainties in the background sub-
traction (< 15%), the efficiency correction (< 15%), and
the input parameters of the DWIA calculation (< 3%).
The total strength up to Ex = 25 MeV is S−

GT =
53 ± 5(stat.)+11

−10(syst.), where the IAS contribution has
been already subtracted and the uncertainty in σ̂GT is
not included. The systematic uncertainty is mainly due
to the uncertainties in the background subtraction and
the efficiency correction. The present total strength cor-
responds to 56 ± 5(stat.)+11

−10(syst.)% of the non-energy-
weighted sum-rule value (so-called Ikeda’s sum rule) of
3(N − Z) = 96, which is consistent with the systematics
in stable nuclei [6].
The GTR energy was obtained to be EGT = 16.3 ±

0.4(stat.) ± 0.4(syst.) MeV, where the first and second
uncertainties are the statistical and systematic uncertain-
ties, respectively. The main sources of the systematic un-
certainty come from the uncertainty of the beam energy
(∼ 0.24 MeV) and the fitting procedure (∼ 0.2 MeV).
Figure 3(b) shows the fitting results used for determin-
ing the centroid value. Here, three components, the
GTR, the lower-lying shoulder, and the IAS are consid-
ered. For the GTR and shoulder components, in order to
take into account the experimental energy resolution of
∆Ex = 2.5 MeV, we used a Voigt function. A Gaussian
function was used for the IAS contribution. The width of
the GTR was estimated to be Γ = 4.7± 0.8 MeV, which
is close to those of the stable Sn isotopes [32]. We note
that the extraction of the resonance parameters in this
work has similar quality to data from measurements with
stable beams in forward kinematics [14, 16, 33], which
has never been realized in past studies of GRs with RI
beams [34, 35] in terms of the uncertainties of the derived
resonance parameters.
The LM parameter, g′, was deduced by comparing

the data with theoretical strength distributions assum-
ing different g′ values, as shown with curves in Fig. 3(a).
Herein, we followed the exactly same method as in
Refs. [14, 16]: The continuum RPA [8] is used for the
description of the response properties, and the single-
particle energy levels taken from experimental data for
the static structure properties. The π+ρ+g′ model inter-
action [8] was employed as an effective interaction. In the
present model, the LM contact interaction includes the
coupling to the ∆ particle calibrated in Ref. [8]. Single-
particle wave functions were generated by a Woods-
Saxon (WS) potential with r0 = 1.27 fm, a0 = 0.67 fm,
and VSO = 7.5 MeV [31]. The depths of the WS poten-
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FIG. 3. Extracted GT strength distribution in 132Sb and the
comparison with the RPA calculation with the π+ρ+g′ inter-
action model with different g′ values of 0.30, 0.50, 0.68, and
0.90 (a). (b) shows the result of fitting procedure described
in the text. The shaded area indicates the contribution from
the IAS. (c) shows the same as (a) but for the comparison
with self-consistent nuclear-model calculations.

tials for neutrons and protons were adjusted to reproduce
the separation energies of 0h11/2 and 0g9/2 orbits [36],
respectively. The calculated GTR energy changes as a
function of g′. The calculations with g = g′c at satu-
ration density, 0.3–0.5, are rejected by this comparison.
Rather it clearly shows that g′ is larger than g′c. The g′

value best reproducing the data is g′ = 0.68± 0.07. The
overall structure of the calculated spectrum best fits with
the data at this g′ value. The uncertainty is due to the
experimental peak energy (∼ 0.05) and the input for the
theoretical calculation (∼ 0.05). The theoretical uncer-
tainty was estimated by changing the WS potentials for
the single particle wave functions. The present g′ value
is close to the values of 90Zr (0.6 ± 0.1) [16] and 208Pb
(0.64) [14].

In the above approach, the static structure of nu-
clei is treated separately from the response and, as
a result, there may be some fluctuation in the ex-
tracted g′ values depending on individual nuclei. A
way to avoid such problems is to use self-consistent nu-
clear models [17, 37–39], in which the static structure
and response of various nuclei are treated within the
same framework. Shown in Fig. 3(c) are self-consistent
model calculations performed using the relativistic time-

4

contribution corresponding to the GT strength unit was
estimated as 1.8± 0.2 from the Fermi sum rule strength
of N − Z = 32. Here we took into account the ratio of
the Fermi unit cross section, σ̂F = 0.15 mb/sr [30], to
the σ̂GT value, 2.7 mb/sr. The contribution of the un-
observed one-proton emission branch to the IAS, ∼0.18
in the GT strength unit, was neglected. The shaded
bands represent the systematic uncertainties, which are
dominated by the uncertainties in the background sub-
traction (< 15%), the efficiency correction (< 15%), and
the input parameters of the DWIA calculation (< 3%).
The total strength up to Ex = 25 MeV is S−

GT =
53 ± 5(stat.)+11

−10(syst.), where the IAS contribution has
been already subtracted and the uncertainty in σ̂GT is
not included. The systematic uncertainty is mainly due
to the uncertainties in the background subtraction and
the efficiency correction. The present total strength cor-
responds to 56 ± 5(stat.)+11

−10(syst.)% of the non-energy-
weighted sum-rule value (so-called Ikeda’s sum rule) of
3(N − Z) = 96, which is consistent with the systematics
in stable nuclei [6].
The GTR energy was obtained to be EGT = 16.3 ±

0.4(stat.) ± 0.4(syst.) MeV, where the first and second
uncertainties are the statistical and systematic uncertain-
ties, respectively. The main sources of the systematic un-
certainty come from the uncertainty of the beam energy
(∼ 0.24 MeV) and the fitting procedure (∼ 0.2 MeV).
Figure 3(b) shows the fitting results used for determin-
ing the centroid value. Here, three components, the
GTR, the lower-lying shoulder, and the IAS are consid-
ered. For the GTR and shoulder components, in order to
take into account the experimental energy resolution of
∆Ex = 2.5 MeV, we used a Voigt function. A Gaussian
function was used for the IAS contribution. The width of
the GTR was estimated to be Γ = 4.7± 0.8 MeV, which
is close to those of the stable Sn isotopes [32]. We note
that the extraction of the resonance parameters in this
work has similar quality to data from measurements with
stable beams in forward kinematics [14, 16, 33], which
has never been realized in past studies of GRs with RI
beams [34, 35] in terms of the uncertainties of the derived
resonance parameters.
The LM parameter, g′, was deduced by comparing

the data with theoretical strength distributions assum-
ing different g′ values, as shown with curves in Fig. 3(a).
Herein, we followed the exactly same method as in
Refs. [14, 16]: The continuum RPA [8] is used for the
description of the response properties, and the single-
particle energy levels taken from experimental data for
the static structure properties. The π+ρ+g′ model inter-
action [8] was employed as an effective interaction. In the
present model, the LM contact interaction includes the
coupling to the ∆ particle calibrated in Ref. [8]. Single-
particle wave functions were generated by a Woods-
Saxon (WS) potential with r0 = 1.27 fm, a0 = 0.67 fm,
and VSO = 7.5 MeV [31]. The depths of the WS poten-
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FIG. 3. Extracted GT strength distribution in 132Sb and the
comparison with the RPA calculation with the π+ρ+g′ inter-
action model with different g′ values of 0.30, 0.50, 0.68, and
0.90 (a). (b) shows the result of fitting procedure described
in the text. The shaded area indicates the contribution from
the IAS. (c) shows the same as (a) but for the comparison
with self-consistent nuclear-model calculations.

tials for neutrons and protons were adjusted to reproduce
the separation energies of 0h11/2 and 0g9/2 orbits [36],
respectively. The calculated GTR energy changes as a
function of g′. The calculations with g = g′c at satu-
ration density, 0.3–0.5, are rejected by this comparison.
Rather it clearly shows that g′ is larger than g′c. The g′

value best reproducing the data is g′ = 0.68± 0.07. The
overall structure of the calculated spectrum best fits with
the data at this g′ value. The uncertainty is due to the
experimental peak energy (∼ 0.05) and the input for the
theoretical calculation (∼ 0.05). The theoretical uncer-
tainty was estimated by changing the WS potentials for
the single particle wave functions. The present g′ value
is close to the values of 90Zr (0.6 ± 0.1) [16] and 208Pb
(0.64) [14].

In the above approach, the static structure of nu-
clei is treated separately from the response and, as
a result, there may be some fluctuation in the ex-
tracted g′ values depending on individual nuclei. A
way to avoid such problems is to use self-consistent nu-
clear models [17, 37–39], in which the static structure
and response of various nuclei are treated within the
same framework. Shown in Fig. 3(c) are self-consistent
model calculations performed using the relativistic time-
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J. Yasuda, M. Sasano, R.G.T. Zegers et al., submitted to PRL. 



GT resonance for neutron-rich nuclei
Gamow-Teller resonance for very neutron-rich nuclei, 8He and 12Be 

• 8He: (N-Z)/A = 0.50 → Largest isospin asymmetry (cf. 0.21 for 208Pb)

• 12Be: (N-Z)/A = 0.33 


8He and 12Be can be used to study isospin dependence of residual interaction 
• How to change (or NOT change) the repulsive spin-isospin interaction, g’NN? 
• How about the effects on Gamow-Teller resonance (collectivity)?

Also interesting: 

• Halo/skin/cluster effects

• Deformation effects (ex. ellipsoid ratio = 2:1 for 12Be)

neutron 
skin

8He 12Be
cluster

courtesy of Y. Kanada-Enkyo

First (p,n) measurements  
in inverse kinematics at RIBF



Systematics for stable nuclei
Gamow-Teller (∆S=1) and IAS (∆S=0) peak difference is given by 

•             :  energy spacing b/w spin-orbit partners

Energy difference would be proportional to  
isospin asymmetry: (N-Z)/A  
• Exp. data: Zr, Nb, Mo, Sn, Tm, Pb

• Almost proportional to (N-Z)/A


• Support constancy of g’NN 
• Slightly modified by 

Existing data for stable nuclei support the constancy of g’NN=0.6±0.1 up to (N-Z)/A=0.21

→ How about very neutron-rich nuclei for 12Be and 8He with (N-Z)/A=0.33 and 0.50

Isospin asymmetry

∆S=1 (GT) ∆S=0 (IAS)

stable nuclei unstable nuclei

0.60

?
K. Nakayama et al., Phys. Lett. B 114, 217 (1982). 

Bohr and Mottelson, Nuclear Structure.



Experimental results
Gamow-Teller resonances have been successfully observed for 8He and 12Be

8He(p,n) at 200 MeV/A 12Be(p,n) at 200 MeV/A

EGT - EIAS = -2.5 ± 0.5 MeV EGT - EIAS = -1.2 ± 0.5 MeV

M. Kobayashi et al., JPS Conf. Proc. 1, 013034 (2014). 
courtesy of K. Yako

M. Kobayashi (CNS) et al. K. Yako (CNS) et al.



Collectivity in (N-Z)/A > 0.21; Very neutron-rich nuclei

stable nuclei unstable nuclei

Be isotope

He isotope

0.60

0.60
0.60

Data are consistent with predictions employing g’NN=0.6±0.1 
→ Suggests the constancy of residual interaction for up to (N-Z)/A=0.5 (very neutron-rich)



Isovector (IV) spin-monopole (IVSM) response
Spin-isospin (∆S = ∆T = 1) modes with ∆L = 0 

• Gamow-Teller


• IV spin monopole (IVSM)


Energy centroid E and width Γ of IVSMR

• Isovector spin-incompressibility

• Effective interaction in spin-isospin channel: Landau-Migdal parameter g’NN


Sum-rule (model-independent) 

• Neutron skin thickness : 

<latexit sha1_base64="3DSo8dB1dY9/483WHtXXPyzZEfY="></latexit>

<latexit sha1_base64="f3JLXohjwu0MwSsRvRciDPF9uwY="></latexit>

<latexit sha1_base64="ytjS4/UfTADN7L/0bpRHHKokg+o="></latexit>

Sensitive to neutron skin  
by 4th power for rneutron proton

IVSM and sum-rule give constraint on neutron matter equation of state (EOS)

Compression mode

IVSGMR

δnp constrains L and J in EOS



IVSM probed by HI charge-exchange
Surface absorption in HI charge-exchange enhances monopole cross section 

0

0

RA

tra
ns
iti
on

de
ns
ity

R

courtesy of S. Noji

Transit ion densit ies of 
monopole resonances have 
a node near nuclear surface

Heavy-ion probes get absorbed 
at around nuclear surface

→ No cancellation b/w the inner and outer portions

e.g. (p,n)@200 MeV

Lighter-ion probes scan throughout target

→ Cancellation b/w the inner and outer portions

IVGMR IVSGMR

New data for IVSM by (12N,12C) and (t,3He) on 90Zr at RIKEN/RIBF with SHARAQ

Heavy-ion charge-exchange: (12N,12C),(t,3He)

Light-ion charge-exchange: (p,n),(n,p)



Experimental results
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• (p,n): GTR at Ex≈10 MeV only 
→ insensitive to IVSM


• (12N,12C): GTR and IVSM at Ex≈25 MeV  
→ sensitive to IVSM

→ Powerful new tool for IVSM

β-: 90Zr(12N, 12C) β+: 90Zr(t, 3He)

• Significant enhancement Ex≈20 MeV 
by IVSM compared with (p,n) data 


• Consistent with HF-RPA (blue)

→ Clearest identification of β+-IVSM

(t,3He)

(n,p)

(p,n)

(12N,12C)

K. Miki et al., 
PRL 108, 262503 (2012).

S. Noji et al., 
PRL 120, 172501 (2018).



Sum-rule and neutron skin thickness
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difference

86 ± 7% (GT Quenching) 90 ± 54% (This exp.) 151 ± 61% (This exp.)

S- = (25 ± 6)×103 fm4 S+ = (16 ± 6)×103 fm4

β-: 90Zr(12N, 12C) β+: 90Zr(t, 3He)S. Noji et al., 
PRL 120, 172501 (2018).

K. Miki et al., 
PRL 108, 262503 (2012).

method δnp (fm)
p elastic 0.09 ± 0.07
p-bar X-ray 0.09 ± 0.02
SDR 0.07 ± 0.04



New spin-isospin mode and 
application to neutrino physics



0νββ decay and double charge exchange
Quest for detection of 0νββ decay 

• lepton-number violation/Majorana type

• absolute neutrino mass 

Large diff. in matrix element calc: factor=2-3

• How can experiments guide 0νββ decay? 

Double charge-exchange (DCX)  
• resemble 0νββ decay 
Operators: 0νββ vs. Double GT by DCX

0⌫�� decay nuclear matrix elements
Large difference in nuclear matrix element calculations: factor ⇠ 2 � 3
⌦
0+

f

��
X

n,m

⌧�n ⌧�m
X

X

H
X (r)⌦X

��0+
i

↵ ⌦X = Fermi (1), GT (�n�m),Tensor
H(r) = neutrino potential

 0

 1

 2
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48 76 82 96    100 116  124  130   136 150

M
0

ν

A

SM St-M,Tk

SM Mi

IBM-2

QRPA CH

QRPA Tu

QRPA Jy

R-EDF

NR-EDF

Engel, JM, Rep. Prog. Phys. 80 046301 (2017)

How can
nuclear matrix elements
calculations improve?

How can
nuclear structure experiments
guide 0⌫�� decay?

6 / 28

J. Engel and J.  Menendez, Rep. Prog. Pays. 80, 046301 (2017). 

Difference: 
ν-potential V

DGT to ground state and 0⌫�� decay
DGT transition to ground state of final nucleus:
Ca, Ti, Cr isotopic chains MDGT =

⌦
Finalgs

����⇥P
i
�i⌧

�
i
⇥
P

j
�j⌧

�
j

⇤0����Initialgs
↵��2

Very good linear
correlation between
DGT and 0⌫�� decay
nuclear matrix elements

Linerar correlation holds
for ⇠ 25 transitions studied
for simplified wf’s
(seniority-zero),
for different interactions

Shimizu, JM, Yako,
PRL120 142502 (2018)

25 / 28

Linear corr.  b/w 0νββ and DGT matrix elements → DCX (18O,18Ne)  could provide M0νββ  

phase space
effective mass

matrix element
48Ca 150Nd



40Ca(18O,18Ne)40Ar at 270 MeV  at INFN-LNS 
Observe 40Ca(0+)→40Ar(0+) with σ(0°) = 11 μb/sr 
∆L=0 transition with 

• Double Gamow-Teller (DGT)

• Double Fermi (DF) 


Nuclear matrix element

11 
 

  
Figure 3. Diagram for the GT and F projectile and target transitions used for the determination of the 

B(2GT) and B(2F). See text. 
 

 
 
 

 
6.2 Fermi 

 
A similar procedure was applied assuming a pure double Fermi operator for the DCE to the 

40Args. At the present energy the CE volume integral is JF = 253 MeV∙fm3, very close to the GT 
case. Only the 40K 0+ state at 4.38 MeV and the 18F 0+ state at 1.04 MeV are considered in the 
intermediate channel. By the same arguments of the GT case, we obtain σොF

DCE ~ 46 μb/sr from eq. 
(6) and FF

DCE ~ 0.77 at θCM ~ 0°. As a consequence   
 

ா(2F) = BTܤ
DCE(2F) ∙ BP

DCE(2F) =
dσ
dΩ

DCE
(q,Ex)

σොF
DCE൫Ep,A൯FF

DCE(q,Ex)
≤ 0.31.     (12) 

 
This value is close to the product of the known B(F) for the transitions in the projectile and 

target through the 1.04 MeV and 4.38 MeV 0+ states of 18F and 40K, respectively (see Fig. 3): 
 
B(2F) = BP(2F) ∙ BT(2F) = 0.42        (13) 
 

Here BP(2F) = 4 is taken from the Fermi sum rule. BT(2F) = 0.053 ∙ 2 is extracted by [67] and [63].  
 

HI double charge exchange  (DCX) reaction I 
F. Cappuzzello et al., Eur. Phys. J. A 51, 145 (2015).

7 
 

 
Figure 1. (a) Energy spectrum measured in the 40Ca(18O,20Ne)38Ar 2p-transfer. Above 3 MeV 

excitation energy, different states are overlapped in the observed peaks and the maximum angular 
momentum (Jmax) is indicated according to [60]. (b) Energy spectrum from 40Ca(18O,18F)40K single charge 
exchange. The symbol g.s.* indicates the 40Ca(18O,18F0.937MeV)40Kg.s. transition. (c) Energy spectrum from 
40Ca(18O,18Ne)40Ar DCE. The symbols g.s.Δ and 1.46Δ indicate the 40Ca(18O,18Ne1.87MeV)40Arg.s. and 
40Ca(18O,18Ne1.87MeV)40Ar1.46MeV transitions, respectively. In the insert, a zoomed view of the low-lying states 
and, superimposed (black solid line), a fit with 6 Gaussian functions are shown. They are centered at 0 (cyan 
solid), 1.46 (red dashed), 1.87 (green dot-dashed), 2.89 (magenta dotted), (1.46 + 1.87) = 3.33 (blue double 
dot-dashed), 5.6 MeV (orange dot-double dashed). The widths are given by the experimental resolution plus 
the Doppler broadening, except for the 5.6 MeV Gaussian whose width is 3 MeV. In (b) and (c) the symbol + 
indicates the presence of unresolved states. 

 

projectile=1.14

35 μb/sr projectile=4

55 μb/sr

Pauli blocking
collection Consistent w/ theor. prediction of 2.28

J. Area et al., Phys. Rev. Lett. 109, 042501 (2012).
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2νββ decay matrix element: M2ν 

• Exhaust only less than 0.1% of sum-rule

• Similar to delay of single β-decay (missing strength)


• Missing strength → GT resonance (GTR)

• Observed by single charge exchange, (p,n) etc.


Missing strength would be found as Double GTR 
• DGT : new spin-isospin mode predicted 30y ago

• Excited by double charge exchange (DCX) 

DCX reaction 
(π+,π-)

• Successfully observe Double IAS

• Populates Spin-flip states (DGT) only weakly

New idea/probe: (12C,12Be[02+]) at RCNP/RIBF

• Large projectile transition

• Clear identification by γ-tagging

Volume 199, number 3 PHYSICS LETTERS B 24 December 1987 
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Fig. 2. Excitation energy spectra for (Tt +, Tt ) reactions on 48Ca 
and 4ST± targets at 0(lab) = 5 °. In order to improve statistics the 
experimental spectra taken at all four incident pion energies have 
been added. For both targets notice the clear double analog tran- 
sitions and the extreme weakness of the ground state transitions. 

t r ans i t ion  in the 42Ca(rt +, r t - )42Ti (g . s . )  r eac t ion  as 
r epor t ed  in ref. [5 ]. 

T h e  m e a s u r e d  cross sect ions  for  the  a n a l o g  tran-  
s i t ions  for  the  48Ca and  naT± targets  are  d i sp layed  in 
fig. 3 as ratios, o-(48Ca)/o-(42Ca) and  o'(48Ca)/o'(4STi). 
We no te  tha t  bo th  rat ios  have  the  average  

va lue  = 3.7 + 0.6 and  are subs tant ia l ly  d i f fe ren t  f r o m  
the  d i f f rac t ion  m o d e l  p red ic t ions  in eq. (2 ) .  In  par-  
t icular ,  the  ra t io  a ( 4 8 C a ) / a ( 4 2 C a )  has a s t rongly en-  
e rgy -dependen t  s t ruc ture  and  is eve rywhe re  
cons ide rab ly  less than  18. Th is  result  poses  the ques-  
t ion:  are  the  48Ca cross sect ions  smal le r  t han  ex- 
pec ted ,  or  are the 42Ca cross sect ions  larger than  
expec ted?  Fig. 1 wou ld  suggest that  all ana log  cross 
sect ions,  inc lud ing  those  for  48Ca and  48Ti are  " n o r -  
m a l "  in tha t  they fol low the  A -  m/3 t rend,  and  that  
it is 42Ca which  is excep t iona l ly  large. Th is  is con-  
s is tent  wi th  the  p red ic t ions  based  on Liu ' s  m o d e l  
shown in fig. 3. Liu ' s  ca lcu la t ions  r ep roduce  the gen- 
eral  t r end  o f  the  energy va r i a t i on  o f  the  ra t io  
o'(4SCa)/o'(4~Ca). Th is  success arises f r o m  the fact 
tha t  core  exc i ta t ion  (d~)~ n) c o m p o n e n t s ,  k n o w n  to 
be excep t iona l ly  large in 42Ca(g.s.) ,  have  been  taken  
in to  accoun t  whereas  no such c o m p o n e n t s  are  con-  
s ide red  to exist  in 4SCa(g.s. ). Thus  48Ca analog cross 
sect ions  are p red ic t ed  to be  " n o r m a l "  whereas  42Ca 
cross sect ions  are p red ic t ed  to be subs tant ia l ly  en- 
hanced.  An  oppos i te  in terpreta t ion,  however ,  is g iven 
by a new m o d e l  o f  D C X ,  which  we descr ibe  below. 

Bleszynski  and  Glauber  [ 12 ] have  po in ted  out  that  
the she l l -mode l  imposes  very  specif ic  pos i t ion  cor- 
re la t ions be tween  the va lence  neutrons.  Wi th in  a shell 
these  cor re la t ions  change the average  d i s tance  be-  
tween  the two  pa r t i c ipa t ing  va l ence  neu t rons  in a 
m a n n e r  which  is d e p e n d e n t  on  the  occupa t i on  n u m -  
ber. Thus  not  all pairs o f  va lence  neut rons  are equal ly  

Table 1 
Measured (n +, n - ) DCX center-of-mass cross sections ( in nb/sr) at 0(lab) = 5 ° for the analog transitions and the non-analog transitions 
(marked with asterisks) for 42Ca, 48Ca and 48Ti targets. The data for 42Ca are from ref. [ 5 ]. 

Reaction rt energy ( MeV ) ( Kt, K2) 

130 180 235 292 

42Ca(~t+,rc-)42Ti(g.s.) 406 +__102 132 _+ 28 169 + 31 404 _+ 61 1, 1 
4SCa(n+,n )48Ti(17.4) 833 ±296 679 _+165 1575 _+310 1746 _+290 1,-0.14 
4~TiOt+,n-)48Cr(8.62) 117 ± 78 123 _+ 62 382 _+ 80 590 +_103 1, 0.17 
48Ca(~+,n-)48Ti(g.s.)* 160 +_160 40 _+ 40 <60 <45 0, 0.22 
4STi(rc+,~-)48Cr(g.s.)* 220 ±_ 80 100 ± 45 40 ± 20 30 + 15 0, 0.62 

analog tr(48Ca)/o(42Ca) 2.1 ± 0.9 5.1 _ 1.6 9.3 + 2.5 4.3 -+ 1.0 
analog o-(48Ca)/o'(aaTi) 7.1 ± 5.4 5.5 +_ 3.0 4.1 + 1.2 3.0_+0.7 
without distortions, B/A 5.5 +_ 2.1 2.6 _+ 0.8 1.3 _+ 0.5 1.7 +_ O. 5 
with distortions, B/A 8.7 _+ 5.2 3.4 _+ 1.0 1.9 _+ 0.5 2.6 _+ 0.5 
without distortions, cos 0 - 0.3 +_ 0.4 - 0.2 _+ 0.4 0.1 _+ 0.4 0.4 +_ 0.3 
with distortions, cos 0 - 0.3 -+ 0.4 - 0.2 + 0.3 0.1 -+ 0.3 0.3 +__ 0.2 
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We study in this Letter the double beta decay of 136Xe with emission of two neutrinos which has been
recently measured by the EXO-200 Collaboration. We use the same shell model framework, valence
space, and effective interaction that we have already employed in our calculation of the nuclear matrix
element (NME) of its neutrinoless double beta decay. Using the quenching factor of the Gamow–
Teller operator which is needed to reproduce the very recent high resolution 136Xe (3He, t) 136Cs
data, we obtain a nuclear matrix element M2ν = 0.025 MeV− 1 compared with the experimental value
M2ν = 0.019(2) MeV− 1.

© 2012 Elsevier B.V. All rights reserved.

The double beta decay is a rare process (second order in the
weak interaction) which takes place when the single beta decay of
the parent even–even nucleus to the neighbor odd–odd nucleus is
forbidden by energy conservation or highly suppressed by the an-
gular momentum selection rules. In addition it is one of the major
sources of background for the even rarer neutrinoless decay which,
if detected, will settle the nature (Majorana or Dirac) and the mass
scale of the neutrinos. Until the EXO-200 measure [1] 136Xe was
the only (experimentally relevant) potential neutrinoless emitter
whose two neutrinos decay was unknown. In addition, the lower
bound to its half-life published by the Dama Collaboration [2] de-
manded a nearly complete cancellation of the nuclear matrix ele-
ment. After the EXO measure, we know that the matrix element
is small (indeed, the smallest among the measures ones) but not
pathologically so (see in Table 1 the present status of the 2ν de-
cays from the recent compilation of Ref. [3]). The EXO-200 measure
has been confirmed by KamLAND-Zen [4] only a few weeks ago.

The 2ν decay half-life contains a phase space factor and the
square of a nuclear matrix element
[
T2ν

1/2
]− 1 = G2ν

∣∣M2ν
GT

∣∣2
. (1)

The nuclear structure information is contained in the nuclear
matrix element to which only the Gamow–Teller σ t± part con-
tributes in the long wavelength approximation

M2ν =
∑

m

⟨0+
f |σ⃗ t− |m⟩⟨m|σ⃗ t− |0+

i ⟩
Em − (Mi + M f )/2

. (2)

* Corresponding author.
E-mail address: alfredo.poves@uam.es (A. Poves).

Table 1
Experimental 2ν ββ decay matrix elements.

Decay M(2ν) (MeV− 1) T2ν
1/2(y)

48Ca → 48Ti 0.047 ± 0.003 4.4 × 1019

76Ge → 76Se 0.140 ± 0.005 1.5 × 1021

82Se → 82Kr 0.098 ± 0.004 9.2 × 1019

96Zr → 96Mo 0.096 ± 0.004 2.3 × 1019

100Mo → 100Ru 0.246 ± 0.007 7.1 × 1018

116Cd → 116Sn 0.136 ± 0.005 2.8 × 1019

128Te → 128Xe 0.049 ± 0.006 1.9 × 1024

130Te → 130Xe 0.034 ± 0.003 6.8 × 1020

136Xe → 136Ba 0.019 ± 0.002 2.1 × 1021

150Nd → 150Sm 0.063 ± 0.003 8.2 × 1018

Therefore, to calculate the nuclear matrix element we need to
describe properly the ground state of the parent and grand daugh-
ter nuclei as well as all the 1+ excited states of the intermediate
odd–odd nucleus. In other words, the GT− strength function of
the parent, the GT+ strength function of the grand daughter and
the relative phases of the contributions from each intermediate
state.

Our description of the wave functions of the states involved
in the process is based in the Interacting Shell Model approach.
The valence space includes the orbits 0g7/2, 1d5/2, 1d3/2, 2s1/2, and
0h11/2, covering the sector of the nuclear chart between N,Z = 50
and N,Z = 82. We use the effective interaction gcn50:82 [5] which
is based in a renormalized G-matrix obtained from the Bonn-C [6]
potential using the methods of Ref. [7]. The final interaction is ob-
tained through a (mainly monopole) fit to about 300 energy levels
from ∼90 nuclei in the region with a rms deviation of 100 keV.
More details can be found in Ref. [8].

0370-2693/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.physletb.2012.03.076
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HI double charge exchange  (DCX) reaction II 
48Ca(12C,12Be[02+]) at 100 MeV/A at RCNP 

Identify 12Be(02+) with γ-ray tagging  
Clearly observed “forward-peaking” two peaks 
• Ex ≈ 17 MeV; relatively narrow peak 

• Single GT resonance (one-phonon) 
• Ex ≈ 27 MeV; broad beak 

• Double GT resonance (“two-phonon”) 
Identification of 12Be(0+2) with γ-ray tagging

e+e-

τ＝331 ns

2×511 keV γ-ray 
in back-to-back geometry

β+ decay of 11C (τ=20.4 min) 

e+e- decay of 12Be(02+) 

12Be arrives at  
  the focal plane

Active stopper (plastic) 
+ NaI scintillators

Result: comparison with πDCX data

4.5 days experiment w/ 17 pnA beam intensity

τ2

στ2

48Ca(12C,12Be(02+)) 
θlab=0°

No apparent structure

DIAS

M. Kaletka et al.,  
PLB 199,  336 (1987)

analysis is ongoing…

preliminary 

Ex (MeV)

48Ca(12C,12Be)

Experimental setup
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12C beam (100 MeV/u, 17 pnA)
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12Be

2 drift  
chambers

Courtesy of M. Takaki

Identification of 12Be(0+2) with γ-ray tagging

e+e-

τ＝331 ns

2×511 keV γ-ray 
in back-to-back geometry

β+ decay of 11C (τ=20.4 min) 

e+e- decay of 12Be(02+) 

12Be arrives at  
  the focal plane

Active stopper (plastic) 
+ NaI scintillators
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Identification of 12Be(0+2) with γ-ray tagging

e+e-
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2×511 keV γ-ray 
in back-to-back geometry

β+ decay of 11C (τ=20.4 min) 

e+e- decay of 12Be(02+) 

12Be arrives at  
  the focal plane

Active stopper (plastic) 
+ NaI scintillators

Select 12Be(02+)

Result: comparison with πDCX data

4.5 days experiment w/ 17 pnA beam intensity

τ2

στ2

48Ca(12C,12Be(02+)) 
θlab=0°

No apparent structure

DIAS

M. Kaletka et al.,  
PLB 199,  336 (1987)

analysis is ongoing…

preliminary 
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Result: comparison with πDCX data

4.5 days experiment w/ 17 pnA beam intensity

τ2

στ2

48Ca(12C,12Be(02+)) 
θlab=0°

No apparent structure

DIAS

M. Kaletka et al.,  
PLB 199,  336 (1987)

analysis is ongoing…

preliminary 

Ex (MeV)

Theoretical prediction of DGT of 48Ca  
Shell-model predictions with GXPF1B int.

• Double peaks → consistent with exp. data

• Double GT resonance at Ex ≈ 26 MeV


• Consistent with exp. result of ≈ 27 MeV 

Theoretical prediction b/w Ex and M0νββ 
• DGT dist. → sensitive to paring corr.: G(01)

• M0νββ            → sensitive to G(01)

DGT and its relation to 0νββ decay
N. Shimizu et al., Phys. Rev. Lett. 120, 142502 (2018).

Present data: G(01)≈0 → useful for M0νββ

cancel this interaction [53] to attractive ones. The centroid
energy of the DGTGR is rather independent of the isoscalar
pairing coupling. In contrast, strongly attractive isoscalar
pairing makes the DGT GR width broader than with the
original nuclear interaction.
The 0νββ decay NMEs are also very sensitive to pairing

correlations, both isovector [54–56] and isoscalar [57–60].
The 0νββ decay NME is given by a combination of GT,
Fermi (F) and tensor (T) components [6]:

M0ν ¼ M0ν
GT −

!
gV
gA

"
2

M0ν
F þM0ν

T ; ð3Þ

M0ν
X ¼ hfj

X

jk

τ−j τ
−
k SXVXðrjkÞjii; ð4Þ

where gA=gV ¼ 1.27 is the ratio of the axial and vector
couplings, the different spin structures are SF ¼ 1, SGT ¼
σjσk and the tensor ST, and VGT, VF, and VT are the
corresponding neutrino potentials, which depend on the
distance between the decaying neutrons rjk. Equation (3)
uses the closure approximation, which is accurate to more
than 90% [44]. In this approximation, the neutrino potential
is the only difference between the dominant term M0ν

GT and
the DGT operator.
We combine the sensitivity to pairing correlations of the

DGT strength distribution, and the well-known sensitivity
of the 0νββ decay NME to these correlations by studying
both observables with H0 obtained with various coupling
values. Figure 3 shows NMEs as a function of the centroid
energy of the DGT distribution, defined as

Ec ¼
P

fEfBðDGT−; i → fÞ
P

fBðDGT−; i → fÞ
: ð5Þ

Figure 3 highlights that the NME, dominated by M0ν
GT, is

well correlated with the average energy of the DGT GR.
This correlation, driven by the dependence of both observ-
ables to the isovector pairing strength, agrees well with the
results obtained in two major shells, indicated by an open
circle in Fig. 3. This consistency supports the use of the
modified interaction H0, which may capture sufficiently
well the aspects relevant for the DGT GR—0νββ decay
correlation without the need to reproduce all other nuclear
structure properties. Our study indicates that a measure-
ment of the DGT GR, besides testing the theoretical
calculation, can provide a hint of the NME value.
A measured centroid energy above (below) the result of
the original nuclear interaction would suggest a larger
(smaller) NME than the initial GXPF1B prediction.
Figure 3 indicates that an experimental uncertainty on
the DGT GR peak of a couple of MeV, which might be
experimentally accessible in the near future [25,35,36],
would be sufficient to shed light on the 48Ca 0νββ decay
NME. On the other hand, while we find that a narrower
DGT GR is associated with a larger NME, very small
uncertainties below the MeV scale would be needed to
extract information relevant for 0νββ decay.
The correlation in Fig. 3 is useful if the shell model can

reproduce the DGT GR. This will be tested once DGT data
are available. For the moment, shell model predictions for
the GT strength distribution of 48Ca [61,62], including the
GT GR, agree quite well with experiment.
DGT and 0νββ decay NME.—Figure 1 shows that the

DGT transition into the ground state (gs) of 48Ti is a tiny
fraction of the total DGT distribution. Nonetheless, this
matrix element is expected to be the closest to 0νββ decay
since both processes share initial and final states. We define
the DGT matrix element as

MDGT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðDGT−; 0; 0þgs;i → 0þgs;fÞ

q

¼ jh0þgs;f jj
X

j;k

½σjτ−j × σkτ−k &0jj0þgs;iij: ð6Þ

The DGT matrix element is proportional to the two-
neutrino ββ decay matrix element evaluated in the closure
approximation. The 48Ca MDGT shown in Fig. 3 is indeed
correlated to the 0νββ decay NME.
Figure 4 explores the relation between M0ν and MDGT

matrix elements for 26 pairs of initial and final nuclei
comprising initial calcium, titanium, and chromium iso-
topes with mass numbers 42 ≤ A ≤ 60 (panel a), and 17
initial germanium, selenium, tin, tellurium, and xenon
isotopes with masses 76 ≤ A ≤ 136 that include five ββ
emitters (panel b). We have used various one-major-shell
nuclear interactions [46,63–65] in each mass region. These

FIG. 3. 0νββ decay NME and DGT GR (λ ¼ 2) centroid energy
(Ec), for the interactions defined in Eq. (2). The black solid, red
solid, green dotted, and brown dashed-dotted lines show the total,
GT, Fermi, and tensor NME parts, respectively. The blue dashed
line denotes the DGT transition to the 48Ti ground state. The
vertical dashed line indicates the results of the original GXPF1B
interaction. The open circle corresponds to the two-shell total
result in the sd-pf space.
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Three nucleon force effects in few nucleon systems 
Data is accumulating → 3NF effects are clear 

3NFs at N2LO are insufficient especially for spin-isospin dependence (pol. obs.)

• Push the chiral expansion to N4LO 
• More N-d scattering data for phase-shift analysis and p-3He data for T=3/2 3NFs 

Spin-isospin responses for stable and unstable nuclei 
Observe Gamow-Teller resonances for 8He&12Be (n-rich) and 132Sn (double magic)

Constancy of g’NN in wide nuclear chart region with A≈8–208 and (N-Z)/A≈0.1–0.5

• Further investigations for the total strength and higher multipole modes such as SD 
IVSM → clearly observed by HI charge-exchange


Double charge-exchange/Gamow-Teller and neutrino-related physics 
DCX reaction → constraint on M0νββ; the double beta-decay nuclear matrix element

Candidate of Double GT resonance → useful to observe new collective motion


Summary and Outlook
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