Measurement of the J/ ψ photoproduction cross section close to threshold

E.Chudakov¹

¹JLab, for **GlueX** collaboration

Presented at 23-rd International Spin Symposium SPIN2018, Ferrara, 10-14 Spetember 2018

E.Chudakov

SPIN 2018, Ferrara

Measured: $\sigma(E_{\gamma})$ for reaction $\gamma + p \rightarrow J/\psi + p$ at 8.22(*threshold*) < E_{γ} < 12 GeV

Existing data: two experiments from 1975 at E > 11 GeV

Photoproduction dynamics

• $\sigma(E_{\gamma})$ is sensitive to high-x gluons in the nucleon

Spectroscopy: search for the LHCb pentaquark

- s-channel production $\gamma + p \rightarrow P_c(4450) \rightarrow J/\psi + p$ at 10.1 GeV
- The P_c production would manifest itself as a peak in $\sigma(E_\gamma)$

The main topic of this presentation

Measured: $\sigma(E_{\gamma})$ for reaction $\gamma + p \rightarrow J/\psi + p$ at 8.22(*threshold*) $< E_{\gamma} < 12 \text{ GeV}$

Existing data: two experiments from 1975 at E > 11 GeV

- Photoproduction dynamics
 - $\sigma(E_{\gamma})$ is sensitive to high-x gluons in the nucleon

Spectroscopy: search for the LHCb pentaquark

- s-channel production $\gamma + p \rightarrow P_c(4450) \rightarrow J/\psi + p$ at 10.1 GeV
- The P_c production would manifest itself as a peak in $\sigma(E_\gamma)$

The main topic of this presentation

Measured: $\sigma(E_{\gamma})$ for reaction $\gamma + p \rightarrow J/\psi + p$ at 8.22(*threshold*) < E_{γ} < 12 GeV

Existing data: two experiments from 1975 at E > 11 GeV

Photoproduction dynamics
 σ(E_γ) is sensitive to high-x gluons in the nucleon

Spectroscopy: search for the LHCb pentaquark

- s-channel production $\gamma + p \rightarrow P_c(4450) \rightarrow J/\psi + p$ at 10.1 GeV
- The P_c production would manifest itself as a peak in $\sigma(E_{\gamma})$ The main topic of this presentation

Exotic XYZ states: rich spectroscopy results

Belle, BaBar, CDF, D0, LHCb, BES have detected, mostly in *B* decays many mesonic states in \overline{cc} , $(\overline{bb}) + X$ final states, as:

 $\begin{array}{l} \chi_{c1}(3872) \ 0^+(1^{++}) \ \Gamma < 1.2 \ \textit{MeV} \ \rightarrow J/\psi \pi \pi (> 3\%), \ \bar{D}^{*0} D^0(> 30\%) \ \dots \ \bar{c}c? \\ Z_c(3900) \ 1^+(1^{+-}) \ \Gamma = 28 \ \textit{MeV} \ \rightarrow J/\psi \pi^{\pm}, \ \bar{D}^* D \dots \ exotic \ (not \ a \ \bar{c}c) \end{array}$

The masses are close to the thresholds of some reactions (say, \overline{D}^*D)

The experimental evidence is very strong!

The interpretation is still uncertain:

- Tetraquark: diquark-antidiquark $\bar{3}_c \times 3_c \in 1_c$
- Molecule: meson-antimeson loosely bound $1_c \times 1_c \in 1_c$ "hadrocharmonium"
- Cusp kinematical effect

More information about their properties should help the interpretation

E.Chudakov

LHCb Pentaquark

LHCb PRL, 115, 072001 (2015) $\Lambda_b^0 \to K^-(J/\psi p)$

Threshold of $\Sigma_c(2455)\overline{D}^*(2007) = 4462 \text{ MeV/c}^2$. The only mode detected $J/\psi p$

E.Chudakov SPIN 2018, Ferrara J/ψ photoproduction 4/13 Jefferson Lab

Photoproduction of the Pentaquark: Predictions

http://cgl.soic.indiana.edu/jpac/PentaQ_JPsi.php

E.Chudakov SF

SPIN 2018, Ferrara

 J/ψ photoproduction

In a *Broad-band photon beam* $\gamma + p \rightarrow J/\psi + p$ may include $\gamma + p \rightarrow P_c \rightarrow J/\psi + p$

Addressed in a number of papers:

- M. Voloshin et al PRD 92, 031502 (2015)
- Q. Wang et al PRD 92, 034022 (2015)
- M. Karliner et al PL 752, 329 (2016)

A. Hiller Blin et al PRD 94, 034002 (2016) JPAC

•
$$P_c \rightarrow J/\psi \ p \stackrel{VMD}{\Rightarrow} \gamma \ p \rightarrow P_c$$

- Interference of t- and s-channels
- Using the measured Γ(P_c) the full cross section is calculable with one free parameter:

 $\sigma_{\gamma p
ightarrow J/\psi p}({\it E_{peak}}) \propto {\it BR}({\it P_c}
ightarrow J/\psi p)^2$

CEBAF at 12 GeV

Beam runs

year	<i>E_{MAX}</i> , GeV				
	A	В	С	D	
2016	10.9	-	-	12.0	
2017	10.6	10.6	8.5	11.7	
2018	10.6	10.6	10.6	11.7	

E.Chudakov

SPIN 2018, Ferrara

E.Chudakov SPIN 2018, Ferrara

J/ψ photoproduction

Photon Beam Spectrum

Spectrometer parameters

- Acceptance: $1^{\circ} < \theta < 120^{\circ}$
 - Resolutions: h^{\pm} : $\sigma_p/p \sim 1 - 3\%$ γ : $\sigma_E/E \sim 6\%/\sqrt{E} + 2\%$
- Beam energy tagging ~0.1%
- Trigger: energy in the calorimeters

E.Chudakov

SPIN 2018, Ferrara

 J/ψ photoproduction

Data Analysis for J/ψ

Reaction studied: $\gamma \ p \to J/\psi \ p$, $J/\psi \to e^+e^- \sigma(\gamma p \to \psi p) \times BR \sim 30 \text{ pb} \sim 0.3 \cdot 10^{-6} \times \sigma_{tot}(\gamma p \to hadrons)$

Event identification:

- PID for *p*: TOF, $\frac{dE}{dx}$ in drift chambers
- PID for e^{\pm} : EM calorimeters (challenge: large BG from $\pi^+\pi^-p$ events)
- Kinematic fit using the photon energy measured with a 0.1% resolution

The Bethe-Heitler reaction $\gamma p \rightarrow (e^+e^-)p$ used for normalization *(absolute efficiencies are not fully understood yet)*

E.Chudakov

SPIN 2018, Ferrara

 J/ψ photoproduction

8/13

Mass Spectrum of *e*+*e*-

E.Chudakov

GlueX Preliminary: not the final 2016+2017 data sample (about 70%).

BH simulation from R.Paremuzyan, based on E.Berger et al, EPJC 23:675 (2002)

Jefferson Lab

9/13

SPIN 2018, Ferrara J/ ψ pho

Mass Spectrum of e^+e^-

E.Chudakov

GlueX Preliminary: not the final 2016+2017 data sample (about 70%).

BH simulation from R.Paremuzyan, based on E.Berger et al, EPJC 23:675 (2002)

Jefferson Lab

9/13

SPIN 2018, Ferrara J/ψ ph

Mass Spectrum of e^+e^-

E.Chudakov

GlueX Preliminary: not the final 2016+2017 data sample (about 70%).

J/ψ photoproduction

BH simulation from R.Paremuzyan, based on E.Berger et al, EPJC 23:675 (2002)

SPIN 2018, Ferrara

9/13

Energy dependence of the cross section

• SLAC:

U.Camerini et al, PRL 35 (1975) Calculated from the measured $\frac{d\sigma}{dt}|_{t=tmin}$ assuming $\frac{d\sigma}{dt} \propto e^{a \cdot t}, \ a = 2.9 \pm 0.3 \,\text{GeV}^{-2}$ measured at 19 GeV

• Cornell:

B.Gittelman et al, PRL 35 (1975) t-slope $a = 1.25 \pm 0.2 \text{ GeV}^{-2}$ horizontal error bar represents the acceptance

Limit on the Pentaquark Production

Fit: 2 + 3-gluon exchange Brodsky et al, PL 498 (2001) 2 free parameters $\chi^2/ndf = 0.8$

Limit for $P_c(4450) \Gamma = 40 \text{ MeV}$ JPAC model, assumptions: $\sigma(10.1) = 0.64 \text{ nb non-reson.}$ no wide state $P_c(4380)$ added

JPC	BR	$10.1\pm0.6~\text{GeV}$		(2 bins)
		JPAC	experiment	sepa-
		nb	nb	ration
				σ (stat)
3/2-	2.0%	0.81	0.58 ± 0.08	2.9
5/2+	0.7%	0.81	0.58 ± 0.08	2.9

Systematic to be addressed:

- t and s-channel interference
- VMD model dependence
- The wide state influence

Limit on the Pentaquark Production

Fit: 2 + 3-gluon exchange Brodsky et al, PL 498 (2001) 2 free parameters $\chi^2/ndf = 0.1$

Limit for $P_c(4450) \Gamma = 40 \text{ MeV}$ JPAC model, assumptions: $\sigma(10.1) = 0.64 \text{ nb non-reson.}$ no wide state $P_c(4380)$ added

J^{PC}	BR	$10.1\pm0.6~{ m GeV}$		(2 bins)
		JPAC	experiment	sepa-
		nb	nb	ration
				σ (stat)
3/2-	2.0%	0.84	0.58 ± 0.08	3.1
5/2+	0.7%	0.84	0.58 ± 0.08	3.1

Systematic to be addressed:

- t and s-channel interference
- VMD model dependence
- The wide state influence

Unbinned distribution t vs E

The beam energy resolution is about $0.1\% \ll 0.6$ GeV bins The P_c is expected to produce broad *t*-distribution

• JPAC:
$$\frac{5}{2}^+$$
 BR = 3%

- White dots: J/ψ events from the peak
- No indication of event concentration at 10.1 GeV

Summary & Outlook

- Summary of the preliminary GlueX results
 - The first measurement of the cross section of the reaction $\gamma p \rightarrow J/\psi p$ close to threshold has been reported.
 - No statistically-significant evidence for the LHCb pentaquark has been observed. The model-predicted yield from $P_c(4450)(\frac{3}{2}^-) \rightarrow J/\psi p$, BR=2% (or $\frac{5}{2}^+$, BR=0.7%) is about $3\sigma(stat)$ above the experimental result.
- Outlook
 - GlueX is planning to analyze the full data sample and finalize the results before the end of the year. Also, we are planning to increase the sensitivity to the $P_c(4450)$ detection by using t E unbinned event analysis. Later, the 2018 data is expected to triple the statistics.
 - Other experiments at JLab (CLAS12 and Hall C) have been scheduled to the near future to measure the same process. Potentially, they would be able to reach a higher sensitivity.

E.Chudakov

E.Chudakov SPIN 2018, Ferrara

Identification of e^{\pm}

Using the track momentum p and the calorimeter energy E

Pion background for BH sample $1.5 < M(e^+e^-) < 2.5 \text{ GeV}$

- One e[±] identified
- *p*/*E* for pions shape measured
- Average background $36 \pm 1.2\%$
- Energy-dependent BG correction

E.Chudakov

SPIN 2018, Ferrara

- Beam flux is measured with the Pair Spectrometer using e^+e^- pair production with a \sim 0.1% converter
- "Tagged flux" measures photons in coincidence with the tagger detectors
- The structure of the tagged flux is caused by coherent peaks and the tagger geometry/efficiency
- Flux-normalized yield of γp → ρp is smooth

Systematic error source	Estimate, %
J/ψ to BH relative yield	18
BH cross section calculation	10
Pion contamination to BH	5
ρ contamination to BH	5
t-dependence of efficiency	9
Total	24

Exotic XYZ states: rich spectroscopy results

Belle, BaBar, CDF, D0, LHCb, BES have detected, mostly in *B* decays many mesonic states in \overline{cc} , $(\overline{bb}) + X$ final states, as:

 $\chi_{c1}(3872) \ 0^+(1^{++}) \ \Gamma < 1.2 \ \rightarrow J/\psi \pi \pi (> 3\%), \ \overline{D}^{*0} D^0(> 30\%) \dots \ \overline{c}c?$ $Z_c(3900) \ 1^+(1^{+-}) \ \Gamma = 28 \ \rightarrow J/\psi \pi^{\pm}, \ \overline{D}^*D... \ exotic (not a \ \overline{c}c)$

The masses are close to the thresholds of some reactions (say, \overline{D}^*D)

E.Chudakov SPIN 2018, Ferrara J/ ψ photoproduction 18 / 13 Jefferson Lab