Status and Perspectives of the NICA Project

<u>A.D.Kovalenko</u>, V.D.Kekelidze, R.Lednicky, V.A.Matveev, I.N.Meshkov, A.S.Sorin, G.V.Trubnikov, R.Tsenov *Joint Institute for Nuclear Research, Dubna*

> Volga river

SPIN-2018 09 -14 September 2018, Ferrara, Italy

NUCLOTRON BASED ION COLLIDER FACILITY

Main targets :

- study hot and dense baryonic matter at the energy range of max baryonic density
- nucleon spin structure, polarization phenomena

NUCLOTRON BASED ION COLLIDER FACILITY

Main targets :

development of accelerator facility, construction of collider of relativistic ions (up to Au), polarized protons and deuterons with max energy up to

General Scheme the Facility

NICA Heavy Ion Research Targets

Exploring high-density baryonic matter: maximum freeze-out density

NICA is well suited for exploring the transition between the hadronic and q-g phases at the highest baryon density. This is the top priority of the NICA program.

A.D.Kovalenko et al. for NICA Collaboration.

SPIN-2018, September 11, 2018

NICA Functional Scheme

Injection Complex: 4 ion sources

Source	KRION-6T	Laser	Douplasmatron	SPI
particles	Au ³¹⁺	up to Mg ¹⁰⁺	p, d, He ²⁺	↑p,↑d
particle/cycle	~2.5 10 ⁹	~10 ¹¹	p, d ~5 10 ¹² He ²⁺ ~10 ¹¹	5 10 ¹¹
repetition, Hz	10	0,5	1	0,2

SPIN-2018, September 11, 2018

Injection Complex: 2 Linacs

Linac	LU-20	HILAC
structure (section number)	RFQ + Alvarez type	RFQ + IH DTL(2)
mass to charge ratio A/Z	From 1 to 3	From 1 to 6
injection energy, keV/amu	150 for A/Z 1-3	17
extraction energy, MeV/amu	5 (A/Z = 1-3)	3.24 (A/Z = 6)
input current, mA	up to 20	up to 10

LU-20:new front end (INR,ITEP, MEPHI)

HILAC: "BEVATECH OHG"

Injection Complex: Nuclotron

Parameter	Nuclotron	commissioned: March 1993
type	SC synchrotron	
particles	p, d, (p, d polarized), nuclei	
injection energy, MeV/u	5 (p, d) / 570-685 (<mark>Au</mark>)	
max. kin. energy, GeV/u	12.1 (p); 5.6 (d); 4.4 (<mark>Au</mark>)	
magnetic rigidity, T m	25 - 43.25	
circumference, m	251.52	modernized 2010-2015
cycle at collider mode, s	1.5-4.2 (active); 5.0 (total)	
vacuum, Torr	10 ⁻⁹	
intensity, ppp: Au/proton.	1·10 ⁹ / 1·10 ¹¹	
transition energy, GeV/u	7.0	
RF range, MHz	0.6 -6.9 (p,d) 0.947 – 1.147 (nuclei)	
spill at slow extraction, s	up to 10	

Injection Complex: Booster

Parameter	Booster
type	SC-synchrotron
particles	ions A/Z <u><</u> 3
energy, MeV/u: inj. / max.	3.2 / 600
e - cooling energy, MeV	50
magnetic rigidity, T m	1.6 - 25.0
circumference, m	210.96
cycle for collider mode, s	5.0 (total)
vacuum, Pa	10 ⁻⁹
intensity, Au ions/pulse	1.5 10 ⁹
transition energy, GeV/u	3.25
RF range, MHz	0.5 -2.53
spill of slow extraction, s	up to 10

Commissioning is scheduled for 2018-2019

A.D.Kovalenko et al. for NICA Collaboration. SPIN-2018, September 11, 2018

NICA Collider

45 T*m, 4.5 GeV/u for Au⁷⁹⁺

A.D.Kovalenko et al. for NICA Collaboration.

SPIN-2018, September 11, 2018

Current Operation of the Nuclotron Facility

Despite of the NICA design and construction, the Nuclotron was running for physics data taking, detectors test and accelerator tasks.

- Run 53 (d¹, Li)
- Run 54 (d↑,p↑), C
- Run 55 (C, Ar, Kr,)

October – December, **2016** February – March, **2017** February. – April, **2018**

Data from the Nuclotron duty book are presented below.

A.D.Kovalenko et al. for NICA Collaboration.

SC Magnet Assembling and Test Facility

NICA Cryogenic Facility

A.D.Kovalenko et al. for NICA Collaboration. SPIN-2018, September 11, 2018

Physics, Capabilities and Set-ups

Baryonic Matter at Nuclotron (BM@N)

Physics data taken is started

Physics:

strange / multi-strange hyperon and
hypernuclei production at the threshold
hadron femtoscopy
short range correlations
event-by event fluctuations
in-medium modifications of strange
& vector mesons in dense nuclear matter
electro-magnetic - probes, states

electro-magnetic - probes, states
decaying into γ , e (with ECAL)

BM@N Collaboration:

Russia: INR, MEPhi, SINP, MSU,IHEP, S-Ptr Radium Inst. Bulgaria: Plovdiv University; China: Tsinghua University, Beijin; Poland: Warsaw Tech.Uni. Israel: Tel Aviv Uni., Weitzman Inst. Germany: Frankfurt Uni.; eoi GSI USA: MIT

BM@N operation plan

year		2016	2017 FebMar.	2017 NovDec.	2019	2020 +
beam		d (↑)	C, Ar	Kr	Au	Au, p
maximum intensity,	Hz	1M	1 M	1М	1M	10M
trig. rate,	Hz	10k	Ok	20k	20k	50k
central tra	acker	6 GEM half pl.	8 GEM half pl.	10 GEM half pl.	8 GEM full pl.	12 GEM or 8+2Si
expiment status		techn. run	techn. /run	physics run	physics stage 1	physics stage 2
	14/-			beam: F	- 35 40 4	5 AGoV
Feb April 2018		2018		- 5.5, 7.0, 7.		

NICA MPD- Multi Purpose Detector at the Collider

Main target:

 study of hot and dense baryonic matter at the energy range of max net baryonic density

expression of interest:

- CERN;
- DF, US, Mexico;
- ICN UNA; Mexico;
- DF, CIEA del I.P.N, Mexico;
- FCF-M UAS, Sinaloa, Mexico;
- FCF-MB UAP, Puebla, Mexico;
- PI Az.AS, Baku, Azerbaijan;
- ITEP, NC KI, Moscow, Russia;
- PNPI NC KI, Saint Petersburg, Russia;
- CPPT USTC, Hefei, China;
- SS, HU, Huzhou, Republic of South Africa.

MPD Collaboration:

- JINR, Dubna;
- Tsinghua University, Beijing, China;
- MEPhl, Moscow, Russia.
- INR, RAS, Moscow, Russia;
- PPC BSU, Minsk, Belarus;
- WUT, Warsaw, Poland;

MPD - Multi Purpose Detector

General contractor: **ASG Superconductors,** Genova, Italy **Status:** technical design – completed / close to completion; preparation for the mass production

MPD – manufacturing stages (1)

Manufacture of the end

2 Poles: Ø 4.5 m, 47 tons each

A.D.Kovalenko et al. for NICA Collaboration.

SPIN-2018, September 11, 2018

MPD – manufacturing stages (2)

Cradles are in progress: 1.47x4.15x7.68, m; 34 tons in total

A.D.Kovalenko et al. for NICA Collaboration. SPIN-2018, September 11, 2018

MPD/SPD Equipment for the halls

General remarks:

- Polarized deuteron and proton beams are available at our facility.
- Number of particles per pulse of 5e10 is attainable.
- "SPI"- polarized source can be easily connected to the linac.
- Important test was performed injection of 5 MeV polarized proton beam into the Nuclotron, RFcapture and acceleration.

9 reports are presented at SPIN2018 connected with collaborative projects at Nuclotron beams and NICA design and development: V.Ladygin, N.Piskunov, V.Fimushkin, M.Kulikov, R.Tsenov, O.Teryaev, A.Kovalenko

NICA IN Polarized Proton @ Deuteron Mode

Polarized dd: SPI \rightarrow LU-20M \rightarrow Nuclotron \rightarrow Collider

Polarized pd – collisions: both injection lines are needed

A.D.Kovalenko et al. for NICA Collaboration. SPIN-2018, September 11, 2018

• SPD Project is in preparation.

- Renewed WG (leader Prof. R.Tsenov) was approved by the JINR Director.
- Presentation: "The SPD project for spin studies at the NICA accelerator complex" at SPIN2018 is scheduled for Wednesday, session A8 (16.40 – 18.40).

Civil Construction

A.D.Kovalenko et al. for NICA Collaboration.

SPIN-2018, September 11, 2018

- NICA recognized as a part of European research infrastruct.
- NICA has a status of mega-project at RF level.
- The construction of BM@N, MPD and accelerator systems is going close to the schedule.
- SPD at the stage of the project preparation.
- Spin physics research program at fixed target is going.
- Spin physics proposed as a part of the JINR strategic plan.

• NICA is open for new participants.

Thank you for your attention!

A.D.Kovalenko et al. for NICA Collaboration. SPIN-2018, September 11, 2018