Spin Phenomena in Jets

Renee Fatemi University of Kentucky

University of Ferrara, September 13th, 2018

What is a jet?

What is a jet?

Depends on who you ask.

What is a jet?

- Depends on who you ask.
- A collimated spray of energy deposited in a detector.

What is a jet?

- Depends on who you ask.
- A collimated spray of energy deposited in a detector.
- The response of a confined parton to a hard interaction.

Hard Scattering

Hard Scattering

Fragmentation and Hadronization

- Hard Scattering
- Fragmentation and Hadronization
- ► Radiation

- Hard Scattering
- Fragmentation and Hadronization
- ► Radiation
- Underlying event
 - Multiple parton interactions

- Hard Scattering
- Fragmentation and Hadronization
- ► Radiation
- Underlying event
 - Multiple parton Interactions
 - Interactions with beam remnants

11

Jets have played an integral role in the construction and testing of QCD

- Discovery of the gluon
- The strong coupling constant
- Discovery of the top quark
- Parton Distribution
 Functions

Ellis, Gaillard and Ross, Nucl. Phys. **B111** (1976) 253 MARK-J Collaboration, Phys. Rev. Lett. **43**, (1979) 830 TASSO Collaboration, Phys. Lett. **86B** (1979) 243 PLUTO Collaboration, Phys. Lett. **86B** (1979) 418

12

Jets have played an integral role in the construction and testing of QCD

- Discovery of the gluon
- The strong coupling constant
- Discovery of the top quark
- Parton Distribution
 Functions

Particle Data Group, Phys. Rev. D98 (2018) 030001

Jets have played an integral role in the construction and testing of QCD

- Discovery of the gluon
- The strong coupling constant
- Discovery of the top quark
- Parton Distribution
 Functions

Particle Data Group, Phys. Rev. D98 (2018) 030001

Jets have played an integral role in the construction and testing of QCD

- Discovery of the gluon
- The strong coupling constant
- Discovery of the top quark
- Parton Distribution
 Functions

14

NNPDF Collaboration, Eur. Phys. J. **C77**, no 10, (2017) 663

Last Decade \rightarrow Explosion of Jetfinding Techniques

 \sqrt{s} = 7-13 TeV pp

Last Decade \rightarrow Explosion of Jetfinding Techniques

16

 \sqrt{s} = 7-13 TeV pp

Jet cross-sections and fragmentation functions

Relativistic Heavy Ion Collider

the world's first and only polarized proton collider...

This talk will discuss results from the following runs:

YEAR	√s	∫ £ *	Spin	Pol%
	Gev	pb ⁻		
2009	200	114	L	56
2011	500	166	Т	48
2012	200	74	Т	59
2012	510	283	L	52
2013	510	1040	L	52

Jet physics at a $\vec{p}\vec{p}$ collider

Gluons!

- Leading order sensitivity to $\Delta g(x, Q^2)$
- Lower jet $p_T \rightarrow more gluons$
- Inclusive jets give highest statistical power, while dijets permit reconstruction of x₁ & x₂ at leading order
- Use double spin asymmetries A_{LL} in longitudinally polarized collisions to gain sensitivity to the gluon helicity.

 $A_{LL} \propto \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}} = \frac{\sum_{AB} \Delta f_A \Delta f_B \times \Delta \sigma_{AB \to jet + X}}{\sum_{AB} f_A f_B \times \sigma_{AB \to jet + X}}$

Jet physics at a $\vec{p}\vec{p}$ collider

Transverse Momentum Distributions

- Reconstruction of hadrons inside a jet gives access to momentum along (z) and transverse (j_T) to the jet axis. Note J_T is similar to SIDIS hadron p_T but it is relative to the jet axis.
- Access to both quark and gluon TMDS via modulations of the transverse single spin asymmetry.

$$A_{UT}^{\sin\phi}\sin(\phi) = \frac{\sigma^{\uparrow}(\phi) - \sigma^{\downarrow}(\phi)}{\sigma^{\uparrow}(\phi) + \sigma^{\downarrow}(\phi)}$$

► sin(ϕ_{s} - ϕ_{H})

Transversity \otimes Collins FF

Recent work by Kang, Liu, Ringer and Xing JHEP 1711 (2017) 068 indicate universality holds in pp collisions!

▶ $sin(\phi_s - 2\phi_H)$

Gluon Linear Polarization \otimes Collins-Like FF

Jet physics at a $\vec{p}\vec{p}$ collider

Transverse Momentum Distributions

- Reconstruction of hadrons inside of jet gives access to hadron transverse momentum j₁ and z
- Access to both quark and gluon TMDS via modulations of the transverse single spin asymmetry.

► Evolution

- non-perturbative factors that must be measured
- pp colliders access higher Q² than fixed target experiments
- Provides insights into the size of observables we want to measure at an EIC.

Universality

 Comparisons to SIDIS allow separation of intrinsic properties of hadrons from interaction dependent dynamics

TIME PROJECTION CHAMBER

5520 (PbSc) towers

BEAM BEAM COUNTERS ZERO DEGREE COUNTERS **VERTEX POSITION DETECTORS**

FORWARD MESON DETECTOR

CHARGED PARTICLE TRACKING

21

CHARGED PARTICLE IDENTIFICATION EM PARTICLE DETECTION HIGH PT TRIGGERING

RELATIVE LUMINOSITY MINIMUM BIAS TRIGGERING

Pb-Glass EM Calorimeter

22

TIME PROJECTION CHAMBER

5520 (PbSc) towers

BEAM BEAM COUNTERS ZERO DEGREE COUNTERS **VERTEX POSITION DETECTORS**

CHARGED PARTICLE TRACKING

CHARGED PARTICLE IDENTIFICATION EM PARTICLE DETECTION HIGH PT TRIGGERING

RELATIVE LUMINOSITY MINIMUM BIAS TRIGGERING

Pb-Glass EM Calorimeter

FORWARD MESON DETECTOR

23

TIME PROJECTION CHAMBER

BEAM BEAM COUNTERS ZERO DEGREE COUNTERS **VERTEX POSITION DETECTORS** CHARGED PARTICLE TRACKING

CHARGED PARTICLE IDENTIFICATION EM PARTICLE DETECTION HIGH PT TRIGGERING

RELATIVE LUMINOSITY MINIMUM BIAS TRIGGERING

Pb-Glass EM Calorimeter

FORWARD MESON DETECTOR

FORWARD MESON DETECTOR

CHARGED PARTICLE TRACKING

24

CHARGED PARTICLE IDENTIFICATION EM PARTICLE DETECTION HIGH PT TRIGGERING

RELATIVE LUMINOSITY MINIMUM BIAS TRIGGERING

Pb-Glass EM Calorimeter

pp Jetfinder @ STAR

- Anti-kT algorithm via FastJet Cacciari, Salam, Soyez, JHEP 04, 063 (2008) Cacciari, Salam, Soyez, Eur. Phys. J. C 72, 1896 (2012)
- R = 0.6 200 GeV mid-rapidity
 R = 0.5 500 GeV mid-rapidity
 R = 0.7 500 GeV far-forward-rapidity
- Anti-kT is less susceptible to diffuse backgrounds from UE and pile-up contributions.
- In PYTHIA+GEANT simulation we remove UE contributions from PARTON level jets.

Questions we address along the way...

- Can we use pQCD to interpret our results at $\sqrt{s} = 200 \text{ GeV}$?
- At what level should we report our results?
- Can we account for UE and hadronization effects in a data driven way?
- Do simulations that are tuned for LHC √s match our data? Is the underlying event well described?

Gluon Helicity

200 GeV Inclusive Jet Cross-section

28

Gluon helicity PDF is extracted in an NLO global analysis. We need to convince ourselves that NLO can describe jets we reconstruct at $\sqrt{s} = 200$ GeV

Theoretical and experimental systematic errors are large, but within those bands the data seems well described by NLO pQCD. Important check that we understand our trigger and detector corrections.

200 GeV Inclusive Jet ALL

- First RHIC result with sufficient precision to indicate a **non-zero** $\Delta g(x > 0.05)$
- First jet A_{LL} to correct for hadronization and underlying event effects.
- By correcting back to parton level the jet p_T is ``matched'' to NLO calculations as closely as possible.
- The dominant systematic error on the jet scale comes from the effects of differences between PYTHIA and NLO pQCD crosssections on this correction.
- Theoretical curves from jet code by Mukherjee & Vogelsang, Phys. Rev. D 86, 094009 (2012).

Phys. Rev. Lett. 115 (2015) 92002

200 GeV Mid-Rapidity Dijets

- Inclusive jets sample broad range of parton momentum fraction x.
- This limits constraints on the functional form of $\Delta g(x)$ and increases uncertainty at lower x.
- Dijets allow for reconstruction of the initial parton x₁ and x₂ at leading order.

$$x_{1,2} = \frac{1}{\sqrt{s}} \left(p_{T3} e^{\pm \eta_3} + p_{T4} e^{\pm \eta_4} \right)$$
$$|\cos \theta^*| = \tanh \left| \frac{\eta_3 - \eta_4}{2} \right|$$

200 GeV Mid-Rapidity Dijet A_{LL} & Cross-section

31

Phys.Rev.D95, 071103 (2017)

Can push to smaller x by using endcap calorimeter in forward region.

Can push to smaller x by using endcap calorimeter in forward region.

Can push to smaller x by using endcap calorimeter in forward region.

Machine Learning Techniques

TPC efficiency drops quickly for $\eta > 1.2$. Manifests as increasing ratio of particle to detector jet p_{T} .

Use Multi-layer Perceptron machine learning technique to correct p_T and mass of forward and mid-rapidity jets to the particle level.

Data Driven Underlying Event Correction

- UE and background contributions are subtracted using technique based on ALICE perpendicular cone method. *Phys.Rev.* **D91**, no. 11, 112012 (2015)
- For each jet two cones of radius R_{jet} are defined at $\phi = \phi_{jet} \pm 90$ and $\eta = \eta_{jet}$.
- Average transverse momentum ρ and mass density ρ_{M} are calculated from the cones.
- Jet four momentum is corrected on an event-by-event basis.

$$P_{jet}^{\prime\mu} = P_{jet}^{\mu} - \rho A_{je}^{\mu}$$

These asymmetries sample both low x gluons and high x quarks!

Phys. Rev. D 98 (2018) 32011

500 GeV Mid-rapidity Inclusive and Dijet A_{LL} 38

Measurements at higher √s access lower partonic x

$$\mathbf{x} \approx x_T e^{\pm \eta} = \frac{2p_T}{\sqrt{s}} e^{\pm \eta}$$

 Optimize R_{jet} = 0.5 to accommodate increased UE and pileup at higher center of mass energies

500 GeV Mid-Rapidity Inclusive and Dijet A_{LL} 39

INCLUSIVE JET

DIJET

*jets and pions $\Delta G = \int_{x_{min}}^{1} \Delta g(x) dx$

RHIC's impact on

DSSV Phys.Rev.Lett. 113 1, 012001 (2014)

∆G (x > 0.05) @ Q²=10 GeV² = 0.2 (+0.06/-0.07)

NNPDF Nucl.Phys.B887, 276-308 (2014)

∆G (0.2 > x > 0.05) @ Q²=10 GeV² = 0.17 (+/- 0.06)

Phys.Rev. D92, 094030 (2015)

Transverse Momentum Distributions

Collins TMD Fragmentation Function

42

 $S_Q \bullet (P_Q \times P_H)$

Ρ_H

 $n_{\sigma}(\pi)$

 S_Q

Correlation between spin of transversely polarized quark and transverse momentum kick given to fragmentation hadron. Use the STAR TPC and TOF to identify charged pions inside jets!

Tuning the underlying event

- UE subtraction is tricky is π⁺ from the UE or the hard scattering?
- For this reason $A_{UT}^{\sin \phi}$ is corrected back to **PARTICLE** level only.
- Must tune UE in simulation to reflect our $\sqrt{s} = 200$ and 500 GeV.
- Optimize the PYTHIA parameter that controls the multiple parton interactions to reflect fully corrected STAR inclusive pion samples.

43

PERUGIA 2012, CTEQ6L1, PARP(90)=0.213

Excellent Data-Simulation matching!

JET pT

PION jT

PION z

$A_{UT}^{\sin(\phi_s - \phi_H)}$ vs Z

- Apply cuts to ensure same average quark x and hadron J_T ranges.
- Excellent agreement between 200 and 500 GeV for π+ ... π- not as strong.
- Need more statistics in 500 GeV to match precision of 200 GeV.

$500 \,\mathrm{GeV}\,A_{UT}^{\sin(\phi_s - \phi_H)}$ vs Z

STAR data compared to calculations by

- D'Alesio, Murgia & Pisano, Phys. Lett.
 B773, 300 (2017)
- 2. Kang, Prokudin, Ringer, & Yuan, Phys.Lett. **B774** 635-642 (2017) without and with evolution.

Data and theory agree - **TMD Evolution effects appear to be small.** At the current level of precision the data supports theoretical work by by Kang, Liu, Ringer and Xing JHEP 1711 (2017) 068, ie **universality holds for Collins TMDs in p+p collisions.** Need more data!

$A_{UT}^{\sin(\phi_s - \phi_H)} \vee s j_T$ in bins of z

- 200 and 500 GeV tell the same story
- Shape of j_T changes with z
- Peak of distribution moves higher as z increases.
- Hadron j_T is independent of initial state transverse momentum.

Far-Forward Collins TMDFF

- No charged tracks EM jets only. Leads to large systematic error on reconstruction of the Collins angle.
- π^0 reconstruction
- Size and shape of asymmetries very similar to mid-rapidity.

Doesn't explain Large Forward SSA

49

Jet asymmetries don't represent size or shape of inclusive π^0 SSA!

Doesn't explain Large Forward SSA

50

"Recover" asymmetries if "jet" is composed largely of a single pion.

Gluon TMDs @ 200 and 500 GeV

- $sin(\phi_s 2\phi_H)$ moment Gluon Linear Polarization \otimes Collins-Like FF
- First limit on linearly polarized gluons in a polarized proton!

51

nys. Rev. **D 97** (2018) 32004

This is the end of the Jets in Spin Ride

... in case you fell off somewhere this is the one page summary

- The commencement of high energy polarized proton-proton collisions at RHIC has opened a new sub-field of spin phenomena with jets.
- RHIC's ability to provide both transversely and longitudinally polarized beams at a variety of energies has facilitated a robust gluon helicity and transverse spin program based entirely on jet observables.
- The inclusive jet A_{LL} was the first measurement to indicate that ∆G is non-zero. These data, combined in a global analysis with inclusive pion results give ∆G ~ 40% of the proton spin for x > 0.05 !
- Large azimuthal asymmetries of charged pions in jets have been measured for the first time in hadronic collisions. These observables are sensitive to the same Collins fragmentation functions as measured in SIDIS and e+e- collisions.
- Measurements of jet substructure have shed light on source of the large forward inclusive pion single spin asymmetry.
- RHIC pp collisions provide unique access to gluon TMDs as well.

Thank you!

Backup

Anti-kT algo

- 1. Create list of a tracks and towers
- 2. Find smallest of dij and diB
- 3. If ij is the smallest combine I and j
- 4. If iB is the smallest call i a jet and remove from list
- 5. Repeat until there are no towers/tracks left in list
- 6. Apply minimum jet p_T cut for final sample.

Disfavors clustering between pairs of soft particles. Most pairwise clusterings involve at least one hard particle.

$$_{j} = \frac{1}{\max\left(p_{Ti}^{2}, p_{Tj}^{2}\right)} \frac{\Delta R_{ij}^{2}}{R^{2}}$$

Pre-run 9 RHIC Jet A_{LL} Results

Data Driven Underlying Event Correction

- In general data and simulation comparisons are quite good after UE subtraction.
- There is a systematic difference in the size of the UE correction, This is incorporated into systematic errors.

