Multidimensional imaging of the partonic structure of hadrons with an Electron-Ion Collider

Salvatore Fazio Brookhaven National Lab

Spin 2018 Ferrara, Italy 10-14 September 2018

BROOKHAVEN

Plan of the talk

- Introduction to the Electron-Ion collider project
 - Imaging with an EIC (the impact!)
 - GPDs
- Nuclei (imaging, saturation)
- Summary

 \succ

>

protons, neutrons, electrons

Proton

 10^{-15} m

What do we know?

xf

increase

3

To investigate the nucleon's partonic structure, the previous and only e+p collider, HERA, was built

The x (of Bjorken) variable: fraction of the nucleon's momentum carried by the interacting parton

Gluon density dominates at x<0.1 **HERA's discovery:**

Proton: Quark-Masses: ~1% M_p Mass of the "visible matter" is completely dominated by gluons, QCD dynamics

ZEUS $\mu_{e}^{2} = 10 \text{ G}$ 0.8 ZEUS-EW-Z NLO uncertainties: experimental / fit xu_v model parameterisation 0.6 HERAPDF2.0 NLO xd.. 0.4 xg (× 0.05) 0.2 xS (× 0.05) 10⁻³ 10^{-2} 10⁻¹ 10⁻⁴ 1 Х

13 Sep. 2018

S. Fazio (BNL)

How do the quark-gluon interactions create nuclear binding?

Ingredients for a High Resolution "Femtoscope"

Large center-of-mass coverage:

Access to wide kinematic range in x and Q^2

Polarized electron and hadron beams:

- > access to spin structure of nucleons and nuclei
- Spin vehicle to access the 3D spatial and momentum structure of the nucleon
- Full specification of initial and final states to probe q-g structure of NN and NNN interaction in light nuclei

Nuclear beams:

> Accessing the highest gluon densities \rightarrow amplification of saturation phenomena

High luminosity:

- > Detailed mapping the 3D spatial and momentum structure of nucleons and nuclei
- Access to rare probes

All these requirement must be addressed by a future **Electron-Ion Collider**

The Electron Ion Collider

Two proposals for realization of the Science Case

For e-N collisions at the EIC:

- ✓ Polarized beams: e, p, d/³He
- ✓ Luminosity L_{ep} ~ 10³⁴ cm⁻²sec⁻¹ 100-1000 times HERA
 ✓ √s = 20-100 (140) GeV Variable CoM

For e-A collisions at the EIC:

- ✓ Wide range in nuclei
- Luminosity per nucleon same as e+p
- ✓ Variable center of mass energy

World's first

Polarized electron-proton/light ion and electron-Nucleus collider

Both designs use DOE's significant investments in infrastructure

"General-porpose" detector general requirements

S. Fazio (BNL)

JLAB

B. Sorrow

BNL

Overall detector requirements:

- **Large acceptance in pseudorapidity**: $-4.5 \lesssim \eta \lesssim 4.5$
- Equal coverage of tracking and EM-calorimetry
- **□** High performance PID to separate p, K, π on track level
- High precision low mass tracking
- **Forward instrumentation** for protons and neutrons
- High control on systematic effects

A full silicon detector concept also proposed by Argonne EIC Detector and R&D program

→ https://wiki.bnl.gov/conferences/index.php/EIC_R%25D

A model detector concept: BeAST (Brookhaven eA Solenoidal Tracker)

Partonic tomography of the nucleons

Generalized Parton Distributions

The nucleon (spin-1/2) has **four quark and gluon GPDs** (H, E and their polarized versions). Like usual PDFs, GPDs are non-perturbative functions **defined via the matrix elements of**

$$\begin{aligned} \mathbf{F}^{q} &= \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ix\bar{P}^{+}z^{-}} \langle p' | \bar{q}(-\frac{1}{2}z) \gamma^{+}q(\frac{1}{2}z) | p \rangle |_{z^{+}=0,\mathbf{z}=0} \\ &= \frac{1}{2\bar{P}^{+}} \left[\frac{H^{q}(x,\xi,t,\mu^{2}) \bar{u}(p') \gamma^{+}u(p) + E^{q}(x,\xi,t,\mu^{2}) \bar{u}(p') \frac{i\sigma^{+\alpha}\Delta_{\alpha}}{2m_{N}} u(p) \right] \end{aligned}$$

Exclusive Vector Meson and real photon production

DVCS:

- Very clean experimental signature
- No VM wave-function uncertainty
- Hard scale provided by Q²
- Sensitive to both quarks and gluons [via Q² dependence of xsec (scaling violation)

DVCS on a real neutron target \rightarrow polarized Deuterium or He³

VMP:

- Uncertainty of wave function
- J/Psi → direct access to gluons, c+bar-c pair produced via quark(gluon)-gluon fusion
- Light VMs → quark-flavor separation

Alternative/complementary way to quark-flavor separation

Accessing the GPDs in exclusive processes

 $\varphi = \phi_h - \phi_l$ $\varphi_s = \Phi_T - \phi_h$

 φ_{s}

$$\frac{d\sigma}{dt} \sim A_0 \left[|H|^2 (x,t,Q^2) - \frac{t}{4M_p^2} |E^2| (x,t,Q^2) \right]$$

Dominated by H slightly dependent on E

Angle btw the production and scattering planes

Angle btw the scattering plane and the transverse pol. vector

$$A_{C} = \frac{d\sigma^{+} - d\sigma^{-}}{d\sigma^{+} + d\sigma^{-}} \propto Re(A) \qquad -$$

$$A_{UT} \propto \sqrt{\frac{-t}{4M^2}} \Big[F_2(t) H(\xi,\xi,t,Q^2) - F_1(t) E(\xi,\xi,t,Q^2) + \dots \Big] \xrightarrow{sin(\Phi_T - \phi_N)}$$

governed by E and H
Requires a polarized proton-target

Spin-Sum-Rule in PRF:

$$\frac{1}{2} = J_q^z + J_g^z = \frac{1}{2}\Delta\Sigma + \sum_q \mathcal{L}_q^z + J_g^z$$

$$J_{q,g}^z = \frac{1}{2} \left(\int_{-1}^1 x \, dx \left(H^{q,g} + E^{q,q} \right) \right)_{t \to 0}$$

responsible for orbital angular momentum a window to the SPIN physics

 $f(\mathbf{x}, b_{\perp})$

The HERA Collider and experiments

- 27.5 GeV electrons/positrons on 920 GeV protons →Vs=318 GeV
- 2 collider experiments: H1 and ZEUS
- HERA I: 16 pb⁻¹ e-p, 120 pb⁻¹ e+p HERA II (after lumi upgrade): 500 pb⁻¹, polarisation of e+,e-

Closed July 2007, still lot of excellent data to analyse...

Detectors not originally designed for forward physics, but diffraction at HERA is great success story!

Fixed target experiment

Intense program on DVCS!

ZEUS forward instrumentation no longer available in HERA II

DVCS @ ZEUS - Strategy

S. Fazio (BNL)

DVCS: *t* dependence – **RPs**

THE LPS SPECTROMETER

DVCS at an **EIC**

HERA results limited by lack of statistics

EIC: the first machine to measure cross sections and asymmetries

EIC will provide sufficient luminosity to bin in multi-dimensions

Wide x and Q² range needed to extract GPDs

Comprehensive EIC studies

- Signal extraction "a la HERA"
- xSec meas.: Specific requirements to suppress BH (see backup)
 - → keep BH/sample below 60% at high energies
- Radiative Corrections evaluated (bkup)
- detector acceptance & smearing
- t-slope: b=5.6 compatible with H1 data
- |t|-binning is (3*resolution)
- 5% systematic uncertainties

Transverse target-spin asymmetry

DVCS-based imaging

A global fit over all mock data was done, based on: [Nuclear Physics B 794 (2008) 244–323]
 Known values q(x), g(x) are assumed for H^q, H^g (at t=0 forward limits E^q, E^g are unknown)

E.C. Aschenauer, S. F., K. Kumerički, D. Müller, JHEP09(2013)093

S. Fazio (BNL)

Spatial Imaging – as in the EIC White Paper

Impact of EIC (based on DVCS only):

- ✓ Excellent reconstruction of H^{sea}, and H^g (from dσ/dt)
- ✓ Reconstruction of sea-quarks GPD E

Other capabilities still to be evaluated?

- GPD H-Gluon is nice but can be much better by including J/ψ
- Access to GPD E-gluon \rightarrow orbital momentum (Ji sum rule)
 - Flavor Separation of GPDs (VMP and/or DVCS on deuteron)
 - Nuclear imaging (modification of GPDs in p+A collisions)

Next-generation GPD studies with exclusive Center for Frontiers in Nuclear Science

Topical Workshop, CFNS, Stony Brook U., 4-6 June 2018 Organizers: Marie Boer, S. F., Lech Szymanowski, Christian Weiss 35 participants, 3 days of presentations and discussions INDICO page: <u>https://indico.bnl.gov/event/4346/</u>

Objective: Assess potential of hard exclusive meson production and related processes for GPD studies and plan EIC simulations

- Concepts and interpretation: Quark/gluon imaging, energy-momentum tensor
- Reaction theory: QCD factorization, finite-size effects
- Experimental results: HERA, JLab 6 & 12 GeV, COMPASS; LHC UPC pA, future RHIC UPC plans
- EIC machine and detector requirements
- Simulation tools: Physics models, PARTONS framework, detector models

Scattered Proton measurement

Note:

high energy colliders (HERA, Tevatron, LHC, RHIC) use Roman Pots to detect these protons

→ RPs are high resolution movable small tracking detectors (Si strips, Si pixels...), a crucial component

 $\rightarrow \Theta$ < 10 mrad

- \rightarrow impact on large p_T-acceptance
- → small p_T-acceptance limited by beam divergence and immittance
- → rule of thumb keep 10s between RP and beam 13 Sep. 2018 S. F

Remember:

- Detector -4 to 4 in h
- ightarrow 35 mrad from beam line
- ightarrow so not seen in main detector
- ightarrow need different detection technology

 p_T of proton critical for physics $p_T = p' \sin(\Theta)$ $p'_L > 97\%$ of p_{Beam}

ZEUS Coll, JHEP 06 (2009) 074

Impact of proton acceptance

Proton acceptance with eRHIC

J.H. Lee EIC Users Meeting

p_{T} acceptance for forward scattered protons from exclusive reactions

- Plots: HD (high divergence) mode
- Acceptance gap between RP and B0 will be further optimized

 Accept 0.3 < p_T< 1.3 GeV and higher
 → Low p_T-part can be filled in with HA (high acceptance, smaller beam divergence) running mode

Proton acceptance with JLEIC

Two forward charged hadron detector regions:

- Region 1: Small dipole covering scattering angles from 0.5 up to a few degrees (before quads)
- Region 2: Far forward, up to one degree, for particles passing through (large aperture) accelerator quads. Use second dipole for precision measurement. (Hi Res)

acceptance proton at 100 GeV

And What about nuclei?

Imaging the gluons in nuclei

Diffractive physics in eA

- \rightarrow Measure spatial gluon distribution in nuclei
- \rightarrow Reaction: $e + Au \rightarrow e' + Au' + J/\psi, \phi, \rho$
- \rightarrow Momentum transfer $t = |p_{Au}-p_{Au'}|^2$

Hot topic:

Lumpiness of source?

> Just Wood-Saxon+nucleon $g(b_T)$

xp

REACHING FOR THE HORIZON

The 2015 LONG RANGE PLAN for NUCLEAR SCIENCE

The EIC project status

The EIC received in the 2015 Long Range Planning of the American National Science Advisory Committee (NSAC) the following recommendation

"We recommend a high-energy high-luminosity polarized EIC as the highest priority for new facility construction following the completion of FRIB"

http://science.energy.gov/~/media/np/nsac/pdf/2015LRP/2015_LRPNS_091815.pdf

The National Academy of Science (& Engineering & Arts) in July 2018 unanimously concluded that an EIC will be: *"… a unique facility in the world that would answer science questions that are compelling, fundamental, and timely, and help maintain U.S. scientific leadership in nuclear physics"*.

Following these recommendation we would expect DOE to launch its Critical Decision (CD) process...

- CD0 (possibly soon)
- **CD1:** site selection (possibly ~> a couple of years after CD0)
- CD3: start of construction (possibly within ~three years after CD1)

EIC is an International enterprise!

Currently ~807 members from 171 institutions, 30 countries, 7 world regions USA: 47% Europe: 28% Asia: 19% \rightarrow continuously growing! (B. Sorrow's talk for details)

Summary

We studied and quantified the capability of an EIC to provide high precision and fine binned DVCS and VMP measurements of both cross sections and asymmetries over a large phasespace. This opens an unprecedented possibility for

- Accurate 2+1D imaging of the polarized and unpolarized quarks and gluons inside the hadrons, and their correlations
- Investigate the proton-spin decomposition puzzle (orbital angular momentum)
- Study of GPDs in nuclei (and possible gluon saturation effects)

EIC science program will profoundly impact our understanding of nucleon structure and the glue

Back up

...and what we don't know!

recombination

gluons distribution cannot rise forever

- → non-linear pQCD effects provide a natural way to tame this growth
- → characterized by the saturation scale Q²_s(x)
- QCD: Dynamical balance between splitting and recombination

→ A new regime of QCD matter
 → Color Glass Condensate (CGC)
 Hints from HERA, RHIC and LHC need to test it unambiguously!

 $(Q_s^A)^2 \sim cQ_o^2 \left(\frac{A}{x}\right)^{1/3}$ Enhancement of Q_s with A \Rightarrow saturation regime reached at significantly lower \sqrt{s} in nuclei Au: ~200 times smaller effective x !

- Which correlations constitute the dynamics of the multi body system at low x
- How does quark and gluon dynamics generate the proton spin?

It is more than the number $1/2\hbar$!

- crucial interplay between the intrinsic properties and interactions of quarks and gluons
- How do hadrons emerge from a created quark or gluon? Neutralization of color - hadronization
- 2+1D Structure of nucleons and nuclei How does the glue bind quarks and itself into nucleons and nuclei?

Structure functions

H1 and ZEUS

П

x = 0.00005, i=21 x = 0.00008, i=20

and a fi

= 0.00013 i=19

x = 0.00020, i=18 x = 0.00032, i=17x = 0.0005, i=16

> 0.0008, i=15x = 0.0013, i=14

HERA I NC e⁺p

x = 0.18, i=3

x = 0.25, i=2

x = 0.40, i=1

x = 0.65, i=0

10⁵

 Q^2/GeV^2

Fixed Target

HERAPDF1.0

~F,

10

10³

10

10

1

10

 $\sigma^{+}_{r,NC}(x,Q^{2}) \ge 2^{i}$

What we Know:

- ✓ Extensive program carried at HERA
- \checkmark F₂ precisely measured in a large x range
- ✓ At low-x gluons dominate

Summary of Detector Requirements

Detector requirements coming directly from the physics case!

- Inclusive Reactions in ep/eA:
- Physics: Structure Functions: g₁, F₂, F_L
- $\Box \rightarrow$ Very good scattered electron ID
- □ → High energy and angular resolution of e' (defines kinematics $\{x, Q^2\}$)

Semi-inclusive Reactions in ep/eA:

- Physics: TMDs, Helicity PDFs, FFs (with flavor separation); di-hadron correlations; Kaon asymmetries, cross sections; etc
- \Box \rightarrow Excellent hadron ID: $p^{\pm}, K^{\pm}, \pi^{\pm}$ separation over a wide {p, η } range
- □ → Full Φ -coverage around γ^* , wide p_T coverage (TMDs)
- ightarrow Excellent vertex resolution (Charm, Bottom separation)

Exclusive Reactions in ep/eA:

- **D** Physics: DVCS, exclusive VM production (GPDs; parton imaging in b_{τ})
- □ → Exclusivity (large rapidity coverage; reconstruction of all particles in a given event)
- □ → High resolution, ~100% acceptance, wide coverage in t → Roman pots
- $\Box \rightarrow$ (eA): veto nucleus breakup, determine impact parameter of collision
 - \rightarrow Sufficient acceptance for neutrons in ZDC

String Breakir

Detector Requirements for Exclusive Reactions in ep/eA

Exclusivity criteria:

- \triangleright eA: large rapidity coverage \rightarrow rapidity gap events
 - > HCal for $1 < \eta < 4.5$ (ballpark ~50%/VE)
- ep: reconstruction of all particles in event
 - > wide coverage in t ($=p_T^2$) \rightarrow Roman pots
- □ eA: large acceptance for neutrons from nucleus break-up
 - Zero Degree Calorimeter
 - veto nucleus breakup
 - determine impact parameter of collision

BH suppression

Important: em Cal must discriminate clusters above noise down to 1 GeV

DVCS: most of the γ are less "rear" than e (θ el- $\theta\gamma$) > 0 \rightarrow rejects most of the BH cuts keep BH below 60% of the sample even at large y > 0.5 – at high energies

BH fraction

cuts keep BH below 60% of the sample at large y > 0.5

20 x 250 GeV² **BH** subtraction will be not an issue for y<0.6

BH subtraction will be relevant at lower energies and large y, in some of the x-Q² bin

BUT...

higher-lower Vs kin. overlapping:

x-sec. measurements at a higher Vs at low-y can cross-check the BH subtraction made at lower √s

Rosenbluth separation

$$d\sigma = \mathrm{d}\sigma_{DVCS} + \mathrm{d}\sigma_{BH} + \mathrm{d}\sigma_{INT}$$

To separate DVCS from BH even at lower energies, we need a Rosenbluth separation of the electroproduction cross section into its parts

- The statistical uncertainties include all the selection criteria to suppress the BH
- exponential |t|-dependence assumed

Forward scattered neutrons

Requirements:

- Need at +/- 4 mrad beam element free cone before the zero degree calorimeter to detect the breakup neutrons
- Neutrons are also critical to reconstruct collisions geometry
 - L. Zheng, ECA, J-H. Lee <u>arXiv:1407.8055</u>
 - \rightarrow precision neutron energy reconstruction \rightarrow transverse size of **ZDC**

E.C. Aschenauer