

J/ψ Transverse Single Spin Asymmetries (TSSA) and Spin Alignment to Decay Leptons in p + p Collisions at RHIC

Sookhyun Lee (Iowa State University) for the PHENIX collaboration

Charmonium production in hadron collisions

- J/ ψ meson is a bound state of a $c\bar{c}$ pair with spin 1.
- Decays into $\mu^+\mu^-$ or e^+e^- with a large branching ratio.
- Dominantly produced by gluon+gluon interactions in p+p collisions at RHIC energy.
- Correlation with initial proton spin in different collision systems: *path-length dependence of initial state effects*

• Spin alignment of decay leptons relative to J/ψ : additional handle on distinguishing production mechanisms.

Relativistic Heavy Ion Collider

- Located in Long Island, New York USA
- World's only polarized proton collider

	20	<i>D</i>	2						
√s [GeV]	p+p	p+AI	p+Au	d <mark>+Au</mark>	³ He <mark>+Au</mark>	CutCu	Cu+Au	Au+Au	U+U
510									
200	D		E	Ø	E		\checkmark	Ø	Ø
130								Ø	
62.4						Ø		Ø	
39				Ø				Ø	
27								Ø	
20								Ø	
14.5								Ø	
7.7									

- This talk will cover recent results and ongoing analysis that utilize data sets from p+p, p+Al and p+Au at √s = 200 and 510 GeV.

Heavy flavor measurements via dimuon pairs in PHENIX forward arm

- Forward arm covers full azimuth and 1.2<|y|<2.4
- Theoretical prediction accessible by NRQCD.

Muon Identification

- MuTr : 3 stations of cathode-strip tracking chambers inside a radial magnetic field → momentum reconstruction
- MuID : 5 sensitive layers, each with 1 vertical + 1 horizontal larocci tubes interweaved with steel absorber plate. → hadron rejection

J/ ψ in di-muon mass spectra

- Look in other ways :
 - Spin asymmetries in polarized p+p collisions, can be also looked at in p+Al and p+Au for nuclear effects.
 - Angular distributions of a decay lepton in J/ψ rest frame in unpolarized p+p collisions for mapping out production mechanisms.

TSSA A_N in hadron collisions

- Role of *gluons* in creating A_N is not well understood, while quarks relatively well understood.
- Asymmetric collisions offer a control over gluon density that might affect creation of $A_{N.}$

Initial state effects at RHIC PHENIX

- At RHIC, A_N is sensitive to initial state effects such as *Qui-Sterman or trigluon correlation* in collinear factorization framework and *gluon Sivers function* in TMD formalism.
- Uniquely, Large mass of J/ψ allows accessing $p_T \ll Q$ where TMD factorization is valid.

J/ ψ mass fits in p+Au collisions

- Combinatorial Background shape determined by Gaussian Process Regression method, with its training sample outside J/ ψ and ψ ' region.
- BG asymmetries measured in mass range of 1.5 ~ 2.4 GeV/c² and subtracted.
- J/ ψ and ψ ' are fit separately.

A_N for J/ ψ as a function of x_F

• Negative A_N seen in p+Au collisions both in forward and backward rapidity.

A_N for J/ ψ as a function of x_F

• Negative A_N seen in p+Au collisions both in forward and backward rapidity.

A_N for J/ ψ as a function of p_T

- Negative A_N seen in p+Au collisions both in forward and backward production for 0.42 < p_T < 2 GeV/c.
- Indication that nuclear environment played a role in creating non-zero asymmetries.

J/ ψ polarization in p+p collisions

- Unpolarized p+p collisions.
- Hadronization of charmonium in unpolarized p+p collisions accessible in Non-relativistic QCD formalism.
- Prompt J/ ψ dominant production in hadron collisions will help map out color singlet and octet production mechanisms.

$$ert \psi_Q
angle = \mathcal{O}(1) \left| {}^3S_1^{(1)}
ight
angle + \mathcal{O}(
u) \left| {}^3P_J^{(8)}gg
ight
angle + \mathcal{O}(
u^2) \left| {}^3S_1^{(8)}gg
ight
angle + \mathcal{O}(
u^2) \left| {}^3S_1^{(8)}gg
ight
angle + \mathcal{O}(
u^2) \left| {}^3S_0^{(8)}g
ight
angle + \cdots$$

J/ ψ polarization measurement

- Spin alignment of decay lepton with respect to J/ ψ .
- Measured via angular distribution of a decay lepton in J/ ψ rest frame.
- Freedom in choice of z-axis.
- Invariant variables thanks to rotational invariance.

$$\mathbf{Y} \qquad \frac{dN}{d\Omega} \propto 1 + \lambda_{\theta} \cos^{2}\theta + \lambda_{\theta\varphi} \sin^{2}\theta \cos 2\phi + \lambda_{\varphi} \sin 2\theta \cos \phi$$

$$\int_{Q\bar{Q}}^{Z_{HX}} \int_{Z_{CS}}^{Z_{GJ}} \int_{Z_{CS}}^{Z_{GJ}} \tilde{\lambda} = \frac{\lambda_{\theta} + 3\lambda_{\phi}}{1 - \lambda_{\phi}}$$

Polarization measurement frames

- Helicity frame:
 - $\hat{z} \parallel \text{momentum of J}/\psi$.
- Collins-Soper frame:
 - $\hat{z} \parallel (\mathbf{k}_1 \mathbf{k}_2)$.
- Gottfried Jackson frame:

Angular decay distributions

- (Top to bottom)
 Frame : HX, CS, GJF
 and GJB
- (Left to right) pT : 2-3, 3-4 and 4-10 GeV/c

J/ψ to di-muon spin alignment in PHENIX Forward Arm

- Results for λ_{ϑ} and $\tilde{\lambda}$.
- Better agreement at higher pT with NRQCD calculations. [10.1103/PhysRevD.83.037501, arXiv:1012.1954],[JHEP05 (2015) 103, arXiv:1411.3300]
- Frame invariant variable $\tilde{\lambda}$ consistent in different frames.

J/ψ to di-electron spin alignment in PHENIX central arm

- Central arm covers half azimuth and |y|< 0.35.
- Different arm combination can access different p_T range.

Electron Identification

- RICH : Ring Imaging Cherenkov detector, > 99% efficient for electrons p_T > 0.5 GeV/c
- EMCal : 2 different types of Electro-magnetic Calorimeters.
 PbGl and PbSc.
- DC : Drift Chamber, gas proportional wire chamber.

J/ψ to di-electron spin alignment in PHENIX central arm

• Results of 1-dimensional analysis.

$$\frac{d\sigma}{d\cos\theta} = A(1 + \lambda_{\theta} \cos^2\theta)$$

- λ_{θ} measurement shows agreement with NRQCD based Color Octet Model (COM) prediction. [10.1103/PhysRevD.81.014020, arXiv:0911.2113]
- Full 3-dimensional analysis needed in order to draw physics interpretation.

J/ψ to di-electron spin alignment in PHENIX central arm

- Full 3-dimensional analysis under way with √s = 510 GeV high p_T enhanced data sample.
- Localized statistics due to limited azimuthal coverage : systematic effects need to be addressed with great care.

e+ and e- from jpsi in simulation

Test fit with simulated data w/ no polarization + acceptance corrected

Test fit with simulated data w/ no polarization + acceptance corrected

Summary

- Observed negative A_N for backward and forward J/ψ productions in p+Au collisions where gluon density in initial state is enhanced.
- Negative $\tilde{\lambda}$ seen with increasing value with pT in J/ ψ to di-muon decay into forward rapidity.
- λ_{θ} measured in central rapidity and shows agreement with COM prediction at 1.5 < pT < 5 GeV/c.
- Interpretation is limited and 3-d analysis in higher $p_{\rm T}$ enhanced data sample is under way.
- J/ ψ polarization as well as A_N will provide additional handle on distinguishing production mechanisms.

extra

