Direct photon cross section and double helicity asymmetry at mid-rapidity in $\vec{p} + \vec{p}$ collisions at $\sqrt{s} = 510 \text{ GeV}$

> Kenneth N. Barish (on behalf of Zhongling Ji) for the PHENIX Collaboration

23rd International Spin Symposium September 2018

The proton spin decomposition

 $\hfill\square$ The proton spin can be decomposed as

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + L_q + \Delta G + L_g$$

 \Box We can measure polarized gluon distribution $\Delta g(x)$, its first moment ΔG corresponds to the gluon spin in physical gauge and infinite-momentum frame (IMF).

[PHENIX Collaboration (2016)]

Sep 12, 2018

Direct photon: the golden channel

- □ Leading order for gluon polarization: jet, hadron and direct photon in $\vec{p} + \vec{p}$.
- □ Fragmentation in hadron and jet.
- □ No hadronizaion in direct photon: "cleanest" channel.
- Dominant process $q + g \rightarrow \gamma + q$: probe the sign of the gluon polarization.
- □ First measure direct photon cross section to confirm consistency with pQCD.
- □ Then use pQCD to extract gluon contribution.

PHENIX detector

- Electromagnetic Calorimeter
 (EMCal) is the primary detector for photons.
- EMCal trigger (ERT) is used to select high energy photons.
- Drift Chamber (DC) collect hadron energy.

Direct photon cross section

The direct photon cross section is calculated by

$$E\frac{d^{3}\sigma}{dp^{3}} = \frac{1}{L} \cdot \frac{1}{2\pi p_{T}} \cdot \frac{1}{\Delta p_{T}\Delta y} \cdot \frac{N_{dir} \cdot r_{pileup}}{\varepsilon_{BBC}\varepsilon_{ERT}\varepsilon_{ToF}\varepsilon_{prob}\varepsilon_{acc}\varepsilon_{conv}}$$

$$\Box \quad L = \frac{N_{BBC}}{\sigma_{BBC}}: \text{ absolute luminosity.}$$

- \square ε_{BBC} (ε_{ERT}): BBC (ERT) trigger efficiency.
- $\Box \quad \epsilon_{acc}$: acceptance, from single photon and detector geometry simulation.
- $\Box \quad \epsilon_{conv:}$ photon conversion rate, from radiation length in VTX detector.

Direct photon signal extraction

Source of direct photon:

- $\Box \quad \text{Compton scattering: } q + g \rightarrow \gamma + q$
- $\Box \quad \text{Annihilation: } q \ + \ \overline{q} \ \rightarrow \ \gamma \ + \ g$
- □ Parton fragmentation to photon.
- Quark bremsstrahlung.

Source of direct photon background:

- Decay photons from hadrons (π^0 , η , ω , η'). Yield of direct photon:
 - $\Box \ N_{dir} = N_{incl} (1+A)(1+R)N_{\pi^0}.$
 - > R: π^0 one photon missing ratio.
 - A: Other hadrons' to π^{0} 's photon ratio.

 π^0 -tag method.

Direct photon background subtraction

- \Box Use single- π^0 and detector geometry simulation:
 - Missing ratio R.
 - \blacktriangleright Two photons merging at high p_T .
- □ Production ratio can be estimated by 200 GeV data:
 - $\succ \eta/\pi^0$
 - ≻ ω/π⁰
 - $\succ \eta'/\pi^0$

Photon from other hadron decay

- □ Left plot: meson production from other hadrons with photon pT.
 - > PYTHIA reproduces pseudoscalar mesons η and η' production ratio well.
 - > Vector meson ω production ratio is incorrect in PYTHIA.
- □ Middle plot: production ratio between 200 GeV and 510 GeV with photon pT.
 - ➢ We use the production ratio from 200 GeV data.
- \square Right plot: two photons from π^0 start merging at high π^0 pT.
 - Simulated by photon shower shape and EMCal tower size.
 - > It will increase the photon ratio from other hadrons, since only π^0 photons will merge at pT less than 30 GeV.

Isolation cut

$$r_{cone} = \sqrt{(\delta\eta)^2 + (\delta\varphi)^2} = 0.5$$

Isolation cut requirement: $\sum E_{neutral} + \sum E_{charged} < 0.1E_{\gamma}$

Remove fragmentation photons; Increase S/B ratio.

 $N_{\rm dir}^{iso} = N_{incl}^{iso} - (n_{\pi^0}^{iso} + RN_{\pi^0}^{iso}) - A^{iso}(1+R)N_{\pi^0}^{iso}.$

- $\square \quad n_{\pi^0}^{iso}: \quad \pi^0 \text{ decay photons pass}$ isolation cut with partner photon.
- $\square N_{\pi^0}^{iso} : \pi^0 \text{ decay photons pass}$ isolation cut without partner photon.
- A^{iso}: Photon ratio from other hadrons' decay, including the effect of isolation cut.

Run 6 direct photon cross section

Polarized proton collider at RHIC

- □ Siberian Snakes reduce the effect of depolarizing resonances.
- $\hfill\square$ Polarimeter pC and H $\hfill \uparrow$ jet monitor the beam polarization.

□ Spin rotators rotate beam polarization from the stable vertical direction to the longitudinal direction before the IP and back to vertical afterward.

Longitudinal double-spin asymmetry ALL

- □ Each beam has 120 bunches, of which 111 bunches are filled.
- □ The polarization patterns for bunches are called spin patterns.

Examples of spin patterns. Red and blue are even and odd crossings respectively.

$$A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{1}{P_B P_Y} \frac{N_{++} - RN_{+-}}{N_{++} + RN_{+-}}$$

 \square $P_{B(Y)}$ is polarization of the blue (yellow) beam.

- The polarization magnitude is measured by pC and HJet polarimeter.
- The polarization direction is measured by ZDC.
- $\square R = \frac{L_{++}}{L_{+-}}$ is relative luminosity between different helicity states.
- \Box Even and odd crossings have different trigger circuits with different effective trigger thresholds. A_{LL} is measured separately for even and odd crossings in each spin pattern.

12/20

Rate safe method for relative luminosity

□ The systematic uncertainty from relative luminosity measured by BBC

$$R = \frac{N_{BBC}^{++}}{N_{BBC}^{+-}}$$
 can be determined by ZDC triggered events via

$$A_{LL}^{R} \equiv \frac{1}{P_{B}P_{Y}} \frac{r_{++} - r_{+-}}{r_{++} + r_{+-}}, r \equiv \frac{N_{ZDC}}{N_{BBC}}$$

- □ In high luminosity environment such as run 13, rate dependence must be taken into account when calculating relative luminosity.
- □ We will use the rate safe method given by Andrew Manion [Manion (2014)],

Cross check

□ Longitudinal single-spin asymmetry

$$A_{L} = -\frac{1}{P_{Beam}} \frac{N^{+} - R_{Beam}N^{-}}{N^{+} + R_{Beam}N^{-}}, R_{Beam} = \frac{L^{+}}{L^{-}}$$

should be zero due to parity.

- Bunch shuffling: Test for additional RHIC fill-to-fill uncorrelated systematic uncertainties that may have been overlooked.
 - Method: Assign each bunch a random polarization for ten-thousand iterations, calculate A_{LL} , δA_{LL} and χ^2 for each iteration. The resulting χ^2 /DOF (here DOF = number of fills) can indicate whether the uncorrelated uncertainty is calculated correctly or not.

Run 6 ALL preliminary

The run $6 A_{LL}$ preliminary [Bennett thesis (2009)]. This result is not published.

Run 13 performance

- □ Existing RHIC data mainly probe the region $0.05 \le x \le 0.2$.
- □ PHENIX $\pi^0 A_{LL}$ measurements in 510 GeV confirm a nonzero ΔG and extend the x range to 0.01.
- □ STAR jet data clearly imply a polarization of gluons in this range.
- □ The luminosity of Run 13 is twenty times larger than that of Run 6.
- □ The projected uncertainty is much smaller in Run 13.
- □ This will be the first direct photon analysis for gluon polarization.
- \Box Our results will add additional independent constraints on the ΔG .

Projected uncertainty for direct photon A_{LL} measurement.

16/20

- □ Making clear of the gluon spin is vital for explaining the proton spin puzzle, as well as understanding the proton spin composition.
- Direct photon production in p+p collisions probe the gluon spin at the leading order without fragmentation function. So this is the golden channel.
- Run 13 has much higher luminosity than that in previous direct photon A_{LL} analysis.
 So we expect it can give more constraint on gluon polarization distribution.

Current status

- $\hfill\square$ Finished the cross check with π^0 cross section.
- □ Finalizing direct photon cross section.
- \Box Prepared for direct photon A_{LL} measurement.

References

- 1. COMPASS Collaboration, EPJC 77,209 (2017).
- 2. PHENIX Collaboration, PRD 93, 011501(R) (2016).
- 3. D. de Florian et al., PRL 113, 012001 (2014).
- 4. Manion, Ph.D. thesis (2014).
- 5. Bennett, Ph.D. thesis (2009).