Status of polarized molecular source

Dmitriy Toporkov

Budker Institute of Nuclear Physics, Novosibirsk State University Novosibirsk, Russia.

BINP

Status of polarized molecular source D.Toporkov

~ 20 Tw up to now

 Patterson, R. (2016) World Energy 2016-2050: Annual Report. <u>http://peakoilbarrel.com/world-energy-2016-2050-annual-report/</u>

The most important thermonuclear reactions

Reaction	$\sigma_m(b)$	E _m (keV)
$D + T \rightarrow n(14.1) + {}^{4}He(3.5)$	5.0	107
D + D → $\begin{cases} n(2.45) + {}^{3}He(0.85) 50\% \\ p(3.02) + T(1.01) 50\% \end{cases}$	0.1 0.1	1500 1500
$D + {}^{3}He \rightarrow p(14.7) + {}^{4}He(3.6)$	0.71	430

Full polarization of the deuteron and He³ would enhance the fusion cross section by 50%. Such a

strong polarization effect has been confirmed experimentally to a good accuracy.

The relatively good knowledge about these two reactions allows the conclusion that with polarized beams and targets an enhancement of the fusion yield close to a factor of 1.5 may be expected. R. M. Kulsrud et al., Phys. Rev. Lett. 49, 1248 (1982). H. Paetz gen. Schieck, Eur. Phys. J. A 44, 321 (2010).

Sources of polarized atoms

The sources of polarized atoms (ABS) has been developed from the early 50^{th} . Clausnitzer was the first who got a polarized proton beam using an ABS with quadrupole focusing magnets. The intensity of polarized atomic beam was approximately 10^{11} at/sec.

[G. Clausnitzer, R. Fleischman, H. Shopper, Zs. F. Physik 144 (1956) 336]

R. L. Garwin. Rev. Sci. Instrum. 29 (1958) 374.

Since there fast developing of this technique now reached the limit in the intensity of polarized atoms. The best sources deliver about 10^{17} at/sec

Novosibirsk Cryogenic Atomic Beam Source

Ortho and parahydrogen

Energies of H₂ states as a function of magnetic field.

C with m_1 =-1, which are focused by the field can enter the CT.

Superconducting sextupole magnets with constant aperture 42 mm inner diam. used in ABS

Geometry selection

For our case μ = **2.5** 10^{-3} μ_B , T \approx 8K, L=19.5 cm, $\partial B/\partial r$ = 32 kG/cm, $\alpha = 1.3 \cdot 10^{-3}$ rad

Polarized molecules source based on existing cryogenic ABS

The source of polarized hydrogen molecules at the test bench

Monte Carlo simulation of the spatial distribution of the molecules at the location of the inlet receiver tube.

Source of cold hydrogen molecules

The entrance slit to a focusing magnet

Photo of the nozzle and diaphragm made from the exit of the magnet

Distribution of the beam intensity measured by compression tube having a diameter 30 mm (simulation)

No beam intensity should be measured at the beam axis in the assumption that molecules touched the cold surface are pumped.

Profile of the molecular jet measured by the compression tube

Correlation between the magnetic field and the intensity of the focused beam

Experimental results :: comparison of focusing efficiency H₂ and D₂

The flux of the focused deuterium molecules is lower since the magnetic moments of D_2 molecules are much smaller than those of H_2 molecules.

The measured flux of polarized deuterium molecules is about 7 times smaller than the flux of hydrogen molecules. The geometry of the source was not optimized to get the highest flow of D_2 .

Intensity of the H2 beam while ramping the magnet for different nozzle temperature (computer screen)

NIM A. 2017. V. 868. P. 15-18. doi 10.1016/j.nima.2017.06.038

Temperature dependence of focusing beam

Status of polarized molecular source D.Toporkov

Status of polarized molecular source D.Toporkov

PROBLEM

Why the intensity of the focused beam is going down with the increasing of the flux through the nozzle while the background signal is increasing ?

• Attenuation of the beam by the residual gas

- Directivity of the flow from the nozzle is falling down with increasing of flux
- Probably at higher pressure in the nozzle clusters of molecules are produced which not focused by the magnetic field

ATTENUATION OF THE BEAM BY RESIDUAL GAS

- The pumping speed is about 18000 l/s. S ~ (950 cm²) Flux of molecules $4 \cdot 10^{-2}$ Torr·l/s.
- Pressure P=2·10⁻⁶ Torr.
- Density 2.5.10¹¹ mol/cm³ (T~ 70K).
- Thickness of the residual gas is $n \cdot L = 0.09 \cdot 10^{14} \text{ mol/cm}^2$. The cross section of H₂-H₂ scattering is $\sigma = 3 \cdot 10^{-14} \text{ cm}^2$

$$I=I_0 \cdot exp - n \cdot L \cdot \sigma = I_0 \cdot exp - 0.27 = I_0 \cdot 0.76$$

Collision energy distribution

Beam temperature 7 K, gas temperature 77 K

E c.m., meV

Elastic cross section as a function of collision energy.

arXiv:physics/0607168v1 [physics.atom-ph] 18 Jul 2006

Future prospect

- Measurement of the nuclear polarization of molecules using Lamb-shift polarimeter
- Understanding the process of the beam attenuation by the residual gas and the reflection of molecules from the cold surface
- Working on the directivity of the molecular beam
- Design the prototype of a new source

MOLECULAR SOURCE WITH LAMB-SHIFT POLARIMETER

POLARIZED MOLECULAR SOURCE

LAMB-SHIFT POLARIMETER

Production and Storage of Polarized H2, D2, and HD Molecules Presented by **Dr. Ralf ENGELS** on **10 Sep 2018** at **15:30**

Turning of the polarimeter

Conclusion

- The measured flux of focusing molecules is close to the expected one
- More investigation should be done to get optimal molecular flux from the CMBS
- This investigation has been done under the joint RSF-DFG grants № 16-42-01009 and № BU 2227/1-1

A team working on polarized molecular source

Status of polarized molecular source D.Toporkov

Geometry of the proposed 60 pole magnet 1/60 MAG

* dimensions are in (mm)

Status of polarized molecular source D.Toporkov

Possible setup of future polarized hydrogen molecules source

۲