SEARCH FOR A

PERMANENT ELECTRIC DIPOLE MOMENT OF ¹²⁹Xe

WITH A He/Xe CLOCK-COMPARISON EXPERIMENT

SPIN Symposium 2018 - Ferrara

Stefan Zimmer

September 11, 2018

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

UNIVERSITÄT MAIN

WHY ¹²⁹Xe AND ³He?

He/Xe comagnetometry: • co-located polarized ³He and ¹²⁹Xe gas sample

> normalization of the magnetic field with ³He precession (magnetometer)

PRINCIPLE OF MEASUREMENT

CLOCK-COMPARISON

EDM SETUP low electromagnetic noise

- EDM cell (10cm)
- Valve + Filling line
- Sensor (SQUID gradiometer)
- Electrodes +- 4kV (0.8kV/cm)
- HV Feedthrough
- Conductive casing (SF6)
- -> High SNR & T2*

Magnetic field system two perpendicular fields

Gas periphery storage, mixing, and transfer without polarization losses

Magnetically Shielded Room at Forschungszentrum Jülich

Magnetically Shielded Room at Forschungszentrum Jülich

 $B_{\rm res} \approx 20 {\rm nT}$

 $\nabla B_{\rm res} \approx 200 {\rm pT/cm}$

- One layer aluminium (RF-shield) + two layers mu metal
- Shielding factor (static): $S \approx 300$
- Residual magnetic field:
- Magnetic field gradients:

Characteristic time constant of coherent spin precession:

 ∇B_{res} not sufficient for long coherent spin precession - $T_2^* \sim 1 \min$

Initial initiative to reduce the magnetic field gradients: additional mu-metal cylinder

- Firmly installed <u>inside</u> the mu-metal cylinder
 - limited spatial access
- Magnetic holding field ($B \approx 400 \text{nT}$)
 - ✤ has to be as homogeneous as possible

- Two perpendicular magnetic fields
 to initiate spin flip (field rotation)
- → Cosine-Theta-Coil + Solenoid

Magnetic field gradients <u>actively</u> reduced to $\nabla B \approx 10 \text{ pT/cm}$ Achievable spin coherence time (p = 100 mbar):

 $T_2^*(^{129}\text{Xe}) \approx 3 \text{ h} \quad \text{->} \quad T = 3 \cdot T_2^* \approx 9 \text{ h}$

SIGNAL TO NOISE

in Magnetically Shielded Room (MSR) at Forschungszentrum Jülich

SUMMARY

PHASE DETERMINATION

Weighted phase difference:

wheed phase difference:

$$\Delta \widetilde{\Phi}_{EDM}(t) = \int \Delta \widetilde{\omega}_{EDM}(t) dt = const.$$

$$\Delta \widetilde{\Phi}(t) = \Phi_0 + \Delta \omega_{lin} \cdot t + E_{He} \cdot e^{-\frac{t}{T_2^*(He)}} + E_{Xe} \cdot e^{-\frac{t}{T_2^*(Xe)}} + F_{He} \cdot e^{-\frac{2t}{T_2^*(He)}} + F_{Xe} \cdot e^{-\frac{2t}{T_2^*(Xe)}}$$

deterministic phase shifts

$$\Omega_{\bigoplus} = \frac{2\pi}{24 \text{ h}} = 7.3 \cdot 10^{-5} \frac{\text{rad}}{\text{s}}$$

Bloch-Siegert-shift: He/He, Xe/Xe and He/Xe, Xe/He

ANALYSIS

PHASE DETERMINATION

Weightee

wheted phase difference:

$$\Delta \widetilde{\Phi}_{EDM}(t) = \int \Delta \widetilde{\omega}_{EDM}(t) dt = \int \frac{2}{\hbar} d \cdot E(t) dt$$

$$\Delta \widetilde{\Phi}(t) = \Phi_0 + \Delta \omega_{lin} \cdot t + E_{He} \cdot e^{-\frac{t}{T_2^*(He)}} + E_{Xe} \cdot e^{-\frac{t}{T_2^*(Xe)}} + F_{He} \cdot e^{-\frac{2t}{T_2^*(He)}} + F_{Xe} \cdot e^{-\frac{2t}{T_2^*(Xe)}} + d_{Xe} \cdot h(t)$$
deterministic phase shifts
EDM phase

Electric field reversed every few hours, depending on T_2^* (usually $T_a = T_2^* = 3$ h)

Fit-residuals of the weighted phase difference:

EDM run #2 - July 2017

Phase residuals are statistically distributed around zero

possible Xe-EDM (EDM phase modulation) smaller than statistical sensitivity **may** determinate upper limit

SYSTEMATICS (FALSE-EDM)

ANALYSIS

Fit-residuals of the weighted phase difference:

origin	false EDM
Leakage currents	$-1.9 \cdot 10^{-30} e$ cm
Charging currents	$-6.7 \cdot 10^{-33} e$ cm
Geometric phase	$-0.5 \cdot 10^{-29} e$ cm
Motional magnetic field	$-6.2 \cdot 10^{-43} e$ cm

LEAKAGE CURRENTS

• Electric current I_{leak} in or close to the EDM cell causes additional magnetic field B_{leak}

Comagnetometry helps out...

BUT: Corresponding magnetic field gradients change the precession frequency differently for each species due to different centers of mass!

$$B_{leak}(r) = \mu_0 \cdot \frac{I_{leak}}{2\pi \cdot r} \qquad I_{leak} \approx 10 \text{pA} \quad \rightarrow \quad \nabla B_{leak} = \frac{dB_{leak}(r)}{dr} < 5 \cdot 10^{-3} \text{pT/cm}$$

correlation to the electric field -> false-EDM

 $\nabla d_{leak} < 2 \cdot 10^{-30} ecm$ conservative estimation!!

	EDM run	$d_{Xe}[10^{-27}e\mathrm{cm}]$
march	#1	-9.35 ± 10.74
	# 2	-6.19 ± 9.47
	# 3	5.43 ± 10.31
july	# 4	-1.66 ± 7.64
	# 5	1.11 ± 7.35
	# 6	2.99 ± 4.13
	# 7	-0.11 ± 1.02
	# 8	3.17 ± 2.15
	# 9	-3.51 ± 5.91

Weighted mean (incl. systematic error):

$$d_{Xe} = (-4.7 \pm 6.4_{stat} \pm 0.07_{sys}) \cdot 10^{-28} e \text{cm}$$

The Xe-EDM experiment was (is) a great success!

The experimental setup works the way we planned:

SQUID + MSR: *SNR* ~ 10000:1 mu-metal cylinder & gradient coils: T~9 h

<u>With first measurements (~ one day effective measurement time):</u>

Former upper limit (2001): $|d_{Xe}| < 7.3 \cdot 10^{-27} e \text{ cm} (95\% \text{ CL})$

New upper limit (preliminary): $|d_{Xe}| < 1.5 \cdot 10^{-27} ecm (95\% CL)$

...will be published soon!

OUTLOOK

Thank you for your attention.

