

Beam Parameter Stabilization at MESA for P2

Ruth Kempf

Jürgen Diefenbach

Frank Fichtner

P2 @ MESA

P2 Detector

See also: The P2 Experiment arXiv:1802.04759

Motivation

<u>P2 experiment at MESA</u>

- Measuring the weak mixing angle
- external beam mode with low energy and high current:
 - 150µA, 155MeV
- Iongitudinally polarized beam
 - fast helicity flipping ~kHz
- parity violation (elastic ep scattering)
 - expected asymmetry ~30ppb
- very strong demands on beam quality!
 - intensity, energy, position, angle

electromagnetic

 Measured asymmetry determined by the cross section for electronproton-scattering with polarized electrons:

$$A^{\rm PV} \equiv \frac{\sigma_{\rm ep}^+ - \sigma_{\rm ep}^-}{\sigma_{\rm ep}^+ + \sigma_{\rm ep}^-}$$

 Measured asymmetry determined by the cross section for electronproton-scattering with polarized electrons:

$$A^{\rm PV} \equiv \frac{\sigma_{\rm ep}^+ - \sigma_{\rm ep}^-}{\sigma_{\rm ep}^+ + \sigma_{\rm ep}^-} \qquad \qquad \sigma_{\rm ep}^+ \propto |M_{\gamma} + M_{Z,R}|^2 \sigma_{\rm ep}^- \propto |M_{\gamma} + M_{Z,L}|^2$$

1

 Measured asymmetry determined by the cross section for electronproton-scattering with polarized electrons:

$$A^{\rm PV} \equiv \frac{\sigma_{\rm ep}^+ - \sigma_{\rm ep}^-}{\sigma_{\rm ep}^+ + \sigma_{\rm ep}^-} \qquad \qquad \sigma_{\rm ep}^+ \propto |M_{\gamma} + M_{Z,R}|^2 \qquad \qquad M_{\gamma} \propto \frac{1}{Q^2} \qquad \qquad M_{\gamma} \propto \frac{1}{M_Z^2} \qquad \qquad M_Z \propto \frac{1}{m_Z^2}$$

1

 Measured asymmetry determined by the cross section for electronproton-scattering with polarized electrons:

$$A^{\rm PV} \equiv \frac{\sigma_{\rm ep}^+ - \sigma_{\rm ep}^-}{\sigma_{\rm ep}^+ + \sigma_{\rm ep}^-} \qquad \qquad \sigma_{\rm ep}^+ \propto |M_{\gamma} + M_{Z,R}|^2 \qquad \qquad M_{\gamma} \propto \frac{1}{Q^2} \sigma_{\rm ep}^- \propto |M_{\gamma} + M_{Z,L}|^2 \qquad \qquad M_Z \propto \frac{1}{m_Z^2}$$

• Expected asymmetry determined by spin polarization and apparative asymmetry. $A^{\exp} = P \cdot \langle A^{\rm PV} \rangle_{L, \ \delta\theta_{\rm f}} + A^{\rm app}$

P2 Beam Quality Requirements

 $\Delta sin^2(\theta_W)$ total polarization γ -Z-box beam systematics counting statistics G^s G^s center of detector 10⁻³ 10-4 See also 10⁻⁵ arXiv:1802.04759 25 30 20 35 15 40 45 50 max. 0.1 ppb from beam systematics assumed! ^{0/deg}

Uncertainty of weak mixing angle

Measuring Asymmetry in 4ms

- STA: short term asymmetry
- Measured in a 4ms pattern of spin states of 1ms length: +--+ or -++-
- In 10kh measuring time are 9×10^9 STAs.

$$\Delta A^{\rm app} = \frac{\sigma}{\sqrt{9 \times 10^9}} \stackrel{!}{=} 0.1 \,\rm ppb$$

$$\sigma = \Delta A^{\rm app}(STA) \stackrel{!}{=} 9.5 \,\rm ppm$$

Approach for Stable and Accurate Beam

- Digital Control System (FPGA)
 - Further Pros: highly flexible, quickly replaceable
- IQ-Demodulation
- Differential Signal Transfer
- Feedback and Feedforward Control
 - "Feedforward": pre-adaption to upcoming beam shift from helicity switch
- High Sensitivity Beam Position Monitors

Stabilization Principle and Setup of Hardware

Arrangement of Steerers and BPMs in Hall B (RTM3)@MAMI

Stabilization Principle and Hardware

Stabilization Principle and Hardware

Fast Steerer

Stabilization Principle and Hardware

IGU

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

BPM

Successful Stabilization Tests

using RedPitaya internal PID blocks (used only PI)!

Asymmetry Uncertainties Results

Expected Asymmetry Uncertainties after 10kh measuring time at 150µA

- Position and current based on signal widths measured in Tests at MAMI
- Scaled to 150µA in 10kh and averaged over 8192 samples of 8ns.
- Energy asymmetry is estimated from A4 data. 0.1 ppb feasible but not yet demonstrated. Relative energy width of 10⁻⁵ needed.

Thank you for your attention

Backup

Cavity Design

Cavity Design

- 2 Pillboxes in one
- TM110-mode
- 2,6GHz resonance frequency
- 250kHz bandwidth
- Electric coupling
- Remote tuning/detuning
- Water cooled

Polarized Beam: Short Term Asymmetry

Beam Current Measurement:

- Stabilization off

DAQ with "RedPitayas"

- FPGA+CPU (Xilinx Zynq 7010 SoC)
- 2 fast DACs, 14 Bit / 125MSa/s
- 2 fast ADCs, 14 Bit / 125MSa/s
- GPIO connector w/digital pins (trigger, clock, ...)
- Ethernet, USB
- Linux on dual core ARM (Cortex A9)
- open source (firmware/software)
- ~250 €/pc.

DAQ with "RedPitayas"

Tuning and Detuning

- Moving the Piston changes the resonance frequency
- Piston can drive 12 mm
- Motor makes 7000 steps

TM110-mode

- Node at the axis of the cavity
- Linear close to the cavity axis
- Perpendicular mode suppressed with mode dividers

TM110-mode

Remote Tuning und Detuning

- To save sensitive electronics in case of high displacements
- Possible maximal damping: -30 to -36 dB depending on piston position at 2.6GHz

Double Differences

mdd

STA /

term asymmetry

short 1

- Check for beam loss between two beam current monitors
- Yet no data, example for A4:
- The double difference: $dd = sta_1 - sta_2$

is strictly around zero if no beam was lost.

- The width indicates the resolution of the monitors:

$$\sigma(dd) = \sigma(pimo_{13})^2 + \sigma(pimo_{27})^2$$

- Tests with our setup in December

Measurements of Transfer Functions

• automatic measurement

JBV

- RedPitaya as signal generator + digitizer
- With beam at MAMI or without beam at test stand (MESA halls)
- characterization of components of control loop
- open loop \rightarrow predict closed loop behavior

Transfer function Example

Principle of Beam Monitoring

IQ-Demodulation

No nasty phase tuning needed any more because signal is always reconstructable with *I* and *Q*.

- XYMO-Signal: MAMI 2,45GHz carrier
- After 2,44 GHz mixing: 10MHz carrier
- Two branches demodulated with 90° shifted 10MHz.

IQ-Demodulation

- Measurement of *I* and Q of the 1000 Hz Peak at different phase tunes result in a circle.
- Circle is not evenly circular.
- Electronics are still susceptible to DC Offsets, errors in gain matching of *I* and Q
 - Digital IQ-Demodulation maybe better ?! Offline tests after beamtime with Signal on 10MHz

Digital Feedforward – (@Test Stand)

- helicity flip → beam position "jump"
- measure "jump" \rightarrow push current into coils during flip!
 - feedback takes care of residual helicity correlation

Polarized Beam: Short Term Asymmetry

Beam current shift under helicity switch

Beam Current Measurement:

- Stabilization off

