23<sup>RD</sup> INTERNATIONAL SPIN SYMPOSIUM FERRARA - ITALY

FIRST extraction of TRANSVERSITY from data on lepton-hadron SCATTERING + hadronic COLLISIONS Marco Radici INFN - Pavia

in collaboration with A. Bacchetta (Univ. Pavia)

based on P.R.L. **120** (2018) 192001 arXiv:1802.05212 **plus updates** 



stituto Nazionale

**European Research Counc** 

## a phase transition



first global fit (= lepton-hadron scatt. and hadron collisions) of **PDF h**1



## Motivation

### searches for BSM New Physics

 nuclear β-decay: effective field theory including operators not in SM Lagrangian; for example, tensor operator



- **neutron EDM**: estimate CPV induced by quark chromo-EDM  $d_q$ 

## a phase transition





first global fit (= lepton-hadron scatt. and hadron collisions) of **PDF h**1



# **2-hadron**-inclusive production



## **2-hadron**-inclusive production



## exp. data for 2-hadron-inclusive production



## exp. data for 2-hadron-inclusive production



## the kinematics



functional form whose Mellin transform can be computed analytically and complying with Soffer Bound at any x and scale Q<sup>2</sup>

$$h_1^{q_v}(x;Q_0^2) = F^{q_v}(x) \begin{bmatrix} SB^q(x) + \overline{SB}^{\overline{q}}(x) \end{bmatrix}$$

$$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ Soffer Bound \\ 2|h_1^q(x,Q^2)| \le 2 SB^q(x,Q^2) = |f_1^q(x,Q^2) + g_1^q(x,Q^2)| \\ & & \\ & & \\ MSTW08 \quad DSSV \end{array}$$

$$(x) = \frac{N_{q_v}}{\max_x [|F^{q_v}(x)|]} x^{A_{q_v}} \left[1 + B_{q_v} \operatorname{Ceb}_1(x) + C_{q_v} \operatorname{Ceb}_2(x) + D_{q_v} \operatorname{Ceb}_3(x)\right] \\ & & \\ \operatorname{Ceb}_n(x) \text{ Cebyshev polynomial} \end{array}$$

10 fitting parameters

constrain parameters

 $F^{q_v}$ 

 $|N_{q_v}| \le 1 \Rightarrow |F^{q_v}(x)| \le 1$  Soffer Bound ok at any Q<sup>2</sup>

### theoretical uncertainties

### unpolarized Di-hadron Fragmentation Function D1

- quark D<sub>1</sub>q is well constrained by  $e^+e^- \rightarrow (\pi^+\pi^-) X$  (Montecarlo)
- **gluon**  $D_1^g$  is **not** constrained by  $e^+e^- \rightarrow (\pi^+\pi^-) X$  (currently, LO analysis)
- **no data** available yet for  $p p \rightarrow (\pi^+\pi^-) X$

### we don't know anything about the gluon $D_1^g$

our choice: set 
$$D_{I^g}(Q_0) = \begin{cases} 0 \\ D_{I^u}(Q_0) / 4 \\ D_{I^u}(Q_0) \end{cases}$$

deteriorates our e<sup>+</sup>e<sup>-</sup> fit as  $\chi^2/dof =$ 

$$\begin{cases} 1.69 & 1.28 \\ 1.81 & 1.37 \\ 2.96 & 2.01 \end{cases}$$
  
background  $\rho$  channels

### statistical uncertainty



## $X^2$ of the fit



global fit **10** parameters

### results



pp collisions



Adamczyk et al., P.R.L. **115** (2015) 242501



higher

precision

up





Х







0.05

0.10

Х

0.50

0.01

### isovector tensor charge $g_T = \delta u - \delta d$

#### lattice results

with different discretization schemes, lattice spacings, volumes



Alexandrou, arXiv:1612.04644

### isovector tensor charge $g_T = \delta u - \delta d$

#### lattice results

with different discretization schemes, lattice spacings, volumes



### isovector tensor charge $g_T = \delta u - \delta d$



\* O<sup>2</sup>=1

 $Q^{2}=4 \text{ GeV}^{2} *$ 

Radici & Bacchetta, P.R.L. **120** (18) 192001

2) global fit '17

**Torino fit** 

- Kang et al., P.R. D93 (16) 014009 3) "TMD fit" \* Q<sup>2</sup>=10
- Anselmino et al., P.R. D87 (13) 094019 4)
  - Lin et al., P.R.L. 120 (18) 152502 5) JAM fit '17 \* Q<sub>0</sub><sup>2</sup>=2

from GPD see also talk by S. Liuti 6) PNDME '16

10) LHPC '12

11) RQCD '14

7)

8)

9)

- Bhattacharya et al., P.R. D94 (16) 054508
- PNDME '18 Gupta et al., P.R. D98 (18) 034503
- ETMC '17 Alexandrou et al., P.R. D95 (17) 114514; E P.R. D96 (17) 099906
- NPLQCD '18 Chang et al., P.R.L. 120 (18) 152002
  - Green et al., P.R. D86 (12)
    - Bali et al., P.R. D91 (15)

### tensor charge : separate flavors







### tensor charge : separate flavors



2- global fit Radici & Bacchetta, P.R.L. 120 (18) 192001 3-TMD fit \* Q<sup>2</sup>=10 Kang et al., P.R. D93 (16) 014009 4-Torino Anselmino et al., P.R. D87 (13) 094019 \*  $Q^2=1$ 5- JAM fit  $* Q_0^2 = 2$ Lin et al., P.R.L. 120 (18) 152502 **6- PNDME16** Bhattacharya et al., P.R. D94 (16) 054508 **7- PNDME18** Gupta et al., arXiv:1808.07597 8- ETMC17 Alexandrou et al., P.R. D95 (17) 114514; E P.R. D96 (17) 099906

incompatibility for up compatibility for down but within large errors (except JAM)



### "transverse-spin puzzle" ?

there seems to be no simultaneous compatibility about  $\delta_u$ ,  $\delta_d$ ,  $g_T = \delta_u - \delta_d$ between lattice and phenomenological extractions of transversity

### results



### **Compass pseudodata**



statistical error  $\sim 0.6 \times [$  error in 2010 proton run ]<A> = average value of replicas in previous global fit

## impact of pseudodata



## better X<sup>2</sup>



 $\chi^2/dof = 1.32 \pm 0.09$ 

## impact of pseudodata



#### 1- global fit + pseudodata

- **2- global fit** *Radici & Bacchetta, P.R.L.* **120** (18) 192001
- **3-TMD fit** Kang et al., P.R. D93 (16) 014009 \* Q<sup>2</sup>=10
- **4-Torino** Anselmino et al., P.R. D87 (13) 094019 \* Q<sup>2</sup>=1
- **5- JAM fit** Lin et al., P.R.L. **120** (18) 152502 \* **Q**<sub>0</sub><sup>2</sup>=2
- 6-PNDME16 Bhattacharya et al., P.R. D94 (16) 054508
- **7- PNDME18** Gupta et al., arXiv:1808.07597
- **8- ETMC17** Alexandrou et al., P.R. D95 (17) 114514; E P.R. D96 (17) 099906



## impact of pseudodata



## Conclusions

- first global fit of di-hadron inclusive data leading to extraction of transversity as a PDF in collinear framework
- inclusion of STAR p-p<sup>†</sup> data increases precision of up channel; large uncertainty on down due to unconstrained gluon unpolarized di-hadron fragmentation function
- no apparent simultaneous compatibility with lattice for tensor charge in up, down, and isovector channels
- adding Compass pseudodata for deuteron increases precision, particularly for down, but seems to confirm this scenario
- are lattice moments really compatible with di-hadron inclusive small/large-x data ? What's going on at very small x ?



# Back-up



## **2-hadron**-inclusive production

framework collinear factorization



## tensor charge $\delta q(Q^2) = \int dx h_1 q \overline{q} (x, Q^2)$

truncated  $\delta q^{[0.0065, 0.35]}$  Q<sup>2</sup> = 10





+ pseudodata

global fit Radici & Bacchetta, P.R.L. **120** (18) 192001

**TMD fit** *Kang et al., P.R. D***93** (16) 014009

# To do list

 use also other (multi-dimensional) data from STAR run 2011 (s=500) and (later) run 2012 (s=200)





Radici et al., P.R. D94 (16) 034012

- → need data on p+p →  $(\pi\pi) X$  constrains gluon D<sub>1</sub><sup>g</sup>
- refit di-hadron fragmentation functions using new data:
   e<sup>+</sup>e<sup>-</sup> → (ππ) X constrains D<sub>1</sub><sup>q</sup>
   (currently only by Montecarlo)
- Seidl et al., P.R. D**96** (17) 032005
- use COMPASS data on πK and KK channels, and from Λ<sup>↑</sup> fragmentation: constrain strange contribution ?
- explore other channels, like inclusive DIS via Jet fragm. funct.'s

### more constraints on extrapolation



- of course, need more data