Helmholtz-Institut Mainz

Transverse Single Spin Asymmetries in Electron Scattering on Hydrogen Targets

Boxing Gou

11.09.2018

Spin 2018, Ferrara

Outline

- Proton form factor puzzle and two-photon exchange
- Two-photon exchange study at MAMI-A4
- Plan for asymmetry measurement in inelastic region

Proton form factors

General e-p scattering amplitudes

Elastic scattering of two spin-1/2 particles can be described by 6 amplitudes.
$\tilde{G}_{M}, \tilde{F}_{2}, \tilde{F}_{3}, \tilde{F}_{4}, \tilde{F}_{5}, \tilde{F}_{6}$
$>$ Small coupling (1/137) -> small higher order contributions
$>$ One-photon exchange approximation are regareded as sufficient

Methods for form factor measurement

Rosenbluth separation

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\left(\frac{\alpha \mathrm{E}^{\prime}}{4 \mathrm{MQ})^{2} \mathrm{E}}\right)^{2}\left|\mathcal{M}_{\gamma}\right|^{2}=\frac{\sigma_{\mathrm{Mott}}}{\epsilon(1+\tau)} \sigma_{\mathrm{R}} \\
& \sigma_{\mathrm{Mott}}=\frac{\alpha^{2} \mathrm{E}^{\prime} \cos ^{2} \frac{\theta_{\mathrm{e}}}{2}}{4 \mathrm{E}^{3} \sin ^{4} \frac{\theta_{\mathrm{e}}}{2}} \quad \text { (Point-like) } \\
& \tau=\frac{\mathrm{Q}^{2}}{4 \mathrm{M}^{2}} \quad \varepsilon=\left[1+2(1+\tau) \tan ^{2} \frac{\theta_{\mathrm{e}}}{2}\right]^{-1}
\end{aligned}
$$

- FFs extracted as intercept and slope
- The signs of the FFs can not be determined
- At large Q^{2}, uncertainty of G_{E} gets larger

Spin-transfer method

Phys. Rev. C 23, 363 (1981)

$$
\begin{aligned}
I_{0} P_{x} & =-2 \sqrt{\tau(1+\tau)} G_{E} G_{M} \tan \frac{\theta_{e}}{2} \\
P_{y} & =0 \\
I_{0} P_{z} & =\frac{E_{0}+E^{\prime}}{M} \sqrt{\tau(1+\tau)} G_{M}^{2} \tan \frac{\theta_{e}}{2} \\
I_{0} & =G_{E}^{2}\left(Q^{2}\right)+\frac{\tau}{\varepsilon} G_{M}^{2}\left(Q^{2}\right) \\
\frac{G_{E}}{G_{M}} & =-\frac{P_{t}}{P_{l}} \frac{E_{0}+E^{\prime}}{M} \tan \frac{\theta_{e}}{2}
\end{aligned}
$$

Proton form factor puzzle

- Discrepancy between Rosenbluth separation and spin transfer experiments.
- Failure of the Born approximation in electron scattering .

- A two-photon exchange correction could explain the discrepancy.
- Two-photon exchange mechanism needs to be understood systematicly.
- Both theoretical and experimental investigations are needed.

Two-photon exchange

$R\left(e^{+} p / e^{-} p\right) \Rightarrow \operatorname{Re}\left(\widetilde{F}_{1,2,3}\right)$

$$
\begin{gathered}
\mathcal{M}_{e p \rightarrow e p}=q_{e} q_{p} \mathcal{M}_{\gamma}+q_{e}^{2} q_{p}^{2} \mathcal{M}_{2 \gamma} \\
\left|\mathcal{M}_{e p \rightarrow e p}\right|^{2}=q_{e}^{2} q_{p}^{2} \mathcal{M}_{\gamma}+q_{e}^{3} q_{p}^{3} \mathcal{M}_{\gamma} \mathcal{M}_{2 \gamma} \\
\sigma_{e^{-} p}=\alpha^{2} \mathcal{M}_{\gamma}^{2}-\alpha^{3} \mathcal{M}_{\gamma} \operatorname{Re}\left(\mathcal{M}_{2 \gamma}\right)+\cdots \\
\sigma_{e^{+} p}=\alpha^{2} \mathcal{M}_{\gamma}^{2}+\alpha^{3} \mathcal{M}_{\gamma} \operatorname{Re}\left(\mathcal{M}_{2 \gamma}\right)+\cdots \\
\frac{\sigma_{e^{+} p}^{\sigma_{e}-p}}{\sigma_{1}} \approx 1+2 \alpha \frac{\operatorname{Re}\left(\mathcal{M}_{2 \gamma}\right)}{\mathcal{M}_{\gamma}}
\end{gathered}
$$

- VEPP-3@Novosiribisik
- CLAS@JLab
- OLYMPUS@DESY

Single Spin Asymmetry $(\mathrm{SSA}) \Rightarrow \operatorname{Im}\left(\tilde{F}_{1-5}\right)$

Azimuthal asymmetry

$$
A_{\text {exp }}=\frac{\sigma_{\uparrow}-\sigma_{\downarrow}}{\sigma_{\uparrow}+\sigma_{\downarrow}}=A_{\perp} \frac{\vec{s} \cdot \vec{p}}{|\vec{s}||\vec{p}|}=-A_{\perp} \cos \varphi
$$

$$
A_{\perp} \propto \frac{\operatorname{Im}\left(\mathcal{M}_{\gamma}^{*} \mathcal{M}_{2 \gamma}\right)}{\left|\mathcal{M}_{\gamma}\right|^{2}} \sim \alpha \cdot \frac{m_{e}}{E} \sim 10^{-5}-10^{-6}
$$

Nucl. Phys. B 35 (1971) 365.

- SAMPLE@MIT-Bates
- HAPPEX, GO, $Q_{\text {weak }}$ @JLab
- A4@MAMI

MAMI

Mainz Microtron (MAMI)

- Electron beam: 0.2-1.5 GeV, current ~ $20 \mu \mathrm{~A}$
- Energy, current, position and emittance are stabilized and monitored

A4 experiment

- Parity violation asymmetry: Strange form factor
- Azimuthal asymmetry: Two-photon exchange

Pol. Source

- Photoelectric effect on GaAs with circularly polarized laser: longitudinal polarized electrons
- Wien filter: longitudinal \rightarrow transverse
- Solenoid: transverse \rightarrow vertical
- Pol. states switched by Pockels cell

Beam polarization ~ 80\%

- Møller polarimeter (A1)
- Compton laser backward scattering polarimeter
- Transmission Compton polarimeter
- An extra half-wave plate GaAs

A4 experiment

Electromagnetic Calorimeter

- $7 \times 146 P b F_{2}$ crystals
- $\varphi:(0,2 \pi)$
- Rotatable platform: both forward $\left(30^{\circ}-40^{\circ}\right)$ and backward $\left(140^{\circ}-150^{\circ}\right)$

High power liquid target

- Hydrogen
- Deuterium
- Dead time 20 ns, high counting rate: $>10 \mathrm{MHz}$
- Pol. state changed every 20 ms , each run last 5 min

Luminosity monitored by 8 water Cherenkov counters

Asymmetry extraction

- Integrate spectra under elastic peak $->N^{\uparrow}\left(N^{\downarrow}\right)$
- Raw asymmetry for each frame $A_{f}=\frac{N^{\uparrow}-N^{\downarrow}}{N^{\dagger}+N^{\downarrow}}$
- Correct helicity related false aymmetry $A_{f}^{\text {Raw }} \rightarrow A_{f}$

False asymmetry caused by difference in

- Beam position $(\Delta X, \Delta Y)$
- Beam angle $\left(\Delta X^{\prime}, \Delta Y^{\prime}\right)$
- Beam current ΔI
- Beam energy ΔE

Corrected via regression analyses

$$
A_{\text {exp }}=P \cdot A_{p h y}+\sum_{i=1}^{6} a_{i} X_{i}
$$

- Fit A_{f} by $A_{f}=A \cos \left[\frac{2 \pi}{146} \cdot(f-0.5)\right]+C$

Asymmetry extraction

- Integrate spectra under elastic peak $->N^{\uparrow}\left(N^{\downarrow}\right)$
- Raw asymmetry for each frame $A_{f}=\frac{N^{\uparrow}-N^{\downarrow}}{N^{\dagger}+N^{\downarrow}}$
- Correct helicity related false aymmetry $A_{f}^{\text {Raw }} \rightarrow A_{f}$

False asymmetry caused by difference in

- Beam position $(\Delta X, \Delta Y)$
- Beam angle $\left(\Delta X^{\prime}, \Delta Y^{\prime}\right)$
- Beam current ΔI
- Beam energy ΔE

Corrected via regression analyses

$$
A_{\text {exp }}=P \cdot A_{p h y}+\sum_{i=1}^{6} a_{i} X_{i}
$$

- Fit A_{f} by $A_{f}=A \cos \left[\frac{2 \pi}{146} \cdot(f-0.5)\right]+C$

Published data

- Direct experimental evidence of twophoton exchange
- Theoratical curves from Phy. Rev. C 70
- Significant inelastic contribution
- Discrepancy between theoretical calculation at 570 MeV forward data.

New data

- New measurements performed at 315, 420, 510, 855 and 1508 MeV .
- Systematic error at 855 and 1508 MeV could be reducd.
- Extraction of $\operatorname{Im}\left(\tilde{F}_{3}\right), \operatorname{Im}\left(\tilde{F}_{4}\right)$ and $\operatorname{Im}\left(\tilde{F}_{5}\right)$ become possible?
- New calculations ongoing by B. Pasquini.

Plan: asymmetry in resonance region

- Large asymmetry in inelastic region.
- Test models describling $N \rightarrow \Delta$ transations beyond one-photon exchange.
- Background understood by Monte-Carlo simulation.

Simulation by L. Capozza

Summary

- Discrepancy between Rosenbluth separation and polarization transfer.
- Two-photon exchange could account for the discrepancy.
- Two-photon exchange amplitudes can be accessed via normal single spin asymmetry.
- Study of beam normal asymmetry for elastic channel at MAMI-A4 (new data at 5 energies between 0.3 and 1.5 GeV).
- Plan for future analyses in inelastic region.

Thanks for your attention!

