Non perturbative flavour-dependent effects due to intrinsic k_T and their impact on the determination of M_W

giuseppe bozzi

in collaboration with A.Bacchetta, M.Radici, M.Ritzmann, A.Signori (arXiv:1807.02101)

European Research Council

Observables

accessible via counting experiments: cross sections and asymmetries

Observables

accessible via counting experiments: cross sections and asymmetries

Pseudo-Observables

- functions of cross sections and symmetries
- require a model to be properly defined
 - M_Z at LEP as pole of the Breit-Wigner resonance factor
 - *Mw* at hadron colliders as fitting parameter of a *template fit* procedure

Observables

accessible via counting experiments: cross sections and asymmetries

Pseudo-Observables

- functions of cross sections and symmetries
- require a model to be properly defined
 - M_Z at LEP as pole of the Breit-Wigner resonance factor
 - *Mw* at hadron colliders as fitting parameter of a *template fit* procedure

Template fit

Observables

accessible via counting experiments: cross sections and asymmetries

Pseudo-Observables

- functions of cross sections and symmetries
- require a model to be properly defined
 - M_Z at LEP as pole of the Breit-Wigner resonance factor
 - *Mw* at hadron colliders as fitting parameter of a *template fit* procedure

Template fit

1. generate several histograms with the <u>highest available theoretical accuracy</u> and degree of realism in the detector simulation, and let the fit parameter (e.g. *Mw*) vary in a range

Observables

accessible via counting experiments: cross sections and asymmetries

Pseudo-Observables

- functions of cross sections and symmetries
- require a model to be properly defined
 - M_Z at LEP as pole of the Breit-Wigner resonance factor
 - *Mw* at hadron colliders as fitting parameter of a *template fit* procedure

Template fit

- 1. generate several histograms with the <u>highest available theoretical accuracy</u> and degree of realism in the detector simulation, and let the fit parameter (e.g. *Mw*) vary in a range
- 2. the histogram that best describes data selects the preferred (*i.e. measured*) Mw

Observables

accessible via counting experiments: cross sections and asymmetries

Pseudo-Observables

- functions of cross sections and symmetries
- require a model to be properly defined
 - M_Z at LEP as pole of the Breit-Wigner resonance factor
 - *Mw* at hadron colliders as fitting parameter of a *template fit* procedure

Template fit

- 1. generate several histograms with the <u>highest available theoretical accuracy</u> and degree of realism in the detector simulation, and let the fit parameter (e.g. *Mw*) vary in a range
- 2. the histogram that best describes data selects the preferred (*i.e. measured*) Mw
- the result of the fit depends on the hypotheses used to compute the templates (PDFs, scales, non-perturbative, different prescriptions, ...)
- these hypotheses should be treated as theoretical systematic errors

General template-fit strategy (example: PDF uncertainty)

Bozzi, Rojo, Vicini PRD 83, 113008 (2011)

General template-fit strategy (example: PDF uncertainty)

Bozzi, Rojo, Vicini PRD 83, 113008 (2011)

- **pseudodata** with different PDF sets: <u>low-statistics</u> (100M) and <u>fixed *M*_{W0}</u>
- templates with a reference PDF set (CTEQ6.6): high-statistics (1B) and different M_W
- same code used to generate both pseudodata and templates → only effect probed is the PDF one

The W mass ATLAS, EPJC 78, 110 (2018)

The Wmass atlas, EPJC 78, 110 (2018) Global EW fit compared to ATLAS results

m_w [GeV] $m_{w} = 80.370 \pm 0.019 \text{ GeV}$ ATLAS 80.5 $m_t = 172.84 \pm 0.70 \text{ GeV}$ ---- m_H = 125.09 ± 0.24 GeV 80.45 <mark>---</mark> 68/95% CL of m_w and m_t 80.4 80.35 68/95% CL of Electroweak 80.3 Fit w/o m_w and m_t (Eur. Phys. J. C 74 (2014) 3046) 80.25 165 170 175 180 185 m_t [GeV] $m_W = 80356 \pm 8 \text{ MeV}$

$m_W = 80370 \pm 19 \text{ MeV}$ Experimental measurements

 $M_W = 80.379 \pm 12 \text{ MeV}$

(7 stat, 11 exp, 14 th)

The W mass atlas, EPJC 78, 110 (2018) Global EW fit compared to ATLAS results

 $M_W = 80.379 \pm 12 \text{ MeV}$

(7 stat, 11 exp, 14 th)

(7 stat, 11 exp, 14 th)

The determination of the *W*-boson mass from the global fit of the electroweak parameters has an uncertainty of 8 MeV, which sets a natural target for the precision of the experimental measurement of the mass of the *W* boson. The modelling uncertainties, which currently dominate the overall uncertainty on the m_W measurement presented in this note, need to be reduced in order to fully exploit the larger data samples available at centre-of-mass energies of 8 and 13 TeV. A better knowledge of the PDFs, as achievable with the inclusion in PDF fits of recent precise measurements of *W*- and *Z*-boson rapidity cross sections with the ATLAS detector [41], and improved QCD and electroweak predictions for Drell-Yan production, are therefore crucial for future measurements of the *W*-boson mass at the LHC.

(7 stat, 11 exp, 14 th)

The determination of the *W*-boson mass from the global fit of the electroweak parameters has an uncertainty of 8 MeV, which sets a natural target for the precision of the experimental measurement of the mass of the *W* boson. The modelling uncertainties, which currently dominate the overall uncertainty on the m_W measurement presented in this note, need to be reduced in order to fully exploit the larger data samples available at centre-of-mass energies of 8 and 13 TeV. A better knowledge of the PDFs, as achievable with the inclusion in PDF fits of recent precise measurements of *W*- and *Z*-boson rapidity cross sections with the ATLAS detector [41], and improved QCD and electroweak predictions for Drell-Yan production, are therefore crucial for future measurements of the *W*-boson mass at the LHC.

 M_W extracted from the study of the shape of m_T , p_{TI} , p_{Tmiss} jacobian peak enhances sensitivity to M_W

 M_W extracted from the study of the shape of m_T , p_{TI} , p_{Tmiss}

jacobian peak enhances sensitivity to M_W

Transverse mass: important detector smearing effects, weakly sensitive to p_{TW} modelling Lepton p_T : moderate detector smearing effects, extremely sensitive to p_{TW} modelling

 M_W extracted from the study of the shape of m_T , p_{TI} , p_{Tmiss}

jacobian peak enhances sensitivity to M_W

Transverse mass: important detector smearing effects, weakly sensitive to p_{TW} modelling Lepton p_T : moderate detector smearing effects, extremely sensitive to p_{TW} modelling p_{TW} modelling depends on flavour and all-order treatment of QCD corrections

Challenging shape measurement: a distortion at the few per mille level of the distributions yields a shift of O(10 MeV) of the M_W value

Challenging shape measurement: a distortion at the few per mille level of the distributions yields a shift of O(10 MeV) of the M_W value

Uncertainties on M_W due to p_{TW}

CDF

D0

Total Uncertainty

26

 $\mathbf{28}$

33

m_T fit uncertainties				p_T^ℓ fit uncertainties				Source Se		m_T	p_T^e	₿ _T
Source	$W \rightarrow \mu \nu$	$W \rightarrow ev$	Common	Source	$W \rightarrow \mu \nu$	$W \rightarrow ev$	Common	Experimental				
Lepton energy scale	7	10	5	Lepton energy scale	7	10	5	Electron Energy Scale	VIIC4	16	17	16
Lepton energy resolution	1	4	0	Lepton energy resolution	1	4	0	Electron Energy Resolution Electron Shower Model	VICS	4	6	3 7
Lepton efficiency	0	0	0	Lepton efficiency	1	2	0	Electron Energy Loss	VD	4	4	4
Lepton tower removal	2	3	2	Lepton tower removal	0	0	0	Recoil Model	VIID3	5	6	14
Recoil scale	5	5	5	Recoil scale	6	6	6	Backgrounds	VIIBIO	2	2	2
Recoil resolution	7	7	7	Recoil resolution	5	5	5	\sum (Experimental)		18	20	24
Backgrounds	3	4	0	Backgrounds	5	3	0	W Production and Decay Model				
PDFs	10	10	10	PDFs	9	9	9	PDF	VIC	11	11	14
W boson p_T	3	3	3	W boson p_T	9	9	9	QED Boson m	VI B VI A	7	7	9
Photon radiation	4	4	4	Photon radiation	4	4	4	$\sum(Model)$	•111	13	14	17
Statistical	16	19	0	Statistical	18	21	0	Systematic Uncertainty (Experimental and Model)		20	24	20
Total	23	26	15	Total	25	28	16	W Deser Statistics	IV	12	14	15
								W DOSON STATISTICS	1	13	14	10

ATLAS

W-boson charge Kinematic distribution	$W^+ p_{ m T}^\ell$	m_{T}	$W^- p_{ m T}^\ell$	m_{T}	Combined p_{T}^{ℓ}	1 <i>m</i> T
δm_W [MeV]						
Fixed-order PDF uncertainty	13.1	14.9	12.0	14.2	8.0	8.7
AZ tune	3.0	3.4	3.0	3.4	3.0	3.4
Charm-quark mass	1.2	1.5	1.2	1.5	1.2	1.5
Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation	5.0	6.9	5.0	6.9	5.0	6.9
Parton shower PDF uncertainty	3.6	4.0	2.6	2.4	1.0	1.6
Angular coefficients	5.8	5.3	5.8	5.3	5.8	5.3
Total	15.9	18.1	14.8	17.2	11.6	12.9

Uncertainties on M_W due to p_{TW}

CDF

D0

	m_T fit uncertaintie	s		p_T^ℓ fit uncertainties				
Source	$W \rightarrow \mu \nu$	$W \rightarrow e v$	Common	Source	$W \rightarrow \mu \nu$	$W \rightarrow ev$	Common	
Lepton energy scale	7	10	5	Lepton energy scale	7	10	5	Electron
Lepton energy resolution	on 1	4	0	Lepton energy resolution	1	4	0	Electron
Lepton efficiency	0	0	0	Lepton efficiency	1	2	0	Electron
Lepton tower removal	2	3	2	Lepton tower removal	0	0	0	Recoil M
Recoil scale	5	5	5	Recoil scale	6	6	6	Backgro
Recoil resolution	7	7	7	Recoil resolution	5	5	5	\sum (Expe
Backgrounds	3	4	0	Backgrounds	5	3	0	
PDFs	10	10	10	PDFs	9	9	9	PDF
W boson p_T	3	3	3	W boson p_T	9	9	9	QED Boson m
Photon radiation	4	4	4	Photon radiation	4	4	4	$\sum (Mode$
Statistical	16	19	0	Statistical	18	21	0	Sustama
Total	23	26	15	Total	25	28	16	W Boson

	Source	Section	m_T	p_T^e	E_T
ı	Experimental				
_	Electron Energy Scale	VIIC4	16	17	16
	Electron Energy Resolution	VIIC5	2	2	3
	Electron Shower Model	VC	4	6	7
	Electron Energy Loss	VD	4	4	4
	Recoil Model	VIID3	5	6	14
	Electron Efficiencies	VIIB10	1	3	5
	Backgrounds	VIII	2	2	2
	\sum (Experimental)		18	20	24
	W Production and Decay Model				
	PDF	VIC	11	11	14
	QED	VIB	7	7	9
	Boson p_T	VIA	2	5	2
_	\sum (Model)		13	14	17
_	Systematic Uncertainty (Experimental and Model)		22	24	29
_	W Boson Statistics	IX	13	14	15
	Total Uncertainty		26	28	33

ATLAS

W-boson charge	W^+		W^{-}		Combined	d
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}
δm_W [MeV]						
Fixed-order PDF uncertainty	13.1	14.9	12.0	14.2	8.0	8.7
AZ tune	3.0	3.4	3.0	3.4	3.0	3.4
Charm-quark mass	1.2	1.5	1.2	1.5	1.2	1.5
Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation	5.0	6.9	5.0	6.9	5.0	6.9
Parton shower PDF uncertainty	3.6	4.0	2.6	2.4	1.0	1.6
Angular coefficients	5.8	5.3	5.8	5.3	5.8	5.3
Total	15.9	18.1	14.8	17.2	11.6	12.9

Uncertainties on M_W due to p_{TW}

CDF

D0

m_T	fit uncertaintie	es		p_T^ℓ	fit uncertaintie	es		Source	Section $m_T = p_T^e$			
Source	$W ightarrow \mu v$	$W \rightarrow e v$	Common	Source	$W ightarrow \mu v$	$W \rightarrow ev$	Common	Experimental				
Lepton energy scale	7	10	5	Lepton energy scale	7	10	5	Electron Energy Scale	VIIC4	16	17	16
Lepton energy resolution	1	4	0	Lepton energy resolution	1	4	0	Electron Energy Resolution Electron Shower Model	VIIC5 VC	2 4	2 6	3
Lepton efficiency	0	0	0	Lepton efficiency	1	2	0	Electron Energy Loss	VD	4	4	4
Lepton tower removal	2	3	2	Lepton tower removal	0	0	0	Recoil Model	VIID3	5	6	14
Recoil scale	5	5	5	Recoil scale	6	6	6	Backgrounds	VIIBIO	2	2	2
Recoil resolution	7	7	7	Recoil resolution	5	5	5	\sum (Experimental)		18	20	24
Backgrounds	3	4	0	Backgrounds	5	3	0	W Production and Decay Model				
PDFs	10	10	10	PDFs	9	9	9	PDF	VIC	11	11	14
W boson p_T	3	3	(3)	W boson p_T	9	9	(9)	QED Boson m	VIA			9
Photon radiation	4	4	4	Photon radiation	4	4	4	$\sum(Model)$	VIA		Ŷ	17
Statistical	16	19	0	Statistical	18	21	0	Sustanatia Unantainta (Europianatal and Madal)		- 10	24	20
Total	23	26	15	Total	25	28	16	Systematic Uncertainty (Experimental and Model)		22	24	29
								W Boson Statistics	IX	13	14	15
								Total Uncertainty		26	28	33

ATLAS

W-boson charge	W^+		W^{-}		Combined	
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}
δm_W [MeV]						
Fixed-order PDF uncertainty	13.1	14.9	12.0	14.2	8.0	8.7
AZ tune	3.0	3.4	3.0	3.4	3.0	3.4
Charm-quark mass	1.2	1.5	1.2	1.5	1.2	1.5
Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation	5.0	6.9	5.0	6.9	5.0	6.9
Parton shower PDF uncertainty	3.6	4.0	2.6	2.4	1.0	1.6
Angular coefficients	5.8	5.3	5.8	5.3	5.8	5.3
Total	15.9	18.1	14.8	17.2	11.6	12.9

*p*_{TI} ⇔ *p*_{TW} ⇔ QCD initial state radiation + intrinsic *k*_T (usually, a Gaussian in *k*_T)

- *p*_{TI} ⇔ *p*_{TW} ⇔ QCD initial state radiation + intrinsic *k*_T (usually, a Gaussian in *k*_T)
- Intrinsic k_T effects measured on Z data and used to predict W distributions, assuming universality

- *p*_{TI} ⇔ *p*_{TW} ⇔ QCD initial state radiation + intrinsic *k*_T (usually, a Gaussian in *k*_T)
- Intrinsic k_T effects measured on Z data and used to predict W distributions, assuming universality

but

different flavour structure

different phase space available

- *p*_{TI} Φ *p*_{TW} Φ QCD initial state radiation + intrinsic *k*_T (usually, a Gaussian in *k*_T)
- Intrinsic k_T effects measured on Z data and used to predict W distributions, assuming universality

- *p*_{TI} Φ *p*_{TW} Φ QCD initial state radiation + intrinsic *k*_T (usually, a Gaussian in *k*_T)
- Intrinsic k_T effects measured on Z data and used to predict W distributions, assuming universality

$$\frac{d\sigma}{dq_T} \sim \text{FT} \exp\{-g_{_{NP}}b_T^2\}$$

$$\frac{d\sigma}{dq_T} \sim \text{FT} \exp\{-g_{NP} b_T^2\} \qquad \longrightarrow \qquad \text{Fit to } Z/\gamma^* \text{Tevatron data: } g_{NP} \sim 0.8 \text{ GeV}^2 \text{ [Guzzi, Nadolsky, Wang (2014)]}$$

 $\frac{d\sigma}{dq_T} \sim \text{FT} \exp\{-g_{NP} b_T^2\} \qquad \longrightarrow \qquad \text{Fit to } Z/\gamma^* \text{Tevatron data: } g_{NP} \sim 0.8 \text{ GeV}^2 \text{ [Guzzi, Nadolsky, Wang (2014)]}$

For each TMD: 0.4 GeV² ~
$$g_{NP}^{a} \longrightarrow g_{evo} \ln\left(\frac{Q^{2}}{Q_{0}^{2}}\right) + g_{a}$$

 $\frac{d\sigma}{dq_T} \sim \text{FT} \exp\{-g_{NP} b_T^2\} \longrightarrow \text{Fit to } Z/\gamma^* \text{Tevatron data: } g_{NP} \sim 0.8 \text{ GeV}^2$ [Guzzi, Nadolsky, Wang (2014)]

For each TMD: 0.4 GeV² ~
$$g_{NP}^{a} \longrightarrow g_{evo} \ln\left(\frac{Q^{2}}{Q_{0}^{2}}\right) + g_{a}$$

Fit to SIDIS/DY/Z data: $g_{evo} \ln\left(\frac{Q^{2}}{Q_{0}^{2}}\right) \in [0.17, 0.39] \text{ GeV}^{2}$

[Bacchetta, Del Carro, Pisano, Radici, Signori (2017)]

 $\frac{d\sigma}{dq_{T}} \sim \text{FT} \exp\{-g_{NP}b_{T}^{2}\} \longrightarrow \text{Fit to } Z/\gamma^{*} \text{ Tevatron data: } g_{NP} \sim 0.8 \text{ GeV}^{2} \text{ [Guzzi, Nadolsky, Wang (2014)]}$ $For \text{ each TMD: } 0.4 \text{ GeV}^{2} \sim g_{NP}^{a} \longrightarrow g_{evo} \ln\left(\frac{Q^{2}}{Q_{0}^{2}}\right) + g_{a} \longrightarrow variation range for g_{a}$ $Fit \text{ to SIDIS/DY/Z data: } g_{evo} \ln\left(\frac{Q^{2}}{Q_{0}^{2}}\right) \in [0.17, 0.39] \text{ GeV}^{2}$ [Bacchetta, Del Carro, Pisano, Radici, Signori (2017)]

We consider :

- **50 flavour-dependent sets** $\{g_{NP}^{u_v}, g_{NP}^{d_v}, g_{NP}^{u_s}, g_{NP}^{d_s}, g_{NP}^s\}$ with $g_{NP}^a \in [0.2, 0.6]$ GeV²
- **1 flavour-independent set** with $g_{NP}^a = 0.4 \text{ GeV}^2$

Set	u_v	d_v	u_s	d_s	S
1	0.34	0.26	0.46	0.59	0.32
2	0.34	0.46	0.56	0.32	0.51
3	0.55	0.34	0.33	0.55	0.30
4	0.53	0.49	0.37	0.22	0.52
5	0.42	0.38	0.29	0.57	0.27

	ΔM	I_{W^+}	ΔM_{W^-}	
Set	m_T	$p_{T\ell}$	m_T	$p_{T\ell}$
1	0	-1	-2	3
2	0	-6	-2	0
3	-1	9	-2	-4
4	0	0	-2	-4
5	0	4	-1	-3

 Take the "Z-equivalent" *flavour-dependent* parameter sets and compute *low-statistics* (135M) *m_T* and *p_T* distributions

Set	u_v	d_v	u_s	d_s	s
1	0.34	0.26	0.46	0.59	0.32
2	0.34	0.46	0.56	0.32	0.51
3	0.55	0.34	0.33	0.55	0.30
4	0.53	0.49	0.37	0.22	0.52
5	0.42	0.38	0.29	0.57	0.27

	ΔM	I_{W^+}	ΔM	$I_{W^{-}}$
Set	m_T	$p_{T\ell}$	m_T	$p_{T\ell}$
1	0	-1	-2	3
2	0	-6	-2	0
3	-1	9	-2	-4
4	0	0	-2	-4
5	0	4	-1	-3

- Take the "Z-equivalent" *flavour-dependent* parameter sets and compute *low-statistics* (135M) *m_T* and *p_{Tl}* distributions
 - ➡ these are our **pseudodata**

Set	u_v	d_v	u_s	d_s	s
1	0.34	0.26	0.46	0.59	0.32
2	0.34	0.46	0.56	0.32	0.51
3	0.55	0.34	0.33	0.55	0.30
4	0.53	0.49	0.37	0.22	0.52
5	0.42	0.38	0.29	0.57	0.27

	ΔM	I_{W^+}	ΔM	I_{W^-}
Set	m_T	$p_{T\ell}$	m_T	$p_{T\ell}$
1	0	-1	-2	3
2	0	-6	-2	0
3	-1	9	-2	-4
4	0	0	-2	-4
5	0	4	-1	-3

- Take the "Z-equivalent" *flavour-dependent* parameter sets and compute *low-statistics* (135M) *m_T* and *p_{Tl}* distributions
 - ➡ these are our **pseudodata**
- Take the *flavour-independent* parameter set and compute *high-statistics* (750M) *m_T* and *p_{Tl}* distributions for 30 different values of M_W

Set	u_v	d_v	u_s	d_s	s
1	0.34	0.26	0.46	0.59	0.32
2	0.34	0.46	0.56	0.32	0.51
3	0.55	0.34	0.33	0.55	0.30
4	0.53	0.49	0.37	0.22	0.52
5	0.42	0.38	0.29	0.57	0.27

	ΔM	I_{W^+}	$\Delta M_{W^{-}}$	
Set	m_T	$p_{T\ell}$	m_T	$p_{T\ell}$
1	0	-1	-2	3
2	0	-6	-2	0
3	-1	9	-2	-4
4	0	0	-2	-4
5	0	4	-1	-3

- Take the "Z-equivalent" *flavour-dependent* parameter sets and compute *low-statistics* (135M) *m_T* and *p_{Tl}* distributions
 - ➡ these are our **pseudodata**
- Take the *flavour-independent* parameter set and compute *high-statistics* (750M) *m_T* and *p_{Tl}* distributions for 30 different values of M_W
 - ➡ these are our **templates**

Set	u_v	d_v	u_s	d_s	s
1	0.34	0.26	0.46	0.59	0.32
2	0.34	0.46	0.56	0.32	0.51
3	0.55	0.34	0.33	0.55	0.30
4	0.53	0.49	0.37	0.22	0.52
5	0.42	0.38	0.29	0.57	0.27

	ΔM	I_{W^+}	ΔM	I_{W^-}
Set	m_T	$p_{T\ell}$	m_T	$p_{T\ell}$
1	0	-1	-2	3
2	0	-6	-2	0
3	-1	9	-2	-4
4	0	0	-2	-4
5	0	4	-1	-3

- Take the "Z-equivalent" *flavour-dependent* parameter sets and compute *low-statistics* (135M) *m_T* and *p_{Tl}* distributions
 - these are our pseudodata
- Take the *flavour-independent* parameter set and compute *high-statistics* (750M) m_T and p_T distributions for 30 different values of M_W
 - these are our templates
- perform the template fit procedure and compute the shifts induced by flavour effects

Set	u_v	d_v	u_s	d_s	s
1	0.34	0.26	0.46	0.59	0.32
2	0.34	0.46	0.56	0.32	0.51
3	0.55	0.34	0.33	0.55	0.30
4	0.53	0.49	0.37	0.22	0.52
5	0.42	0.38	0.29	0.57	0.27

	ΔM	I_{W^+}	ΔM_{W^-}	
Set	m_T	$p_{T\ell}$	m_T	$p_{T\ell}$
1	0	-1	-2	3
2	0	-6	-2	0
3	-1	9	-2	-4
4	0	0	-2	-4
5	0	4	-1	-3

NLL+LO QCD analysis obtained through a modified version of the **DYRes** code [Catani, deFlorian, Ferrera, Grazzini (2015)] (LHC 7 TeV, ATLAS acceptance cuts)

Statistical uncertainty: 2.5 MeV

Bacchetta, Bozzi, Radici, Ritzmann, Signori (arXiv:1807.02101)

- Take the "Z-equivalent" *flavour-dependent* parameter sets and compute *low-statistics* (135M) *m_T* and *p_{Tl}* distributions
 - these are our pseudodata
- Take the *flavour-independent* parameter set and compute *high-statistics* (750M) m_T and p_T distributions for 30 different values of M_W
 - these are our templates
- perform the template fit procedure and compute the shifts induced by flavour effects
- <u>transverse mass</u>: zero or few MeV shifts, generally favouring lower values for W⁻ (preferred by EW fit)

Set	u_v	d_v	u_s	d_s	s
1	0.34	0.26	0.46	0.59	0.32
2	0.34	0.46	0.56	0.32	0.51
3	0.55	0.34	0.33	0.55	0.30
4	0.53	0.49	0.37	0.22	0.52
5	0.42	0.38	0.29	0.57	0.27

	ΔM_{W^+}		ΔM_{W^-}	
Set	m_T	$p_{T\ell}$	m_T	$p_{T\ell}$
1	0	-1	-2	3
2	0	-6	-2	0
3	-1	9	-2	-4
4	0	0	-2	-4
5	0	4	-1	-3

NLL+LO QCD analysis obtained through a modified version of the **DYRes** code [Catani, deFlorian, Ferrera, Grazzini (2015)] (LHC 7 TeV, ATLAS acceptance cuts)

Statistical uncertainty: 2.5 MeV

Bacchetta, Bozzi, Radici, Ritzmann, Signori (arXiv:1807.02101)

- Take the "Z-equivalent" *flavour-dependent* parameter sets and compute *low-statistics* (135M) *m_T* and *p_{Tl}* distributions
 - these are our pseudodata
- Take the *flavour-independent* parameter set and compute *high-statistics* (750M) m_T and p_T distributions for 30 different values of M_W
 - these are our templates
- perform the template fit procedure and compute the shifts induced by flavour effects
- <u>transverse mass</u>: zero or few MeV shifts, generally favouring lower values for W⁻ (preferred by EW fit)
- lepton pt: quite important shifts (W+ set 3: 9 MeV, envelope: up to 15 MeV)

Set	u_v	d_v	u_s	d_s	s
1	0.34	0.26	0.46	0.59	0.32
2	0.34	0.46	0.56	0.32	0.51
3	0.55	0.34	0.33	0.55	0.30
4	0.53	0.49	0.37	0.22	0.52
5	0.42	0.38	0.29	0.57	0.27

	ΔM	I_{W^+}	ΔM	I_{W^-}
Set	m_T	$p_{T\ell}$	m_T	$p_{T\ell}$
1	0	-1	-2	3
2	0	-6	-2	0
3	-1	9	-2	-4
4	0	0	-2	-4
5	0	4	-1	-3

NLL+LO QCD analysis obtained through a modified version of the **DYRes** code [Catani, deFlorian, Ferrera, Grazzini (2015)] (LHC 7 TeV, ATLAS acceptance cuts)

Statistical uncertainty: 2.5 MeV

Bacchetta, Bozzi, Radici, Ritzmann, Signori (arXiv:1807.02101)

- <u>First flavour-dependent study</u> of the impact of intrinsic transverse momentum on the determination of the W mass
- Flavour effects are both important and detectable: no "flavour-blind" analysis allowed

- <u>First flavour-dependent study</u> of the impact of intrinsic transverse momentum on the determination of the W mass
- Flavour effects are both important and detectable: no "flavour-blind" analysis allowed
- From Wikipedia's "Flavour" page:

- <u>First flavour-dependent study</u> of the impact of intrinsic transverse momentum on the determination of the W mass
- Flavour effects are both important and detectable: no "flavour-blind" analysis allowed
- From Wikipedia's "Flavour" page:

"Flavour creation is performed by a specially trained scientist called a "flavorist", whose job combines <u>scientific knowledge</u> with <u>creativity</u> to develop new and distinctive flavours. The flavour creation begins when the flavorist receives a brief from the **client**. In the brief, the clients attempt to communicate exactly what type of flavour they seek, in what application it will be used, and any special requirements. The **communication barrier** can be quite difficult to overcome since most people are not experienced at describing flavours. The flavorist uses his or her knowledge to <u>create a formula and compound it</u>. The flavour is then <u>submitted to the client for testing</u>. **Several iterations, with feedback from the client, may be needed before the right flavour is found.**"

- <u>First flavour-dependent study</u> of the impact of intrinsic transverse momentum on the determination of the W mass
- Flavour effects are both important and detectable: no "flavour-blind" analysis allowed
- From Wikipedia's "Flavour" page:

"Flavour creation is performed by a specially trained scientist called a "flavorist", whose job combines <u>scientific knowledge</u> with <u>creativity</u> to develop new and distinctive flavours. The flavour creation begins when the flavorist receives a brief from the **client**. In the brief, the clients attempt to communicate exactly what type of flavour they seek, in what application it will be used, and any special requirements. The **communication barrier** can be quite difficult to overcome since most people are not experienced at describing flavours. The flavorist uses his or her knowledge to <u>create a formula and compound it</u>. The flavour is then <u>submitted to the client for testing</u>. **Several iterations, with feedback from the client, may be needed before the right flavour is found.**"

• Stay tuned for more especially blended flavour papers by your favourite flavorists!

Backup slides

Bozzi, Rojo, Vicini PRD 83, 113008 (2011)

- Normalised distributions: reduced sensitivity to PDFs
- Ratio of (non-)normalised distributions w.r.t. to central PDF set
- Distributions obtained with **DYNNLO**

Bozzi, Rojo, Vicini PRD 83, 113008 (2011)

- Normalised distributions: reduced sensitivity to PDFs
- Ratio of (non-)normalised distributions w.r.t. to central PDF set
- Distributions obtained with **DYNNLO**

	CTEQ6.6		MSTW2008	MSTW2008		NNPDF2.1	
	$m_W \pm \delta_{ m pdf}$	$\langle \chi^2 \rangle$	$m_W \pm \delta_{ m pdf}$	$\langle \chi^2 \rangle$	$m_W \pm \delta_{ m pdf}$	$\langle \chi^2 \rangle$	$\delta_{\rm pdf}^{\rm tot}$
Tevatron, W^{\pm}	80.398 ± 0.004	1.42	80.398 ± 0.003	1.42	80.398 ± 0.003	1.30	4
LHC 7 TeV W ⁺	80.398 ± 0.004	1.22	80.404 ± 0.005	1.55	80.402 ± 0.003	1.35	8
LHC 7 TeV W ⁻	80.398 ± 0.004	1.22	80.400 ± 0.004	1.19	80.402 ± 0.004	1.78	6
LHC 14 TeV W ⁺	80.398 ± 0.003	1.34	80.402 ± 0.004	1.48	80.400 ± 0.003	1.41	6
LHC 14 TeV W-	80.398 ± 0.004	1.44	80.404 ± 0.006	1.38	80.402 ± 0.004	1.57	8

Bozzi, Rojo, Vicini PRD 83, 113008 (2011)

- Normalised distributions: reduced sensitivity to PDFs
- Ratio of (non-)normalised distributions w.r.t. to central PDF set
- Distributions obtained with **DYNNLO**

	CTEQ6.6		MSTW2008	MSTW2008		NNPDF2.1	
	$m_W \pm \delta_{ m pdf}$	$\langle \chi^2 \rangle$	$m_W \pm \delta_{ m pdf}$	$\langle \chi^2 \rangle$	$m_W \pm \delta_{ m pdf}$	$\langle \chi^2 \rangle$	$\delta_{\rm pdf}^{\rm tot}$
Tevatron, W^{\pm}	80.398 ± 0.004	1.42	80.398 ± 0.003	1.42	80.398 ± 0.003	1.30	4
LHC 7 TeV W^+	80.398 ± 0.004	1.22	80.404 ± 0.005	1.55	80.402 ± 0.003	1.35	8
LHC 7 TeV W^-	80.398 ± 0.004	1.22	80.400 ± 0.004	1.19	80.402 ± 0.004	1.78	6
LHC 14 TeV W ⁺	80.398 ± 0.003	1.34	80.402 ± 0.004	1.48	80.400 ± 0.003	1.41	6
LHC 14 TeV W ⁻	80.398 ± 0.004	1.44	80.404 ± 0.006	1.38	80.402 ± 0.004	1.57	8

Bozzi, Rojo, Vicini PRD 83, 113008 (2011)

- Normalised distributions: reduced sensitivity to PDFs
- Ratio of (non-)normalised distributions w.r.t. to central PDF set
- Distributions obtained with **DYNNLO**

	CTEQ6.6		MSTW2008	MSTW2008		NNPDF2.1	
	$m_W \pm \delta_{ m pdf}$	$\langle \chi^2 \rangle$	$m_W \pm \delta_{ m pdf}$	$\langle \chi^2 \rangle$	$m_W \pm \delta_{ m pdf}$	$\langle \chi^2 \rangle$	$\delta_{\rm pdf}^{\rm tot}$
Tevatron, W^{\pm}	80.398 ± 0.004	1.42	80.398 ± 0.003	1.42	80.398 ± 0.003	1.30	4
LHC 7 TeV W ⁺	80.398 ± 0.004	1.22	80.404 ± 0.005	1.55	80.402 ± 0.003	1.35	8
LHC 7 TeV W ⁻	80.398 ± 0.004	1.22	80.400 ± 0.004	1.19	80.402 ± 0.004	1.78	6
LHC 14 TeV W ⁺	80.398 ± 0.003	1.34	80.402 ± 0.004	1.48	80.400 ± 0.003	1.41	6
LHC 14 TeV W ⁻	80.398 ± 0.004	1.44	80.404 ± 0.006	1.38	80.402 ± 0.004	1.57	8

- Accuracy of templates <u>essential</u>: highly demanding computing task!
- For transverse mass distribution, a fixed-order NLO-QCD analysis is sufficient to assess this PDF uncertainty
- PDF error is moderate at the Tevatron but also at the LHC

PDF effect on lepton p_T

- Conservative estimate of the PDF uncertainty: CC-DY channel alone
- Distributions obtained with **POWHEG+PYTHIA 6.4**
- PDF uncertainty over relevant p_T range almost flat: O(2%)
- Uncertainty of normalised distributions: below the O(0.5%) level (but still sufficient to yield large M_W shifts)

PDF effect on lepton p_T

- Conservative estimate of the PDF uncertainty: CC-DY channel alone
- Distributions obtained with **POWHEG+PYTHIA 6.4**
- PDF uncertainty over relevant p_T range almost flat: O(2%)
- Uncertainty of normalised distributions: below the O(0.5%) level (but still sufficient to yield large M_W shifts)

	no p_{\perp}^W cut		$p_{\perp}^W < 15 \text{ GeV}$	
	δ_{PDF} (MeV)	Δ_{sets} (MeV)	δ_{PDF} (MeV)	Δ_{sets} (MeV)
Tevatron 1.96 TeV	27	16	21	15
LHC 8 TeV W^+	33	26	24	18
W^-	29	16	18	8
LHC 13 TeV W^+	34	22	20	14
W^-	34	24	18	12

- Individual PDF sets provide non-pessimistic estimates: ΔM_W ~ O(10 MeV)
- Global envelope still shows large discrepancies of the central values
- *p*_{TW} cut is relevant

normalized distributions						
$\begin{bmatrix} \text{cut on } p_{\perp}^W \end{bmatrix}$	cut on $ \eta_l $	CT10	NNPDF3.0			
inclusive	$ \eta_l < 2.5$	80.400 + 0.032 - 0.027	80.398 ± 0.014			
$p_{\perp}^W < 20 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.027 - 0.020	80.394 ± 0.012			
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009			
$p_{\perp}^W < 10 \mathrm{GeV}$	$ \eta_l < 2.5$	80.392 + 0.015 - 0.012	80.394 ± 0.007			
$p_{\perp}^W < 15 \mathrm{GeV}$	$ \eta_l < 1.0$	80.400 + 0.032 - 0.021	80.406 ± 0.017			
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009			
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 4.9$	80.400 + 0.009 - 0.004	80.401 ± 0.003			
$p_{\perp}^W < 15 \mathrm{GeV}$	$ 1.0 < \eta_l < 2.5$	80.392 + 0.025 - 0.018	80.388 ± 0.012			

Bozzi, Citelli, Vicini PRD 91, 113005 (2015)

normalized distributions						
cut on p_{\perp}^W	cut on $ \eta_l $	CT10	NNPDF3.0			
inclusive	$ \eta_l < 2.5$	80.400 + 0.032 - 0.027	80.398 ± 0.014			
$p_{\perp}^W < 20 \mathrm{GeV}$	$ \eta_l < 2.5$	80.396 + 0.027 - 0.020	80.394 ± 0.012			
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009			
$p^W_\perp < 10 \mathrm{GeV}$	$ \eta_l < 2.5$	80.392 + 0.015 - 0.012	80.394 ± 0.007			
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 1.0$	80.400 + 0.032 - 0.021	80.406 ± 0.017			
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009			
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 4.9$	80.400 + 0.009 - 0.004	80.401 ± 0.003			
$p_{\perp}^W < 15 \text{ GeV}$	$1.0 < \eta_l < 2.5$	80.392 + 0.025 - 0.018	80.388 ± 0.012			

strong p_{TW} cut reduces M_W uncertainty

Bozzi, Citelli, Vicini PRD 91, 113005 (2015)

normalized distributions						
cut on p_{\perp}^W	cut on $ \eta_l $	CT10	NNPDF3.0			
inclusive	$ \eta_l < 2.5$	80.400 + 0.032 - 0.027	80.398 ± 0.014			
$p_{\perp}^W < 20 \mathrm{GeV}$	$ \eta_l < 2.5$	80.396 + 0.027 - 0.020	80.394 ± 0.012			
$p_{\perp}^W < 15 \mathrm{GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009			
$p^W_\perp < 10 { m ~GeV}$	$ \eta_l < 2.5$	80.392 + 0.015 - 0.012	80.394 ± 0.007			
$p_{\perp}^W < 15 \mathrm{GeV}$	$ \eta_l < 1.0$	80.400 + 0.032 - 0.021	80.406 ± 0.017			
$p_{\perp}^W < 15 \mathrm{GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009			
$p_{\perp}^W < 15 \mathrm{GeV}$	$ \eta_l < 4.9$	80.400 + 0.009 - 0.004	80.401 ± 0.003			
$p_{\perp}^W < 15 \mathrm{GeV}$	$1.0 < \eta_l < 2.5$	80.392 + 0.025 - 0.018	80.388 ± 0.012			

strong p_{TW} cut reduces M_W uncertainty

Bozzi, Citelli, Vicini PRD 91, 113005 (2015)

normalized distributions						
cut on p_{\perp}^W	cut on $ \eta_l $	CT10	NNPDF3.0			
inclusive	$ \eta_l < 2.5$	80.400 + 0.032 - 0.027	80.398 ± 0.014			
$p_{\perp}^W < 20 \mathrm{GeV}$	$ \eta_l < 2.5$	80.396 + 0.027 - 0.020	80.394 ± 0.012			
$p_{\perp}^W < 15 \mathrm{GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009			
$p^W_\perp < 10 { m ~GeV}$	$ \eta_l < 2.5$	80.392 + 0.015 - 0.012	80.394 ± 0.007			
$p_{\perp}^W < 15 \mathrm{GeV}$	$ \eta_l < 1.0$	80.400 + 0.032 - 0.021	80.406 ± 0.017			
$p_{\perp}^W < 15 \mathrm{GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009			
$p_{\perp}^W < 15 \mathrm{GeV}$	$ \eta_l < 4.9$	80.400 + 0.009 - 0.004	80.401 ± 0.003			
$p_{\perp}^W < 15 \mathrm{GeV}$	$1.0 < \eta_l < 2.5$	80.392 + 0.025 - 0.018	80.388 ± 0.012			

strong p_{TW} cut reduces M_W uncertainty

normalized distributions			
cut on p_{\perp}^W	cut on $ \eta_l $	CT10	NNPDF3.0
inclusive	$ \eta_l < 2.5$	80.400 + 0.032 - 0.027	80.398 ± 0.014
$p_{\perp}^W < 20 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.027 - 0.020	80.394 ± 0.012
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p_{\perp}^W < 10 \mathrm{GeV}$	$ \eta_l < 2.5$	80.392 + 0.015 - 0.012	80.394 ± 0.007
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 1.0$	80.400 + 0.032 - 0.021	80.406 ± 0.017
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 4.9$	80.400 + 0.009 - 0.004	80.401 ± 0.003
$p_{\perp}^W < 15 \text{ GeV}$	$1.0 < \eta_l < 2.5$	80.392 + 0.025 - 0.018	80.388 ± 0.012

Bozzi, Citelli, Vicini PRD 91, 113005 (2015)

normalized distributions			
cut on p_{\perp}^W	cut on $ \eta_l $	CT10	NNPDF3.0
inclusive	$ \eta_l < 2.5$	80.400 + 0.032 - 0.027	80.398 ± 0.014
$p_{\perp}^W < 20 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.027 - 0.020	80.394 ± 0.012
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p_{\perp}^W < 10 \text{ GeV}$	$ \eta_l < 2.5$	80.392 + 0.015 - 0.012	80.394 ± 0.007
$p_{\perp}^W < 15 \mathrm{GeV}$	$ \eta_l < 1.0$	80.400 + 0.032 - 0.021	80.406 ± 0.017
$p_{\perp}^W < 15 \mathrm{GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p_{\perp}^W < 15 \mathrm{GeV}$	$ \eta_l < 4.9$	80.400 + 0.009 - 0.004	80.401 ± 0.003
$p_{\perp}^W < 15 \mathrm{GeV}$	$1.0 < \eta_l < 2.5$	80.392 + 0.025 - 0.018	80.388 ± 0.012

are separately larger than for (eta<2.5) 0.016 0.014< 30 GeV 15 < p> 30 GeV0.0121.20.01Ы 1 0.008 0.006 W^+ LHC 8 TeV 0.8 $R = \left(\frac{1}{\sigma} \frac{d\sigma}{dx} \left(p_{\perp}^{W} < cut \right) \right) / \left(\frac{1}{\sigma} \frac{d\sigma}{dx} (\text{no } p_{\perp}^{W} \text{cut}) \right)$ 0.004< 15 GeV0.002 0.6< 30 GeV15 < 15> 30 GeV0.0001 0.0010.01 0.11 0.0001 0.001 0.01 0.11 xx

uncertainties for (eta<1) and for (1<eta<2.5)

Bozzi, Citelli, Vicini PRD 91, 113005 (2015)

normalized distributions			
cut on p_{\perp}^W	cut on $ \eta_l $	CT10	NNPDF3.0
inclusive	$ \eta_l < 2.5$	80.400 + 0.032 - 0.027	80.398 ± 0.014
$p_{\perp}^W < 20 \mathrm{GeV}$	$ \eta_l < 2.5$	80.396 + 0.027 - 0.020	80.394 ± 0.012
$p_{\perp}^W < 15 \mathrm{GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p_{\perp}^W < 10 \mathrm{GeV}$	$ \eta_l < 2.5$	80.392 + 0.015 - 0.012	80.394 ± 0.007
$p_{\perp}^W < 15 \mathrm{GeV}$	$ \eta_l < 1.0$	80.400 + 0.032 - 0.021	80.406 ± 0.017
$p_{\perp}^W < 15 \mathrm{GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 4.9$	80.400 + 0.009 - 0.004	80.401 ± 0.003
$p_{\perp}^W < 15 \mathrm{GeV}$	$1.0 < \eta_l < 2.5$	80.392 + 0.025 - 0.018	80.388 ± 0.012

Bozzi, Citelli, Vicini PRD 91, 113005 (2015)

0.01 r

correlation of parton luminosities

within the 40.5 GeV p_{TI} bin

 $|\eta_l| < 1$ ----- $|\eta_l| < 2.5$ ----- $|\eta_l| < 4.9$ -----

0.1

 W^+ LHC 8 TeV

0.03

0.025

0.02

0.015

0.01

0.005

0.0001

0.001

normalized distributions			
cut on p_{\perp}^W	cut on $ \eta_l $	CT10	NNPDF3.0
inclusive	$ \eta_l < 2.5$	80.400 + 0.032 - 0.027	80.398 ± 0.014
$p_{\perp}^W < 20 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.027 - 0.020	80.394 ± 0.012
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p_{\perp}^W < 10 \mathrm{GeV}$	$ \eta_l < 2.5$	80.392 + 0.015 - 0.012	80.394 ± 0.007
$p_{\perp}^W < 15 \mathrm{GeV}$	$ \eta_l < 1.0$	80.400 + 0.032 - 0.021	80.406 ± 0.017
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 4.9$	80.400 + 0.009 - 0.004	80.401 ± 0.003
$p_{\perp}^W < 15 \text{ GeV}$	$1.0 < \eta_l < 2.5$	80.392 + 0.025 - 0.018	80.388 ± 0.012

Bozzi, Citelli, Vicini PRD 91, 113005 (2015)

0.01

correlation of parton luminosities

within the 40.5 GeV pTI bin

 $|\eta_l| < 1$ — $|\eta_l| < 2.5$ — $|\eta_l| < 4.9$ —

0.1

 W^+ LHC 8 TeV

0.03

0.025

0.02

0.015

0.01

0.005

0.0001

0.001

normalized distributions			
cut on p_{\perp}^W	cut on $ \eta_l $	CT10	NNPDF3.0
inclusive	$ \eta_l < 2.5$	80.400 + 0.032 - 0.027	80.398 ± 0.014
$p_{\perp}^W < 20 \mathrm{GeV}$	$ \eta_l < 2.5$	80.396 + 0.027 - 0.020	80.394 ± 0.012
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p_{\perp}^W < 10 \mathrm{GeV}$	$ \eta_l < 2.5$	80.392 + 0.015 - 0.012	80.394 ± 0.007
$p_{\perp}^W < 15 \mathrm{GeV}$	$ \eta_l < 1.0$	80.400 + 0.032 - 0.021	80.406 ± 0.017
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 4.9$	80.400 + 0.009 - 0.004	80.401 ± 0.003
$p_{\perp}^W < 15 \mathrm{GeV}$	$1.0 < \eta_l < 2.5$	80.392 + 0.025 - 0.018	80.388 ± 0.012

Extraction of parameters from SIDIS

Signori, Bacchetta, Radici, Schnell, JHEP 1311, 194 (2013)

template fit on HERMES data: distribution of parameters

Extraction of parameters from SIDIS

Signori, Bacchetta, Radici, Schnell, JHEP 1311, 194 (2013)

template fit on HERMES data: distribution of parameters

On average, sea > $u_v > d_v$