

Twist-2 transverse momentum dependent distributions at NNLO in QCD

SPIN 2018, Ferrara, Italy, September 10-14

Daniel Gutiérrez Reyes (UCM)(speaker)
Ignazio Scimemi (UCM)
Alexey A. Vladimirov (Regensburg U.)

Based on:

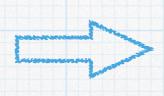
arXiv: 1702.06558 arXiv: 1805.07243

Outline

- * Introduction
 - * Factorization theorems with TMDs
 - * Small-b operator product expansion
- * Transversity and Pretzelosity at NLO
- * Transversity and Pretzelosity at NNLO
- * Conclusions

Factorization theorems with TMDs Definition of Operators

TMD factorization theorems Consistent treatment of rapidity divergences in Spin (in)dependent TMDs



Self contained definition of TMD operators

Without referring to a scattering process

Quark and gluon components of the generic TMDs

$$\Phi_{ij}(x, \mathbf{b}) = \int \frac{d\lambda}{2\pi} e^{-ixp^{+}\lambda} \bar{q}_{i} (\lambda n + \mathbf{b}) \mathcal{W}(\lambda, \mathbf{b}) q_{j} (0)$$

$$\Phi_{\mu\nu}(x, \mathbf{b}) = \frac{1}{xp^{+}} \int \frac{d\lambda}{2\pi} e^{-ixp^{+}\lambda} F_{+\mu} (\lambda n + \mathbf{b}) \mathcal{W}(\lambda, \mathbf{b}) F_{+\nu} (0)$$

• The soft function renormalizes the rapidity divergences

R-factor

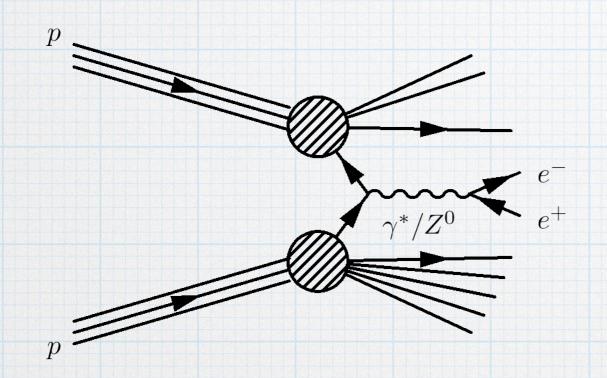
$$S(\boldsymbol{b}) = \frac{\mathrm{Tr}_{\mathrm{color}}}{N_c} \langle 0 | \left[S_n^{T\dagger} \tilde{S}_{\bar{n}}^T \right] (\boldsymbol{b}) \left[\tilde{S}_{\bar{n}}^{T\dagger} S_n^T \right] (0) | 0 \rangle \qquad R_{\delta\text{-reg.}} = \frac{1}{\sqrt{S(\boldsymbol{b})}}$$

$$S(\boldsymbol{b}) = \exp \left(A(\boldsymbol{b}, \epsilon) \ln(\delta^+ \delta^-) + B(\boldsymbol{b}, \epsilon) \right) \qquad \text{It allows to split r.d. and define individual TMPs}$$

$$S(\mathbf{b}) = \exp\left(A(\mathbf{b}, \epsilon) \ln(\delta^+ \delta^-) + B(\mathbf{b}, \epsilon)\right)$$

Its logs are linear in $\ln(\delta^+\delta^-)$ It allows to split r.d. and define individual TMDs!

Factorization theorems with TMDs Drell-Yan cross section



We write the cross section in terms of a product of TMPPPFs!

PIFFERENT POLARIZATIONS!

Factorization theorems allow us to write cross sections as

$$\frac{d\sigma}{dQ^{2}dyd(q_{T}^{2})} = \frac{4\pi}{3N_{c}} \frac{\mathcal{P}}{sQ^{2}} \sum_{GG'} z_{ll'}^{GG'}(q) \sum_{ff'} z_{FF'}^{GG'} |C_{V}(q,\mu)|^{2}$$

$$\int \frac{d^{2}\mathbf{b}}{4\pi} e^{i(\mathbf{b}\mathbf{q})} F_{f\leftarrow h_{1}}(x_{1},\mathbf{b};\mu,\zeta) F_{f'\leftarrow h_{2}}(x_{2},\mathbf{b};\mu,\zeta) + Y$$

Small-b operator product expansion

Small-b OPE Relation between TMD operators and lightcone operators

$$\Phi_{ij}(x, \boldsymbol{b}) = \left[(C_{q \leftarrow q}(\boldsymbol{b}))_{ij}^{ab} \otimes \boldsymbol{\phi}_{ab} \right] (x) + \left[(C_{q \leftarrow g}(\boldsymbol{b}))_{ij}^{\alpha\beta} \otimes \boldsymbol{\phi}_{\alpha\beta} \right] (x) + \dots,$$

$$\Phi_{\mu\nu}(x, \boldsymbol{b}) = \left[(C_{g \leftarrow q}(\boldsymbol{b}))_{\mu\nu}^{ab} \otimes \boldsymbol{\phi}_{ab} \right] (x) + \left[(C_{g \leftarrow g}(\boldsymbol{b}))_{\mu\nu}^{\alpha\beta} \otimes \boldsymbol{\phi}_{\alpha\beta} \right] (x) + \dots$$

Projectors over polarizations

$$\Phi_q^{[\Gamma]} = \frac{\text{Tr}(\Gamma\Phi)}{2} \qquad \Phi_g^{[\Gamma]} = \Gamma^{\mu\nu}\Phi_{\mu\nu}$$

Small-b OPE: Cancellation of rapidity divergences

• Small-b OPE for a generic TMD quark operator

$$\Phi_q^{[\Gamma]} = \Gamma^{ab}\phi_{ab} + a_s C_F \mathbf{B}^{\epsilon} \Gamma(-\epsilon) \Big[\dots$$

$$+\left(\frac{1}{(1-x)_{+}}-\ln\left(\frac{\delta}{p^{+}}\right)\right)\left(\gamma^{+}\gamma^{-}\Gamma+\Gamma\gamma^{-}\gamma^{+}+\frac{i\epsilon\gamma^{+}b\Gamma}{2B}+\frac{i\epsilon\Gamma b\gamma^{+}}{2B}\right)^{ab}+\ldots\right]\otimes\phi_{ab}+\mathcal{O}(a_{s}^{2})$$

o General R-factor

$$R = 1 + 2a_s C_F \mathbf{B}^{\epsilon} \Gamma(-\epsilon) \left(\mathbf{L}_{\sqrt{\zeta}} + 2\ln\left(\frac{\delta}{p^+}\right) - \psi(-\epsilon) - \gamma_E \right) + \mathcal{O}(a_s^2)$$

$$\Gamma^q = \{\gamma^+, \gamma^+ \gamma^5, \sigma^{+\mu}\}$$

$$\Gamma^q=\{\gamma^+,\gamma^+\gamma^5,\sigma^{+\mu}\}$$
 $\Gamma^g=\{g_T^{\mu
u},\epsilon_T^{\mu
u},b^\mu b^
u/m{b}^2\}$ Lorentz structures of "leading dynamical twist" TMDs

Spin dependent TMP decomposition

Hadron matrix elements of TMD decomposed over all posible Lorentz variants Polarized TMDPDFs

Momentum space b-space (IPS)

Goeke, Metz, Schegel 0504130, Bacchetta, Boer, Diehl, Mulders 0803.0227

Boer, Gamberg, Musch, Prokudin 1107.5294 Echevarria, Kasemets, Mulders, Pisano

Helicity

quarks

Decomposition over Lorentz variants

Unpolarized quarks

 $\Phi_{q \leftarrow h, ij}(x, \boldsymbol{b}) = \langle h | \Phi_{ij}(x, \boldsymbol{b}) | h \rangle = \frac{1}{2} (f_1 \gamma_{ij}^- + g_{1L} S_L (\gamma_5 \gamma^-)_{ij})$

$$(S_T^\mu i \gamma_5 \sigma^{+\mu})_{ij} h_1) + (i \gamma_5 \sigma^{+\mu})_{ij} \left(\frac{g_T^{\mu\nu}}{2} + \frac{b^\mu b^\nu}{b^2}\right) \frac{S_T^\nu}{2} h_{1T}^\perp + \ldots)$$
 Iransversity

$$\Phi_{g \leftarrow h, \mu\nu}(x, \boldsymbol{b}) = \langle h | \Phi_{\mu\nu}(x, \boldsymbol{b}) | h \rangle = \frac{1}{2} \Big(-g_T^{\mu\nu} f_1^g - i \epsilon_T^{\mu\nu} S (g_{1L}^g) + 2h_1^{\perp g} \Big(\frac{g_T^{\mu\nu}}{2} + \frac{b^\mu b^\nu}{b^2} \Big) + \ldots \Big)$$
 Unpolarized gluons Helicity gluons

Linearly polarized

	LO	NLO	NNLO
Unpolarized			
Helicity			
Transversity			
Pretzelosity			
Linearly polarized gluons			

Echevarría, Scimemi, Vladimirov 1604.07869 PDFs and FFs

	1.0	NLO	NNLO
Unpolarized			
Helicity			
Transversity			
Pretzelosity			
Linearly polarized gluons			

PDFs and FFs

DGR, Scimemi, Vladimirov 1702.06558

Bacchetta, Prokudin 1303.2129

Echevarría, Kasemets, Mulders, Pisano 1502.05354

Echevarría, Scimemi, Vladimirov 1604.07869 PDFs and FFs

	LO	NLO	NNLO
Unpolarized			
Helicity			
Transversity			
Pretzelosity			
Linearly polarized gluons			

PDFs and FFs

DGR, Scimemi, Vladimirov 1702.06558

Bacchetta, Prokudin 1303.2129

Echevarría, Kasemets, Mulders, Pisano 1502.05354

Transversity and Pretzelosity at

Lorentz structure and matching

Usual spinor structure

$$\Gamma = i\gamma_5 \sigma^{+\mu}$$

Scheme dependent

Not mixture with gluons at leading twist

Common spinor structure

$$\Gamma = \sigma^{+\mu}$$

Scheme independent!

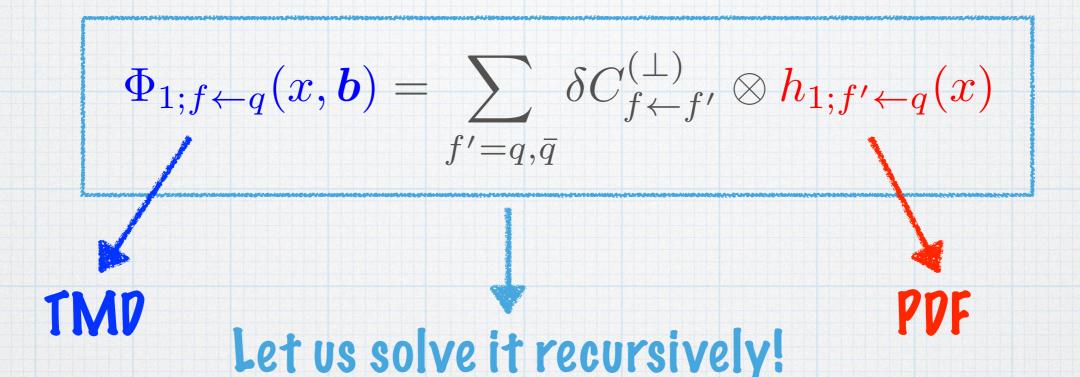
Calculating $R\Phi$ and comparing with the general parameterization

$$R\Phi_q^{[\sigma^{+\mu}]} = g_T^{\mu\nu} \delta C_{q\leftarrow q} \otimes \phi_q^{[\sigma^{+\nu}]} + \left(\frac{b^{\mu}b^{\nu}}{\boldsymbol{b}^2} + \frac{g_T^{\mu\nu}}{2(1-\epsilon)}\right) \delta^{\perp} C_{q\leftarrow q} \otimes \phi_q^{[\sigma^{+\nu}]}$$

Transversity Transversity matching

Pretzelosity Transversity matching

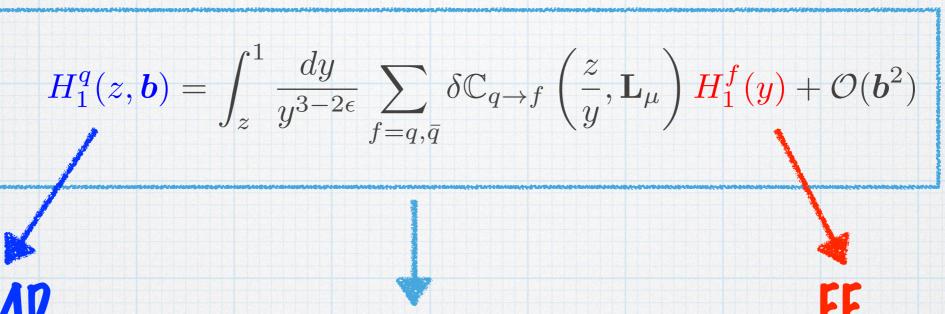
Matching coefficients up to NLO



$$\delta^{(\perp)}C_{f\leftarrow f'}^{[0]} = \Phi_{1;f\leftarrow f'}^{[0]}(x, \mathbf{b})$$

$$\delta^{(\perp)}C_{f\leftarrow f'}^{[1]} = \Phi_{1;f\leftarrow f'}^{[1]}(x, \mathbf{b}) - h_{1;f\leftarrow f'}^{[1]}(x)$$

Matching coefficients up to NLO

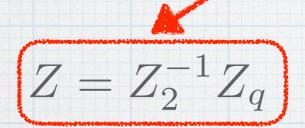


Let us solve it recursively!

$$\delta C_{q o q}^{[0]} = H_1^{[0]}(z, b)$$
 $\delta C_{q o q}^{[1]} = H_1^{[1]}(z, b) - rac{H_1^{[1]}(z)}{z^{2-2\epsilon}}$

Renormalized TMPs up to NLO

$$\Phi(x, \boldsymbol{b}; \mu, \zeta) = Z(\mu, \zeta | \epsilon) R(\boldsymbol{b}, \mu, \zeta | \epsilon, \delta) \Phi^{\text{unsub.}}(x, \boldsymbol{b} | \epsilon, \delta)$$



Expansion up to NLO

Rapidity divergences cancelled here!

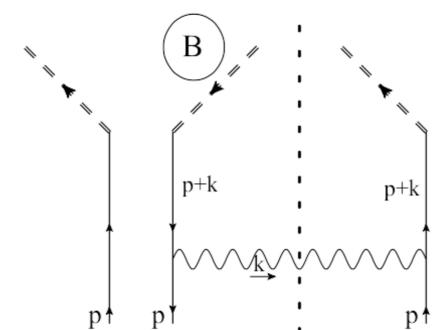
$$\Phi_{f \leftarrow f'}^{[0]} = \Phi_{f \leftarrow f'}^{[0] \text{unsub.}}$$

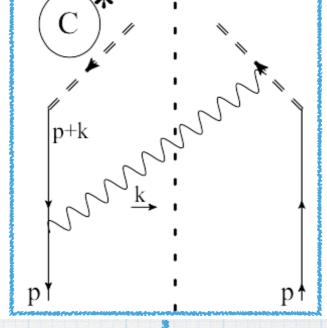
$$\Phi_{f \leftarrow f'}^{[1]} = \Phi_{f \leftarrow f'}^{[1] \text{unsub.}} - \frac{S^{[1]} \Phi_{f \leftarrow f'}^{[0] \text{unsub.}}}{2} + \left(Z_q^{[1]} - Z_2^{[1]} \right) \Phi_{f \leftarrow f'}^{[0] \text{unsub.}}$$

Diagrams contributing to TMPS at NLO

 $q \rightarrow q$ p^{+k} p

The calculation is striaghtforward to the unpolarized case Echevarria, Scimemi, Vladimirov 1604.07869



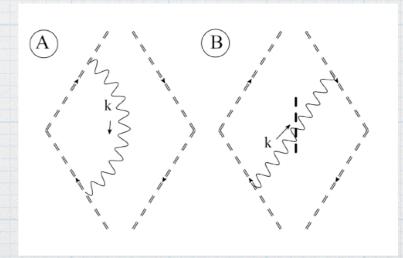


 $g_T^{\mu
u}$

Pretzelosity

$$\frac{\boldsymbol{b}^{\mu}\boldsymbol{b}^{\nu}}{\boldsymbol{b}^{2}} - \frac{g_{T}^{\mu\nu}}{2(1-\epsilon)}$$

Rapidity divergences: Renormalized with SF



Matching coefficients up to NLO

Transversity - Transversity small-b expression

$$h_1(x, \boldsymbol{b}) = \left[\delta C_{q \leftarrow q}(\boldsymbol{b}) \otimes \delta f_q\right](x) + \mathcal{O}(\boldsymbol{b}^2)$$

Agrees with Bacchetta, Prokudin 1303.2129!

NLO matching coefficient

$$\delta C_{q \leftarrow q} = \delta(\bar{x}) + a_s C_F \left(-2 \mathbf{L}_{\mu} \delta p_{qq} + \delta(\bar{x}) \left(-\mathbf{L}_{\mu}^2 + 2 \mathbf{L}_{\mu} \mathbf{l}_{\zeta} - \zeta_2 \right) \right) + \mathcal{O}(a_s^2)$$

Pretzelosity - Transversity small-b expression

$$h_{1T}^{\perp}(x, \boldsymbol{b}) = \left[\delta^{\perp} C_{q \leftarrow q}(\boldsymbol{b}) \otimes \delta f_q\right](x) + \mathcal{O}(\boldsymbol{b}^2) = \left[\left(0 + \mathcal{O}(a_s^2)\right) \otimes \delta f_q\right](x) + \mathcal{O}(\boldsymbol{b}^2)$$

NLO matching coefficient

$$\delta^{\perp} C_{q \leftarrow q} = -4a_s C_F \mathbf{B}^{\epsilon} \Gamma(-\epsilon) \bar{x} \epsilon^2 \angle$$

At NLO the coefficient is $\sim \epsilon$

This observation is supported by the measurement of $\sin(3\phi_h - \phi_S)$ asymmetries by HERMES and COMPASS! Lefky, Prokudin 1411.0580, Parsamyan PoS(QCDEV2017)042

Matching coefficients up to NLO

Transversity - Transversity Fragmentation small-b expression

$$H_1^q(z, \boldsymbol{b}) = \int_z^1 \frac{dy}{y^{3-2\epsilon}} \sum_{f=q,\bar{q}} \delta \mathbb{C}_{q \to f} \left(\frac{z}{y}, \mathbf{L}_{\mu}\right) H_1^f(y) + \mathcal{O}(\boldsymbol{b}^2)$$

NLO matching coefficient

$$z^{2} \delta \mathbb{C}_{q \to q} = \delta(\bar{z}) + a_{s} C_{F} \left((4 \ln z - 2\mathbf{L}_{\mu}) \, \delta p_{qq} + \delta(\bar{z}) \left(-\mathbf{L}_{\mu}^{2} + 2\mathbf{L}_{\mu} \mathbf{l}_{\zeta} - \zeta_{2} \right) \right)$$

Pretzelosity - Transversity small-b expression

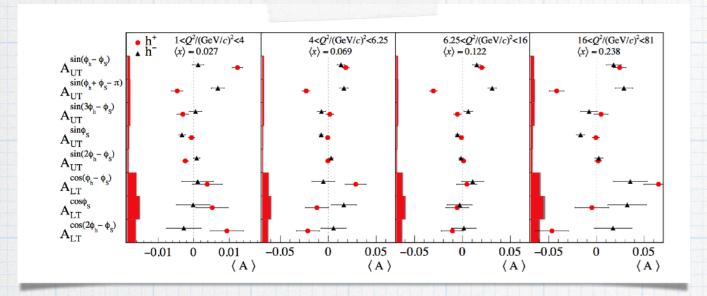
$$h_{1T}^{\perp}(x, \boldsymbol{b}) = \left[\delta^{\perp} C_{q \leftarrow q}(\boldsymbol{b}) \otimes \delta f_q\right](x) + \mathcal{O}(\boldsymbol{b}^2) = \left[\left(0 + \mathcal{O}(a_s^2)\right) \otimes \delta f_q\right](x) + \mathcal{O}(\boldsymbol{b}^2)$$

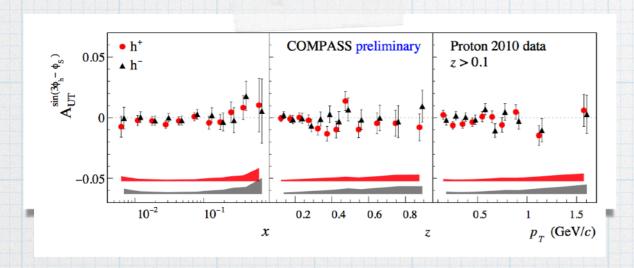
NLO matching coefficient

$$\delta^{\perp} C_{q \leftarrow q} = -4a_s C_F \mathbf{B}^{\epsilon} \Gamma(-\epsilon) \bar{x} \epsilon^2 \angle$$

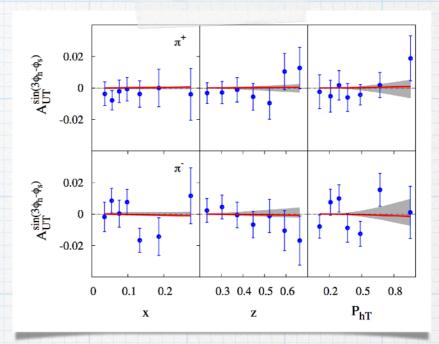
At NLO the coefficient is $\sim \epsilon$

This observation is supported by the measurement of $\sin(3\phi_h - \phi_S)$ asymmetries by HERMES and COMPASS! Lefky, Prokudin 1411.0580, Parsamyan PoS(QCDEV2017)042

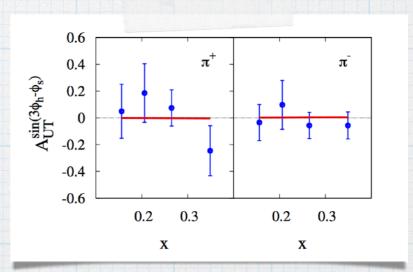




COMPASS
Parsamyan PoS(QCPEV2017)042



HERMES



JLAB

Lefky, Prokudin 1411.0580

Transversity and Pretzelosity at

distribution.

Virtual-Real diagrams

Vertex $I \sigma^{+\mu}$ Corrections Self energy KKD. (E) \bigcirc (H)p+l+k p+l+k(C) (\mathbf{F})

Pole $1/\epsilon^3$

Should be cancelled with vertex correction term in RR diagrams

Pole $1/\epsilon^3$

Should be cancelled with single WL term in RR diagrams

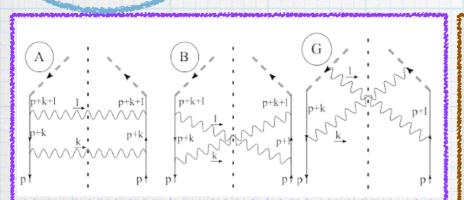
These diagrams are exactly zero!

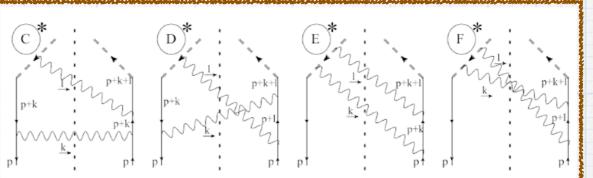
Quark self-energy Gluon self-energy (TrNf)

Self energy Single WL Pouble WL RD RD

R.H.S.

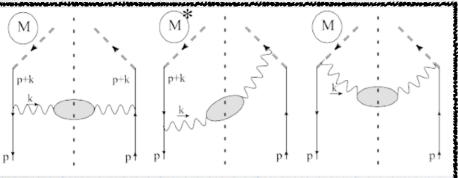
Real-Real diagrams



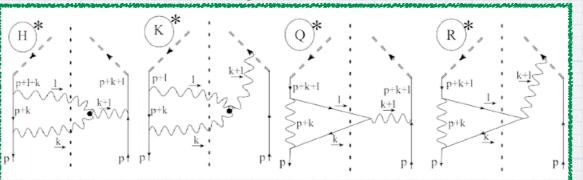


Pole $1/\epsilon^3$ Cancelled with vertex correction term in VR diagrams As in Unpolarized!

Real ladder

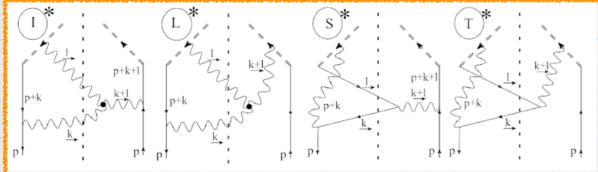


Complex ladder

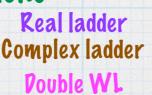


Pole $1/\epsilon^3$ Cancelled with single WL term in RR diagrams As in Unpolarized!

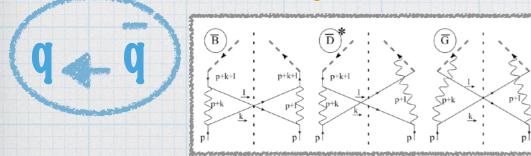
Self energy



Vertex Corrections



Single WL



Pouble WL

It is zero! Odd number of gamma-matrices In each trace

NORD

Finite result, without plus-distribted terms and deltas

Renormalization of TMP at NNLO Cancellation of rapidity divergences

RD free!

1-loop Transversity RD free!

$$h_1^{[2]} = \delta\Phi^{[2]} - \frac{S^{[1]}\delta\Phi^{[1]}}{2} - \frac{S^{[2]}\delta\Phi^{[0]}}{2} + \frac{3S^{[1]}S^{[1]}\delta\Phi^{[0]}}{8} + \left(Z_q^{[1]} - Z_2^{[1]}\right) \left(\delta\Phi^{[1]} - \frac{S^{[1]}\delta\Phi^{[0]}}{2}\right)$$

$$+ \left(Z_q^{[2]} - Z_2^{[2]} - Z_2^{[1]} Z_q^{[1]} - Z_2^{[1]} Z_2^{[1]} \right) \delta \Phi^{[0]}$$

UV surface term $Z_q \ Z_2$ The same that Pure UV divergence in unpolarized case!

Sum of all the diagrams

$$\operatorname{diag} = A + B\left(\frac{\delta^{+}}{p^{+}}\right)^{-\epsilon} + C\left(\frac{\delta^{+}}{p^{+}}\right)^{\epsilon} + D\ln\left(\frac{\delta^{+}}{p^{+}}\right) + E\ln^{2}\left(\frac{\delta^{+}}{p^{+}}\right)$$

In the sum of the diagrams the total expression for B and C is zero IR terms are self-cancelled!

$$\delta\Phi^{[0]} = 0$$

$$\delta\Phi^{[1]}=0$$

 $\delta\Phi^{[1]}=0$ This channel does not appear up to NNLO

$$h_1^{[2]} = \delta \Phi^{[2]}$$

Matching coefficients (PPF)

Renormalized TMP. Free of RPs! Convolution of 1-loop coefficient with 1-loop PPF Cancellation of
$$\mathbf{L}_{\mu}/\epsilon$$

$$\delta C_{q\leftarrow q}^{[2]} = h_{1,q\leftarrow q}^{[2]} - \delta C_{q\leftarrow q}^{[1]} \otimes \delta f_{q\leftarrow q}^{[1]} - \delta f_{q\leftarrow q}^{[2]}$$
 Coefficients do not have any divergence!
$$\delta C_{q\leftarrow q}^{[2]} = h_{1,q\leftarrow q}^{[2]} - \delta f_{q\leftarrow q}^{[2]}$$
 PPFs at 2-loops Renormalized TMP. Free of RPs! No convolution terms No PPF at 1-loop in this channel

PDFs at 2-loops: Written in terms of 2-loop splitting functions

Vogelsang 9706511 Mikhailov, Vladimirov 0810.1647
$$\delta f_{q\leftarrow q}^{[2]} = \frac{1}{2\epsilon^2} \left(\delta P_{q\leftarrow q}^{[1]} \otimes \delta P_{q\leftarrow q}^{[1]} + \frac{\beta_0}{2} \delta P_{q\leftarrow q}^{[1]} \right) - \frac{1}{2\epsilon} \delta P_{q\leftarrow q}^{[2]}$$

$$\delta f_{q\leftarrow \bar{q}}^{[2]} = -\frac{1}{2\epsilon} \delta P_{q\leftarrow \bar{q}}^{[2]}$$

Matching coefficients (FF)

Renormalized TMD. Free of RDs! Convolution of 1-loop coefficient with 1-loop PDF Cancellation of $\mathbf{L}_{\mu}/\epsilon$

$$\delta \mathbb{C}_{q \to q}^{[2]} = H_{1,q \to q}^{[2]} - \delta \mathbb{C}_{q \to q}^{[1]} \otimes \frac{\delta d_{q \to q}^{[1]}}{z^{2 - 2\epsilon}} - \frac{\delta d_{q \to q}^{[2]}}{z^{2 - 2\epsilon}}$$

Coefficients do not have

any divergence!
$$\delta \mathbb{C}_{q o ar{q}}^{[2]} = H_{1,q o ar{q}}^{[2]} - \frac{\delta d_{q o ar{q}}^{[2]}}{z^{2-2\epsilon}}$$

$$H_{1,q oar{q}}^{[2]}$$

$$-\frac{\delta d_{q\to \bar{q}}^{[2]}}{z^{2-2\epsilon}}$$

FFs at 2-loops

Renormalized TMD. Free of RDs!

No convolution terms No PDF at 1-loop in this channel

Vogelsang 9706511 Mikhailov, Vladimirov 0810.1647

$$\delta d_{q \to q}^{[2]} = \frac{1}{2\epsilon^2} \left(\delta \mathbb{P}_{q \to q}^{[1]} \otimes \delta \mathbb{P}_{q \to q}^{[1]} + \frac{\beta_0}{2} \delta \mathbb{P}_{q \to q}^{[1]} \right) - \frac{1}{2\epsilon} \delta \mathbb{P}_{q \to q}^{[2]}$$

$$\delta d_{q \to q}^{[2]} = -\frac{1}{2\epsilon} \delta \mathbb{P}_{q \to q}^{[2]}$$

LO transversity PGLAP kernel

The matching coefficients are written as

$$\delta p(x) = \frac{2x}{1-x}$$

$$\delta C_{f \leftarrow f'}(x, \mathbf{L}_{\mu}, \mathbf{l}_{\zeta}) = \sum_{n=0}^{\infty} a_s^n \sum_{k=0}^{n+1} \sum_{l=0}^{n} \mathbf{L}_{\mu}^k \mathbf{l}_{\zeta}^l \, \delta C_{f \leftarrow f'}^{(n;k,l)}(x)$$

Abelian part of the lowest order of matching coefficient for quark-to-quark case

$$\delta C_{q \leftarrow q}^{(2;0,0)}(x) = C_F^2 \left\{ \delta p(x) \left[4 \text{Li}_3(\bar{x}) - 20 \text{Li}_3(x) - 4 \ln \bar{x} \text{Li}_2(\bar{x}) + 12 \ln x \text{Li}_2(x) + 2 \ln^2 \bar{x} \ln x + 2 \ln \bar{x} \ln^2 x + \frac{3}{2} \ln^2 x + 8 \ln x + 20 \zeta_3 \right] - 2 \ln \bar{x} + 4 \bar{x} + \delta(\bar{x}) \frac{5}{4} \zeta_4 \right\} + \dots$$

The part of the coefficient that is multiplied by the LO transversity DGLAP kernel literally coincides with the corresponding part in the unpolarized case

$$C^{(2;0,0)}(x) = P^{[1]}F_1(x) + F_2(x) + \delta(\bar{x})F_3$$

Unpolarized

olarized Transversity
$$= \frac{1+x^2}{1-x} \qquad P^{[1]} = \frac{2x}{1-x}$$

$$P^{[1]} = rac{1+x^2}{1-x}$$
 $P^{[1]} = rac{2x}{1-x}$ F_1 F_2 F_3 F_3 F_3 F_3 F_3

LO transversity DGLAP kernel

M

The matching coefficients are written as

$$\delta p(z) = \frac{2z}{1-z}$$

$$\delta \mathbb{C}_{f \to f'}(z, \mathbf{L}_{\mu}, \mathbf{l}_{\zeta}) = \sum_{n=0}^{\infty} a_s^n \sum_{k=0}^{n+1} \sum_{l=0}^{n} \mathbf{L}_{\mu}^k \mathbf{l}_{\zeta}^l \, \delta \mathbb{C}_{f \to f'}^{(n;k,l)}(z)$$

Abelian part of the lowest order of matching coefficient for quark-to-quark case

$$z^{2} \delta \mathbb{C}_{q \to q}^{(2;0,0)}(z) = C_{F}^{2} \left\{ \delta p(z) \left[40 \operatorname{Li}_{3}(z) - 4 \operatorname{Li}_{3}(\bar{z}) + 4 \ln \bar{z} \operatorname{Li}_{2}(\bar{z}) - 16 \ln z \operatorname{Li}_{2}(z) - \frac{40}{3} \ln^{3} z + 18 \ln^{2} z \ln \bar{z} - 2 \ln^{2} \bar{z} \ln z \right] + \frac{15}{2} \ln^{2} z - 8 (1 + \zeta_{2}) \ln z - 40 \zeta_{3} + 4 \bar{z} (1 + \ln z) + 2 z (\ln \bar{z} - \ln z) + \delta(\bar{z}) \frac{5}{4} \zeta_{4} \right\} + \dots$$

The part of the coefficient that are multiplied by the LO transversity PGLAP kernel literally coincides with the corresponding part in the unpolarized case

$$C^{(2;0,0)}(z) = P^{[1]}F_1(z) + F_2(z) + \delta(\bar{z})F_3$$

Unpolarized

$$P^{[1]} = \frac{1+z^2}{1-z}$$
 $P^{[1]} = \frac{2z}{1-z}$
 $F_1 = F_1$
 $F_2 \neq F_3$
 $F_3 = F_3$

Arctzelosta, distribution

Reduction of the number of diagrams

Diagrams with a non-interacting quark are exactly zero

$$\sigma^{+\mu} \left(\frac{\boldsymbol{b}^{\mu} \boldsymbol{b}^{\nu}}{\boldsymbol{b}^{2}} - \frac{g_{T}^{\mu\nu}}{2(1 - \epsilon)} \right) \sigma^{-\nu} = 0$$

As in the transversity case \longrightarrow Odd number of gamma matrices in each trace in $q\leftarrow q'$ \longrightarrow It is zero!

At NNLO we have the same two cases that in transversity

1-loop result is ϵ -suppressed Two loop diagrams are less divergent than in another TMDs All the diagrams have no poles in ϵ

Non-zero Virtual-Real diagrams

Vertex Corrections Self energy KK Z \bigcirc (H)p+l+k p+l+k(C) (\mathbf{F}) No interacting quark All the X2 diagrams are zero! Self energy Single WL Pouble WL RD RD

No RDs Finite diagrams Vertex-correction QCD x 1-loop

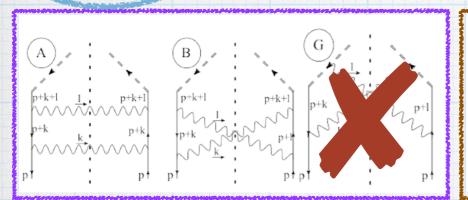
RDS Finite diagrams Combined with RR diagrams by color factor RDs should be cancelled

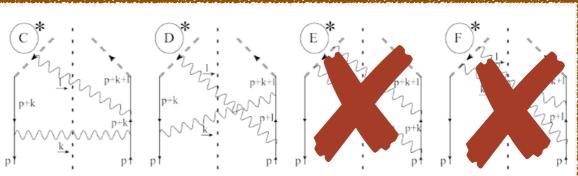
> These diagrams are exactly zero!

Pretzelosity at NNLO does not depend on TrNf Sum of these diagrams with RR should be zero

R.H.S.

Non-zero Real-Real diagrams





No RDs Finite diagrams

No RDs Finite diagrams

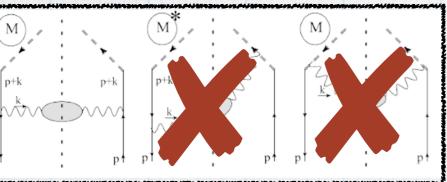
Only RD in diag I With VR RPs should be cancelled

RDs in both diagrams With VR should be cancelled

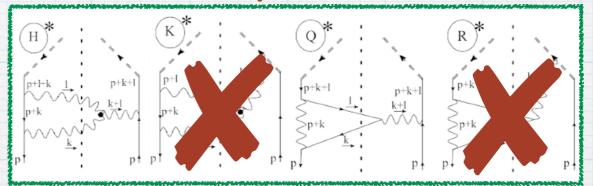
Depend on TrNf Cancelled with VR

Pouble WL is zero

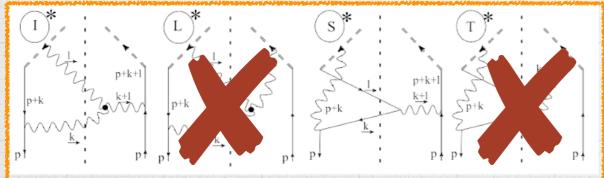
Real ladder



Complex ladder



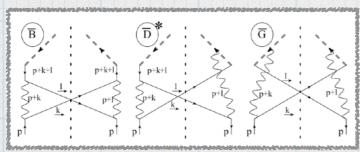
Self energy



Single WL

Corrections

Vertex



NORD Finite result, without plus-distribted terms and deltas

It is zero! Odd number of gamma-matrices In each trace

Cancellation of Rapidity Divergences

Expression for renormalized TMD

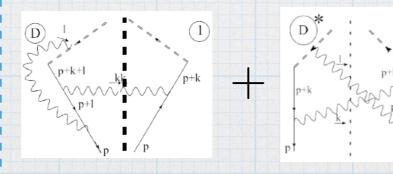
$$h_{1}^{[2]} = \delta \Phi^{[2]} - \frac{S^{[1]} \delta \Phi^{[1]}}{2} - \frac{S^{[2]} \delta \Phi^{[0]}}{2} + \frac{3S^{[1]} S^{[1]} \delta \Phi^{[0]}}{8} + \left(Z_{q}^{[1]} - Z_{2}^{[1]} \right) \left(\delta \Phi^{[1]} - \frac{S^{[1]} \delta \Phi^{[0]}}{2} \right) + \left(Z_{q}^{[2]} - Z_{2}^{[2]} - Z_{2}^{[2]} Z_{q}^{[1]} - Z_{2}^{[1]} Z_{2}^{[1]} \right) \delta^{\perp} \Phi^{[0]}$$

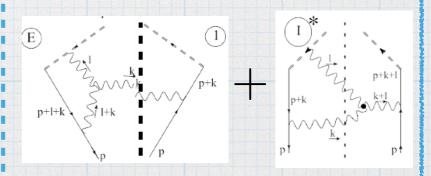
We have different combinations of diagrams and SF to cancel RDs depending on their color factors

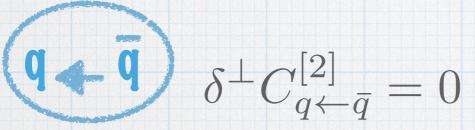
$$C_F^2 - \frac{C_A C_F}{2}$$

$$-\frac{C_AC_F}{2}$$

$$\begin{array}{c|c} F & & & & & & \\ \hline p_{+k+1} & & & & & \\ \hline p_{+k} & & & & & \\ \hline p_{+k} & & & & \\ \hline p_{-k} & & & \\ \hline p_{-k} & & & \\ \hline p_{-k} & & & & \\ \hline p_{-k} & & & & \\ \hline p_{-k} & & & & \\ p_{-k} & & & & \\ \hline p_{-k$$







First two diagrams are finite Third is zero Sum of the diagrams is $\mathcal{O}(\epsilon)$!

Zero from the beginning Odd number of gamma matrices

$$\delta^{\perp} C_{q \leftarrow q}^{[2]} = 0$$

This cancelation is highly non-trivial!

$$\delta^{\perp} \Phi_{f \leftarrow f'}^{[2]} = C_F^2 A_F + C_F \left(C_F - \frac{C_A}{2} \right) A_{FA} + \frac{C_F C_A}{2} A_A + C_F N_f A_N \qquad A_N = \mathcal{O}(\epsilon)$$

$$A_{FA} = A_A + \mathcal{O}(\epsilon)$$
$$A_N = \mathcal{O}(\epsilon)$$

There is an ϵ -suppression of the CACF and Nf parts of the TMD!

$$\delta^{\perp} C_{q \leftarrow q}^{[2]}(x, \boldsymbol{b}) = h_{1T, q \leftarrow q}^{\perp [2]}(x, \boldsymbol{b}) - \left[\delta^{\perp} C_{q \leftarrow q}^{[1]}(\boldsymbol{b}) \otimes \delta f_{q \leftarrow q}^{[1]}\right](x)$$

So, after renormalization

$$h_{1T,q\leftarrow q}^{\perp[2]}(x,\mathbf{b}) = -4C_F^2 \left(\bar{x}(3+4\ln\bar{x}) + 4x\ln x \right)$$
$$\left[\delta^{\perp} C_{q\leftarrow q}^{[1]}(\mathbf{b}) \otimes \delta f_{q\leftarrow q}^{[1]} \right](x) = -4C_F^2 \left(\bar{x}(3+4\ln\bar{x}) + 4x\ln x \right)$$

Actually the result is zero! $\mathcal{O}(\epsilon)$

LO at twist-4?

Conjecture:

$$\delta^{\perp} C_{q \leftarrow f}(x, \boldsymbol{b}) = 0$$

At all orders in P.T.!

LO of large-Nf matching is zero Supports the conjeture!

$$\delta^{\perp} C_{q \leftarrow q}^{[2]} = 0$$

This cancelation is highly non-trivial!

$$\delta^{\perp} \Phi_{f \leftarrow f'}^{[2]} = C_F^2 A_F + C_F \left(C_F - \frac{C_A}{2} \right) A_{FA} + \frac{C_F C_A}{2} A_A + C_F N_f A_N \qquad A_N = \mathcal{O}(\epsilon)$$

$$A_{FA} = A_A + \mathcal{O}(\epsilon)$$
$$A_N = \mathcal{O}(\epsilon)$$

There is an ϵ -suppression of the CACF and Nf parts of the TMD!

$$\delta^{\perp} C_{q \leftarrow q}^{[2]}(x, \boldsymbol{b}) = h_{1T, q \leftarrow q}^{\perp [2]}(x, \boldsymbol{b}) - \left[\delta^{\perp} C_{q \leftarrow q}^{[1]}(\boldsymbol{b}) \otimes \delta f_{q \leftarrow q}^{[1]}\right](x)$$

So, after renormalization

$$h_{1T,q\leftarrow q}^{\perp[2]}(x,\mathbf{b}) = -4C_F^2 \left(\bar{x}(3+4\ln\bar{x}) + 4x\ln x \right)$$
$$\left[\delta^{\perp} C_{q\leftarrow q}^{[1]}(\mathbf{b}) \otimes \delta f_{q\leftarrow q}^{[1]} \right](x) = -4C_F^2 \left(\bar{x}(3+4\ln\bar{x}) + 4x\ln x \right)$$

Actually the result is zero! $\mathcal{O}(\epsilon)$

LO at twist-4?

Conclusions

- * We have a polarized TMP (transversity) calculated the at same order that the unpolarized one. This feature allows tests of independence of polarization of the TMP Evolution
- * For the transversity TMD we have information both for PDFs and FFs, which allows further tests of TMD evolution
- * It is welcome to know and to have grids of collinear transversity extracted at NNLO. See M. Radici's talk
- * Resume of our calculation:
 - * Transversity has a matching coefficient calculated in an analogous way of the unpolarized function.
 - * Rapidity divergences cancelled (Polarized Factorization theorems at NNLO)
 - * Z's do not depend on the polarization.
 - * Pretzelosity has a matching coefficient that
 - * Is ϵ -suppressed at NLO, explaining phenomenological analysis
 - * Zero (ϵ -suppressed) at NNLO for all the different channels. Conjecture: zero at all order in P.T.
 - * LO is twist-4 matching?
- New developments: Measuring TMDs using jets. TMD Semi-inclusive jet function (NLO) DGR, Scimemi, Waalewijn, Zoppi arXiv: 1807.07573

Thanks!!!

Backup slides

8-regularization

$$W_n = P \exp\left(-ig \int_0^\infty d\sigma (n \cdot A)(n\sigma)\right) \to P \exp\left(-ig \int_0^\infty d\sigma (n \cdot A)(n\sigma)e^{-\delta\sigma x}\right)$$

$$S_n = P \exp\left(-ig \int_0^\infty d\sigma (n \cdot A)(n\sigma)\right) \to P \exp\left(-ig \int_0^\infty d\sigma (n \cdot A)(n\sigma)e^{-\delta\sigma}\right)$$

At diagram level Fikonal propagators

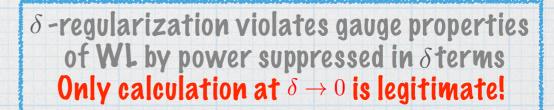
$$\frac{1}{(k_1^+ + i0)(k_1^+ + k_2^+ + i0)...(k_1^+ + ... + k_n^+ + i0)} \rightarrow \frac{1}{(k_1^+ + i\delta)(k_1^+ + k_2^+ + 2i\delta)...(k_1^+ + ... + k_n^+ + ni\delta)}$$

This regularization makes zero-bin equal to soft factor

R-factor is scheme dependent!

$$R = \frac{\sqrt{S(\boldsymbol{b})}}{\text{zero-bin}} \xrightarrow{\delta - \text{reg.}} R_{\delta - \text{reg.}} = \frac{1}{\sqrt{S(\boldsymbol{b})}}$$

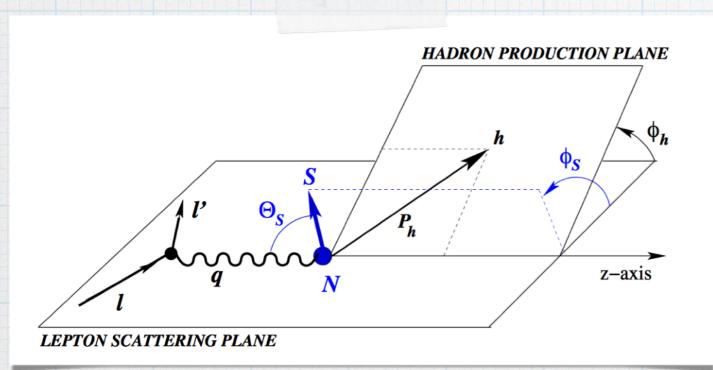
Non-abelian exponentiation satisfied at all orders!



Pretzelosity distribution

Cuadrupole modulation of parton density in the distribution of transversely polarized nucleon

A polarized proton might not be spherically symmetric



H. Avakian et al. 0805.3355

Pretzelosity distribution in convolution with the Collins FF generates $\sin(3\phi_h-\phi_S)$ asymmetry in SIDIS (HERMES & COMPASS) and future facilities (EIC, LHC-b)

$$F_{UT}^{\sin(3\phi_h - \phi_S)} = \mathcal{C}\left[w_{\text{kin}}h_{1T}^{\perp}H_1^{\perp}\right]$$

Experimentally measured: SSA

$$A_{UT}^{\sin(3\phi_h - \phi_S)} \propto F_{UT}^{\sin(3\phi_h - \phi_S)}$$

$$\frac{d\sigma}{dxdyd\phi_SdP_{hT}} = \frac{\alpha^2 2P_{hT}}{xyQ^2} \left\{ \left(1 - y + \frac{1}{2}y^2 \right) \left(F_{UU,T} + \varepsilon F_{UU,L} \right) + S_T(1 - y) \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h - \phi_S)} + \dots \right\}$$

Linearly polarized gluons matching coefficients

Small-b expression for the linearly polarized gluon TMDPDF

$$h_1^{\perp g}(x, \boldsymbol{b}) = [\delta^L C_{g \leftarrow q}(\boldsymbol{b}) \otimes f_q](x) + [\delta^L C_{g \leftarrow g}(\boldsymbol{b}) \otimes f_g](x) + \mathcal{O}(\boldsymbol{b}^2)$$

NLO matching coefficients

$$\delta^L C_{g \leftarrow g} = -4a_s C_A \frac{\bar{x}}{x} + \mathcal{O}(a_s^2) \qquad \qquad \delta^L C_{g \leftarrow q} = -4a_s C_F \frac{\bar{x}}{x} + \mathcal{O}(a_s^2)$$

These results agree with the obtained in T. Becher et al. 1212.2621!!

Helicity distribution

Schemes for γ^5 in DR. Small-b OPE

$$\Gamma = \gamma^+ \gamma^5 \quad \Gamma^{\mu\nu} = i\epsilon_T^{\mu\nu}$$

$$\begin{array}{c|c} \textbf{Lorentz structures} \\ \Gamma = \gamma^+ \gamma^5 & \Gamma^{\mu\nu} = i \epsilon_T^{\mu\nu} \end{array} \longrightarrow \begin{array}{c} \gamma^5 \text{ needs a definition} \\ \text{in DR!} \end{array} \longrightarrow \begin{array}{c} \gamma^+ \gamma^5 = \frac{i}{3!} \epsilon^{+\nu\alpha\beta} \gamma_\nu \gamma_\alpha \gamma_\beta \\ \text{Larin d-dimensional} \end{array}$$

Larin scheme is more convenient than HVBM because it does not violate Lorentz invariance, but it violates the definition of the leading dynamical twist

$$\gamma^{+}\Gamma = \gamma^{+} (\gamma^{+}\gamma^{5})_{\text{Larin}} = \frac{i}{3!} \epsilon^{+\nu\alpha\beta} \gamma^{+} \gamma_{\nu} \gamma_{\alpha} \gamma_{\beta} \neq 0$$

Light modification of Larin scheme -> Larin+

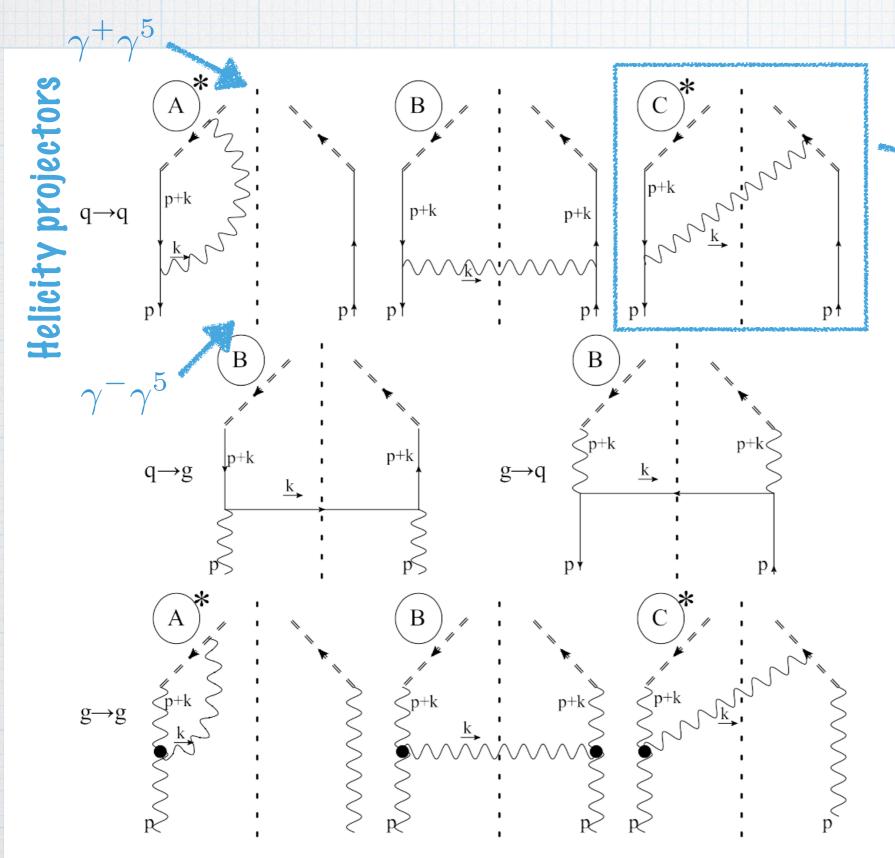
$$(\gamma^{+}\gamma^{5})_{\text{Larin}^{+}} = \frac{i\epsilon^{+-\alpha\beta}}{2!}\gamma^{+}\gamma_{\alpha}\gamma_{\beta} = \frac{i\epsilon_{T}^{\alpha\beta}}{2!}\gamma^{+}\gamma_{\alpha}\gamma_{\beta}$$

Helicity TMD distribution in the regime of small-b

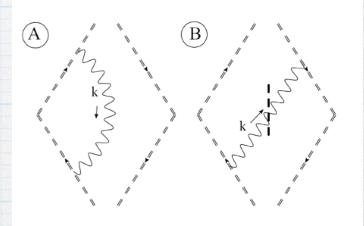
$$g_{1L}(x, \mathbf{b}) = [\Delta C_{q \leftarrow q}(\mathbf{b}) \otimes \Delta f_q](x) + [\Delta C_{q \leftarrow g}(\mathbf{b}) \otimes \Delta f_g](x) + \mathcal{O}(\mathbf{b}^2)$$

$$g_{1L}^g(x, \boldsymbol{b}) = [\Delta C_{g \leftarrow q}(\boldsymbol{b}) \otimes \Delta f_q](x) + [\Delta C_{g \leftarrow g}(\boldsymbol{b}) \otimes \Delta f_g](x) + \mathcal{O}(\boldsymbol{b}^2)$$

Diagrams contributing to TMPS at NLO



Rapidity divergences: Renormalized with SF



The calculation is striaghtforward to the unpolarized case M.G.Echevarria et al.: 1604.07869

Matching coefficients: scheme dependence

$$\Delta C_{q \leftarrow q} = \delta(\bar{x}) + a_s C_F \left\{ 2 \mathbf{B}^{\epsilon} \Gamma(-\epsilon) \left[\frac{2}{(1-x)_+} - 2 + \bar{x}(1+\epsilon) \mathcal{H}_{\text{sch.}} + \delta(\bar{x}) \left(\mathbf{L}_{\sqrt{\zeta}} - \psi(-\epsilon) - \gamma_E \right) \right] \right\}_{\epsilon \text{-finite}}$$

$$\Delta C_{q \leftarrow g} = a_s C_F \left\{ 2 \mathbf{B}^{\epsilon} \Gamma(-\epsilon) \left[x - \bar{x} \mathcal{H}_{\text{sch.}} \right] \right\}_{\epsilon \text{-finite}}$$

$$\Delta C_{g \leftarrow q} = a_s C_F \left\{ 2 \mathbf{B}^{\epsilon} \Gamma(-\epsilon) \left[1 + \bar{x} \mathcal{H}_{\text{sch.}} \right] \right\}_{\epsilon \text{-finite}}$$

$$\Delta C_{g \leftarrow g} = \delta(\bar{x}) + a_s C_A \left\{ 2 \mathbf{B}^{\epsilon} \Gamma(-\epsilon) \frac{1}{x} \left[\frac{2}{(1-x)_+} - 2 - 2x^2 + 2x \bar{x} \mathcal{H}_{\text{sch.}} + \delta(\bar{x}) \left(\mathbf{L}_{\sqrt{\zeta}} - \psi(-\epsilon) - \gamma_E \right) \right] \right\}_{\epsilon \text{-finite}}$$

$$\mathcal{H}_{\mathrm{sch.}} = \begin{cases} 1 + 2\epsilon & \mathrm{HVBM} \\ \frac{1 + \epsilon}{1 - \epsilon} & Larin^{+} \end{cases}$$

At NLO there is not scheme dependence!

Helicity matching coefficients: NLO results

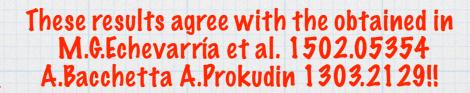
At $\epsilon \to 0$ we have the NLO coefficients

$$\Delta C_{q \leftarrow q} \equiv C_{q \leftarrow q} = \delta(\bar{x}) + a_s C_F \left(-2\mathbf{L}_{\mu} \Delta p_{qq} + 2\bar{x} + \delta(\bar{x}) \left(-\mathbf{L}_{\mu}^2 + 2\mathbf{L}_{\mu} \mathbf{l}_{\zeta} - \zeta_2 \right) \right) + \mathcal{O}(a_s^2)$$

$$\Delta C_{q \leftarrow g} = a_s T_F \left(-2 \mathbf{L}_{\mu} \Delta p_{qg} + 4\bar{x} \right) + \mathcal{O}(a_s^2)$$

$$\Delta C_{g \leftarrow q} = a_s C_F \left(-2 \mathbf{L}_{\mu} \Delta p_{gq} - 4\bar{x} \right) + \mathcal{O}(a_s^2)$$

$$\Delta C_{g\leftarrow g} = \delta(\bar{x}) + a_s C_A \left(-2\mathbf{L}_{\mu} \Delta p_{gg} - 8\bar{x} + \delta(\bar{x}) \left(-\mathbf{L}_{\mu}^2 + 2\mathbf{L}_{\mu} \mathbf{l}_{\zeta} - \zeta_2 \right) \right) + \mathcal{O}(a_s^2)$$



Drawback of schemes. Z_{qq}^5 renormalization constant

Drawback of both schemes >Violation of Adler-Bardeen theorem Non renormalization of the axial anomaly

Fixed by an extra renormalization constant, Z_{qq}^5 Derived from a external condition

S.A. Larin 9302240, Y.Matiouine et al 076002, V.Ravindran et al. 0311304

Only affect to the quark-to-quark part

- q_T TMD factorization reproduces collinear factorization \Rightarrow It is natural to normalize Helicity distribution \Rightarrow It reproduces polarized DY which is normalized to unpolarized DY
- o Equivalent in TMDs ==> Equality in polarized and unpolarized coefficients

$$\left[Z_{qq}^{5}(\boldsymbol{b})\otimes\Delta C_{q\leftarrow q}(\boldsymbol{b})\right](x) = C_{q\leftarrow q}(x,\boldsymbol{b})$$

$$Z_{qq}^{5} = \delta(\bar{x}) + 2a_{s}C_{F}\boldsymbol{B}^{\epsilon}\Gamma(-\epsilon)\left(1 - \epsilon - (1 + \epsilon)\mathcal{H}_{\mathrm{sch.}}\right)\bar{x}$$