

Recent Transverse Spin Measurements in pp Collisions with STAR

Carl Gagliardi

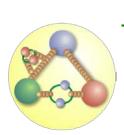
Texas A&M University

for the STAR Collaboration

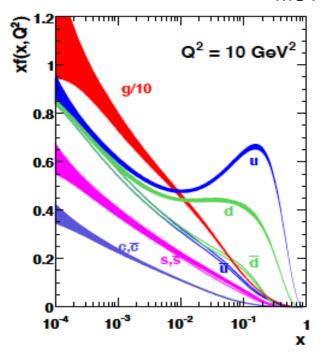
Outline

- Introduction
- Recent (and near future) measurements
- STAR Forward Upgrade plans

Complementarity of DIS and p+p


Deep-inelastic scattering primarily probes via:

- Electromagnetic interactions
 - Couple to charge²
 - Insensitive to color

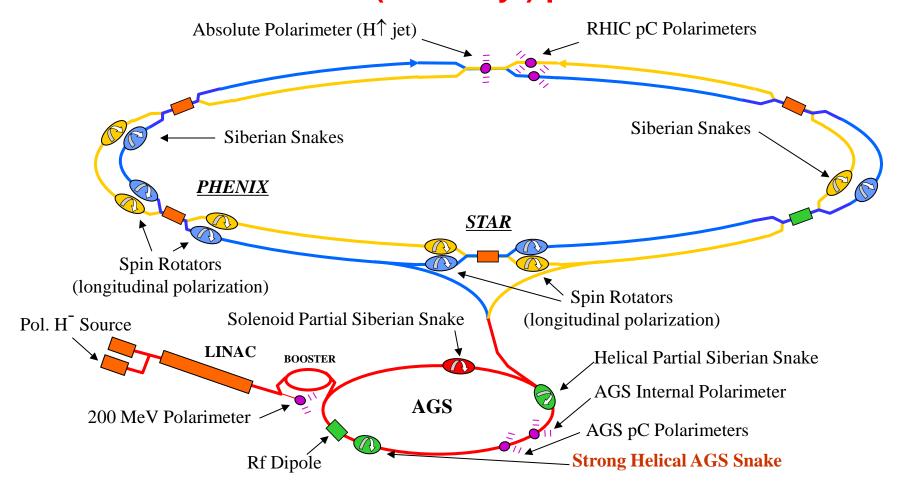

- Weak interactions
 - Couple to weak charge (~flavor)
 - Insensitive to color
- Only accesses gluons through higher-order effects
- **pp collisions** primarily probe via:

- Strong interactions
 - Couple to color charge
 - Direct leading-order sensitivity to gluons
 - Insensitive to flavor
- Need both for a consistent and complete picture
- Combine DIS and p+p to explore universality and separate interaction-dependent phenomena from intrinsic properties

A well-proven method

MSTW 2008

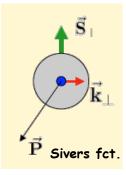
Process	Subprocess	Partons	x range
$\ell^{\pm}\left\{p,n\right\} \to \ell^{\pm}X$	$\gamma^* q \rightarrow q$	q, \bar{q}, g	$x \gtrsim 0.01$
$\ell^{\pm} n/p \to \ell^{\pm} X$	$\gamma^* d/u \to d/u$	d/u	$x \gtrsim 0.01$
$pp \rightarrow \mu^{+}\mu^{-}X$	$u\bar{u}, d\bar{d} \rightarrow \gamma^*$	$ar{q}$	$0.015 \lesssim x \lesssim 0.35$
$pn/pp ightarrow \mu^+\mu^- X$	$(u\bar{d})/(u\bar{u}) \rightarrow \gamma^*$	$ar{d}/ar{u}$	$0.015 \lesssim x \lesssim 0.35$
$\nu(\bar{\nu}) N \rightarrow \mu^{-}(\mu^{+}) X$	$W^*q \rightarrow q'$	$q,ar{q}$	$0.01 \lesssim x \lesssim 0.5$
$\nu N \rightarrow \mu^- \mu^+ X$	$W^*s \rightarrow c$	s	$0.01 \lesssim x \lesssim 0.2$
$\bar{\nu} N \rightarrow \mu^{+}\mu^{-} X$	$W^*\bar{s} \to \bar{c}$	\bar{s}	$0.01 \lesssim x \lesssim 0.2$
$e^{\pm} p \rightarrow e^{\pm} X$	$\gamma^* q \rightarrow q$	$g,q,ar{q}$	$0.0001 \lesssim x \lesssim 0.1$
$e^+ p \rightarrow \bar{\nu} X$	$W^+\{d, s\} \to \{u, c\}$	d, s	$x \gtrsim 0.01$
$e^{\pm}p \rightarrow e^{\pm} c\bar{c} X$	$\gamma^*c \rightarrow c, \gamma^*g \rightarrow c\bar{c}$	c, g	$0.0001 \lesssim x \lesssim 0.01$
$e^{\pm}p \to \text{jet} + X$	$\gamma^* g \rightarrow q \bar{q}$	\boldsymbol{g}	$0.01 \lesssim x \lesssim 0.1$
$p\bar{p} \to \text{jet} + X$	$gg, qg, qq \rightarrow 2j$	g,q	$0.01 \lesssim x \lesssim 0.5$
$p\bar{p} \rightarrow (W^{\pm} \rightarrow \ell^{\pm}\nu) X$	$ud \to W, \bar{u}\bar{d} \to W$	$u,d,ar{u},ar{d}$	$x \gtrsim 0.05$
$p\bar{p} \rightarrow (Z \rightarrow \ell^+\ell^-) X$	$uu, dd \rightarrow Z$	d	$x \gtrsim 0.05$

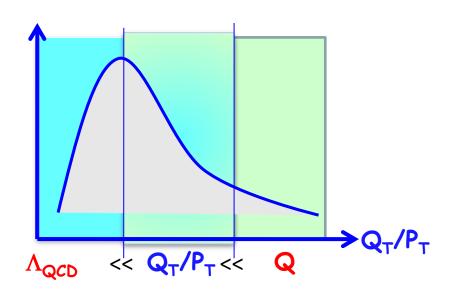

- The key role of hadronic collision data to determine the unpolarized PDFs of the proton has long been exploited
- RHIC provides equally critical data to determine polarized PDFs
 - Have provided essential constraints on gluon and anti-quark polarizations
 - Now also providing critical insights in transverse spin phenomena

RHIC: the Relativistic Heavy Ion Collider

- Search for and study the Quark-Gluon Plasma
- Explore the partonic structure of the proton
- Determine the partonic structure of nuclei

RHIC: the world's first (and only!) polarized hadron collider


- Spin varies from rf bucket to rf bucket (9.38 MHz)
- Spin pattern changes from fill to fill
- Spin rotators provide choice of spin orientation
- Billions of spin reversals during a fill with little depolarization



Recent transverse spin measurements

Initial state: TMDs and Twist-3

Twist-3

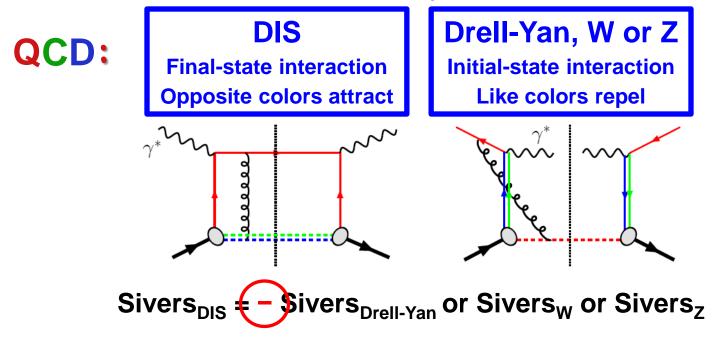
Requires 2 scales: Hard scale Q^2

Soft scale p_T

SIDIS, Drell-Yan, W/Z, ...

Access the full transverse momentum dynamics k_T

 $-\int d^{2}k_{\perp} \frac{k_{\perp}^{2}}{M} f_{1T}^{\perp q}(x, k_{\perp}^{2})|_{SIDIS} = T_{q,F}(x, x)$


Single hard scale: p_T

Appropriate for inclusive $A_N(\pi^0, \gamma, jet)$

Access the average transverse momentum $\langle k_T \rangle$

Color interactions in QCD

Controlled non-universality of the Sivers function

A_N for direct photon has related sign change in Twist-3

Critical test of factorization

Opportunity to visualize the repulsive interaction between like color charges

Can explore all of these observables in 510 GeV pp collisions at RHIC

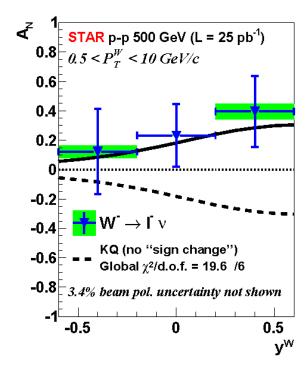
A_N for W production

TAR PRL 116, 132301 (2016)

STAR p-p 500 GeV (L = 25 pb⁻¹)

0.8

0.5 < P_T^W < 10 GeV/c

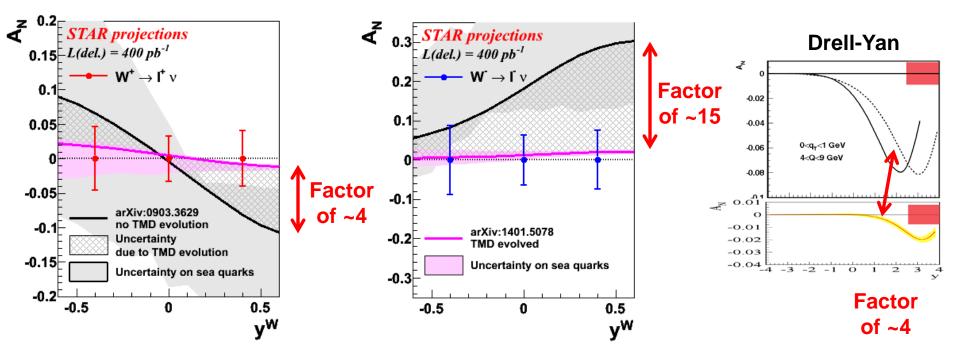

0.4

0.2

-0.4

W⁺ → I⁺ V

-0.8 3.4% beam pol. uncertainty not shown

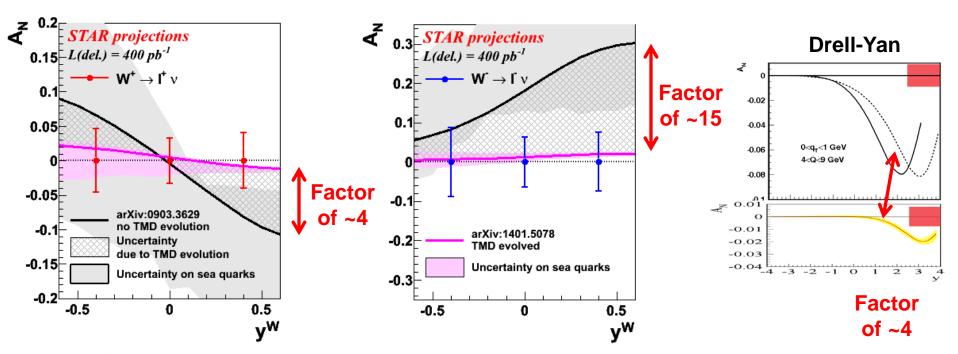

- STAR performed an exploratory measurement of A_N for W production with a small data set recorded in 2011
 - W kinematics fully reconstructed
- Favors sign change if evolution effects are modest

0.5

 \mathbf{v}^{W}

- TMD evolution is non-perturbative at low k_T - no absolute theory predictions

Definitive measurement



- See the sign change if evolution effects are less than factor of 5
- Probe anti-quark Sivers function for the first time
- Directly measure the evolution effects
 - Need new data to constrain non-perturbative contribution
 - Access similar observables at comparable x but very different Q²

 - Drell-Yan at 510 GeV

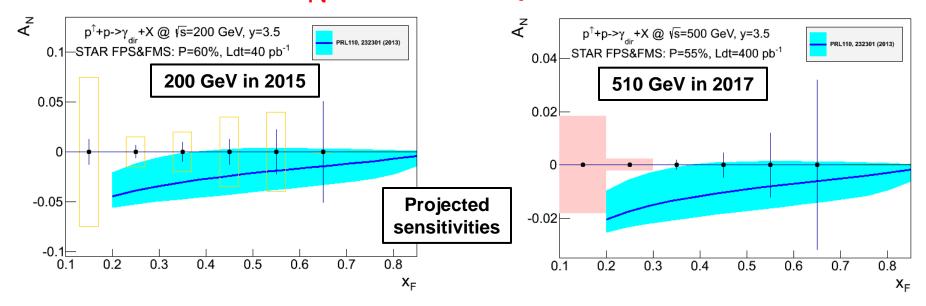
 W and Z A_N at 510 GeV
 2017 RHIC run, data currently under analysis

Definitive measurement

See the sign change if evolution effects are less than factor of 5

Propose a return to 510 GeV in 2021:

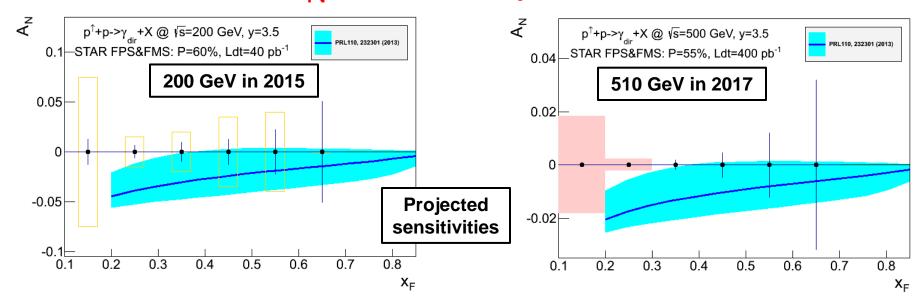
Go beyond testing the sign


Are the magnitudes *really equal* in SIDIS and pp collisions?

- Access similar observables at comparable x but very different Q²

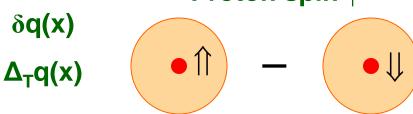
 - Drell-Yan at 510 GeV

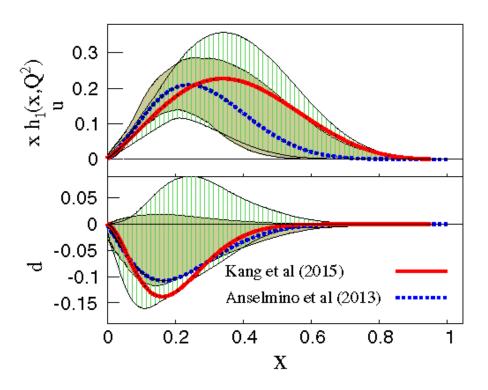
• W and Z A_N at 510 GeV **2017 RHIC run, data** currently under analysis


A_N for direct photon

- Sensitive to the sign change in the Twist-3 formalism
- Collinear objects, but more complicated evolution than DGLAP
 - Not sensitive to TMD evolution
- Provides an indirect constraint on the Sivers function via their integral relationship

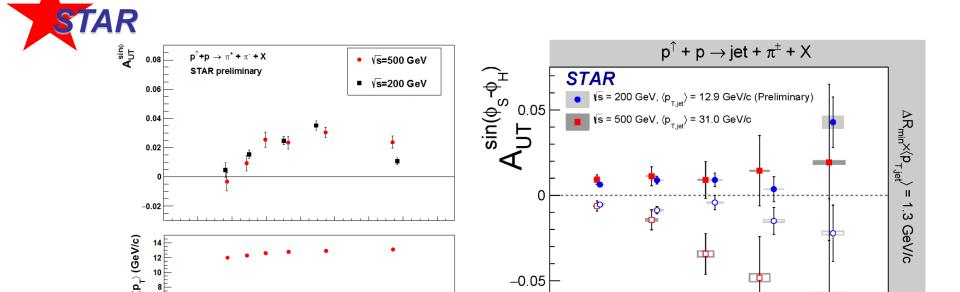
Not a replacement for $A_N(W, Z, DY)$, but an important complementary piece of the puzzle


A_N for direct photon



- Sensitive to the sign change in the Twist-3 formalism
- Collinear objects, but more complicated evolution than DGLAP
 - Not sensitive to TMD evolution
- Providintegra
 Reduce 200 GeV uncertainties by ~3
 Precision measurement of Twist-3 evolution
 important complementary piece of the puzzle

Transversity



- Quark polarization along spin of a transversely polarized proton
 - Third collinear, leading twist distribution
 - Chiral odd
- Much less data than for helicity
- Before STAR, only observed in SIDIS combined with e⁺e⁻
- Several recent global analyses including:
 - Collins effect SIDIS input:
 - PRD 93, 014009 (2016)
 - PRD 92, 114023 (2015)
 - IFF SIDIS + STAR pp input:
 - PRL 120, 192001 (2018)
 - All show large uncertainties

First transversity signals in hadronic collisions

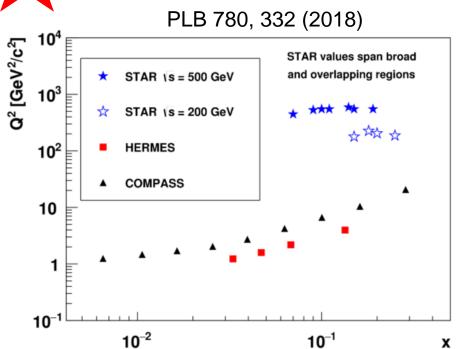
-0.05

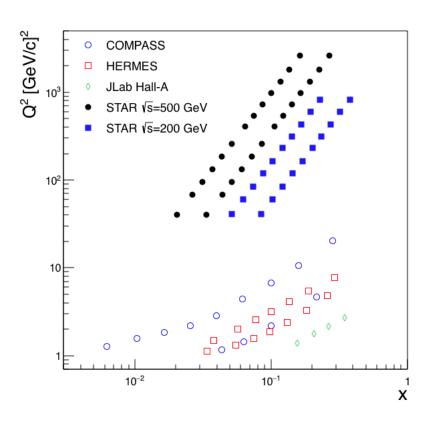
Closed points: π^+ ; Open points: π^-

0.4

0.6

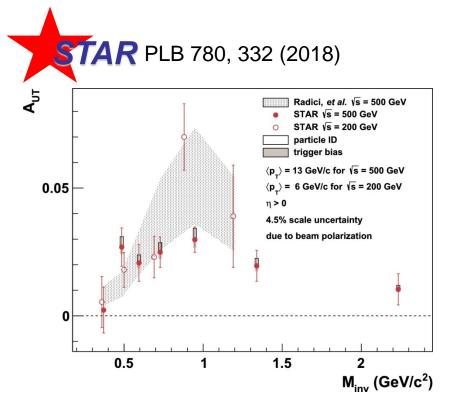
0.2

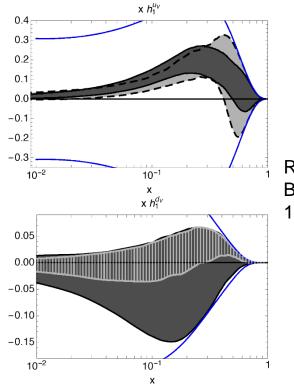

Significant measurements of transversity convoluted with:


M_{inv} (GeV/c²)

- Di-hadron interference fragmentation function (IFF)
- Collins fragmentation function
- Both have similar magnitudes in 200 and 500 GeV pp collisions
- Complementary results that obey different evolution equations

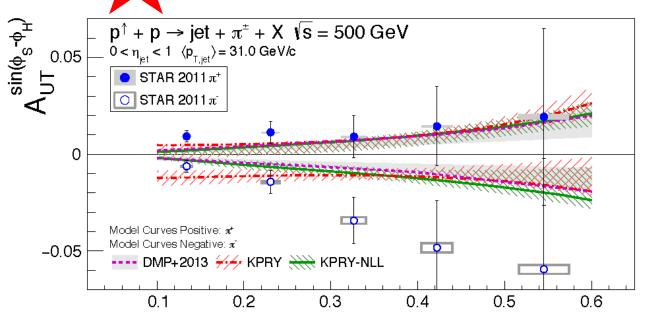
$x - Q^2$ coverage for IFF and Collins effect





- STAR measurements provide the first observations of transversity at very high scales
 - One to two orders of magnitude higher than all previous measurements

STAR IFF and global analysis

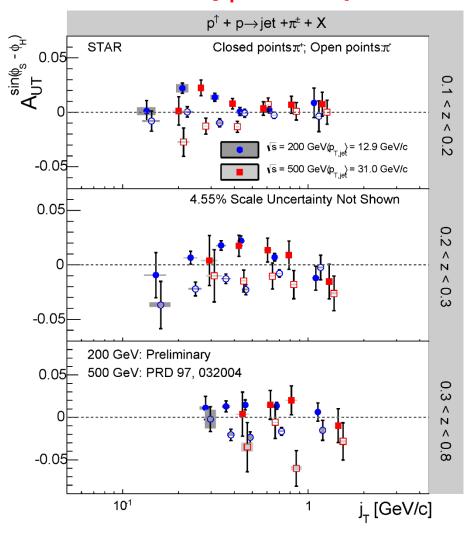


Radici and Bacchetta, PRL 120, 192001 (2018)

- STAR IFF measurements in 200 and 500 GeV pp collisions are well described by recent IFF calculations
- Radici and Bacchetta have performed a global analysis including the STAR IFF results from 200 GeV pp collisions [PRL 115, 242501 (2015)]
 - **STAR** data significantly reduce the uncertainty for h_1^{u-val}
 - $-g \rightarrow \pi^+\pi^-$ FF dominates the uncertainty for h_1^{d-val}

π^{+/-} azimuthal distribution in jets

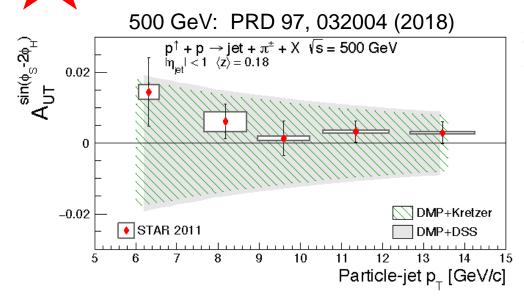
DMP: PLB 773, 300 (2017)

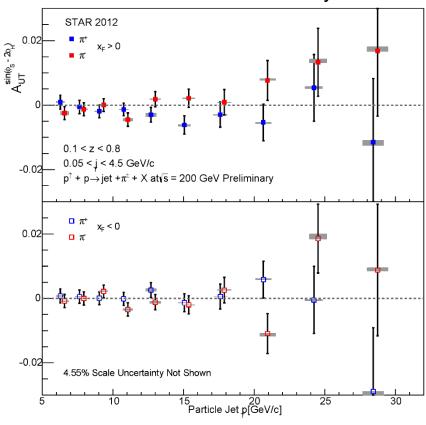

KPRY: PLB 774, 635 (2017)

7

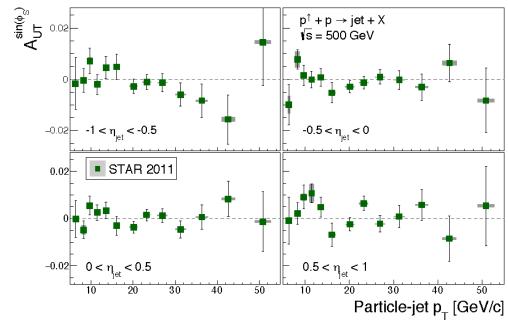
- First Collins effect measurements in pp collisions are reasonably described by two recent calculations that convolute the transversity distribution from SIDIS with the Collins FF from e⁺e⁻ collisions
 - Tests the predicted universality of the Collins FF
 - Kang et al, JHEP 11, 068 (2017)
 - TMD evolution effects appear to be small

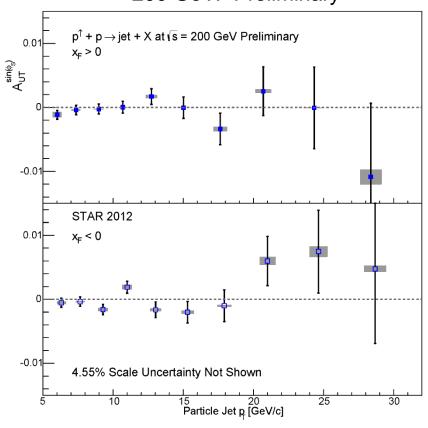
Collins effect vs. j_T in separate z bins



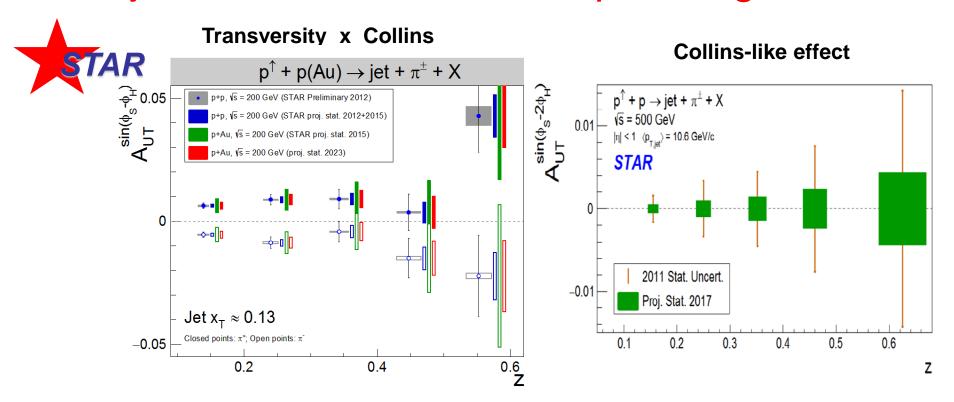

- 500 GeV pp results hinted the A_{UT} peak shifts to higher j_T as z increases
- New preliminary 200 GeV pp results provide confirming evidence

Additional modulations: "Collins-like" effect


STAR


- Collins-like effect
 - World's first ever limit on linearly polarized gluons in a polarized proton
 - New preliminary results from 200 GeV pp collisions
 - Will provide much stronger limits

Additional modulations: inclusive jet A_N

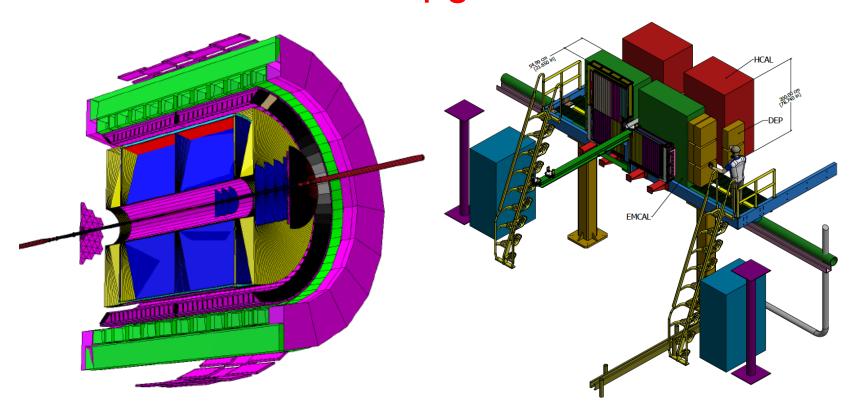


- Inclusive jet A_N
 - Sensitive to the gluon Sivers function via the Twist-3 relationship
 - New preliminary results in 200 GeV pp collisions
 - Far more precise than 500 GeV results
 - Still consistent with zero

Projected uncertainties for upcoming results

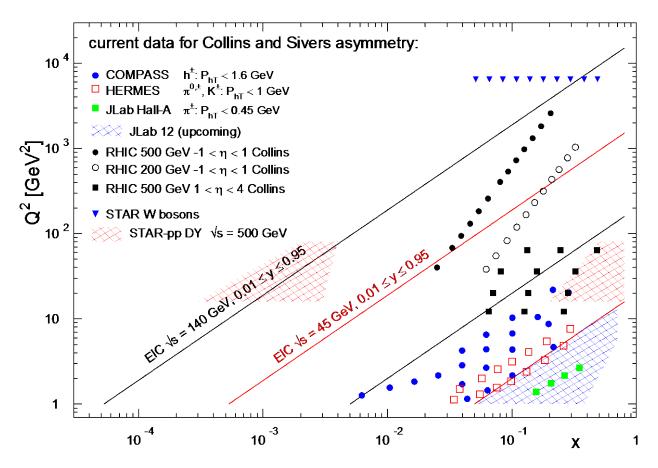
- Final Collins results from 2012 200 GeV run will be coming soon
 - 200 GeV data from 2015, with twice the FoM, under analysis
- Recorded > 10 times as much data at 510 GeV in 2017 as in 2011
 - Precision data at fixed x, different \sqrt{s} ideal to constrain TMD evolution
- Also have data for a first look at the Collins effect in p+Au collisions

STAR Forward Upgrade plans


For a more detailed discussion, see:

The STAR Forward Rapidity Upgrade

Ken Barish (sub for Elke Aschenauer)


Future Facilities and Experiments, Wed, 17:40

Planned forward upgrade for the 2020's

- Si disks + small Thin Gap Chambers for tracking
- Compact electromagnetic and hadronic calorimeters
- Transverse spin phenomena:
 - Precision TMDs through jets at forward rapidity
 - Precision A_N(Drell-Yan) to complete the Sivers measurements

Sivers and Collins coverage at RHIC

Kinematics of RHIC

- Dramatic extension in (x, Q²) reach before EIC
- W production probes the highest Q² over a wide x range
- Precision tests of universality when EIC data become available

Conclusions

- The STAR transverse spin program has made a number of striking observations
- STAR has a huge body of additional spin data under analysis
- The STAR Forward Upgrade will provide a bright future for STAR in the coming decade

 STAR is a key component of the RHIC Cold QCD program: an essential bridge between the physics of RHIC and the physics of the future Electron Ion Collider