

Status of the Experimental Studies on DVMP and Transversity GPDs

Valery Kubarovsky

Jefferson Lab, USA

Office of Science

Outline

- CLAS data on pseudoscalar meson electroproduction
- Transversity GPD and structure functions
- Flavor decomposition of the Transversity GPDs
- Impact Parameter Density for u and d-quarks
- CLAS12 started data taking!
- Conclusion

Generalized Parton Distributions

- GPDs are the functions of three kinematic variables: x, ξ and t
- There are 4 chiral even GPDs where partons do not flip helicity H, H, E, E
- 4 chiral odd GPDs flip the parton helicity H_T , \tilde{H}_T , E_T , \tilde{E}_T
- The chiral-odd GPDs are difficult to access since subprocesses with quark helicity-flip are suppressed

Chiral-odd GPDs

- Very little known about the chiral-odd GPDs
- Anomalous tensor magnetic moment

$$\kappa_T = \int_{-1}^{+1} dx \ ar{E}_T(x,\xi,t=0)$$

- (Compare with anomalous magnetic moment) • Transversity distribution $H_T^q(x,0,0) = h_1^q(x)$

$$h_1 =$$

The transversity describes the distribution of transversely polarized quarks in a transversely polarized nucleon

 $ep \rightarrow ep\pi^{\circ}$

Structure functions and GPDs

 $\frac{d^4\sigma}{dQ^2dx_Bdtd\phi_{\pi}} = \Gamma(Q^2, x_B, E)\frac{1}{2\pi}(\boldsymbol{\sigma_T} + \boldsymbol{\epsilon\sigma_L} + \boldsymbol{\epsilon}\cos 2\phi_{\pi}\boldsymbol{\sigma_{TT}} + \sqrt{2\boldsymbol{\epsilon}(1+\boldsymbol{\epsilon})}\cos\phi_{\pi}\boldsymbol{\sigma_{LT}})$

Leading twist σ_L

$$\sigma_L = \frac{4\pi\alpha_e}{\kappa Q^2} [(1-\xi^2)|\langle \tilde{H} \rangle|^2 - 2\xi^2 Re(\langle \tilde{H} \rangle|\langle \tilde{E} \rangle) - \frac{t}{4m^2}\xi^2|\langle \tilde{E} \rangle|^2]$$

 $\sigma_{\!\scriptscriptstyle L}$ suppressed by a factor coming from:

 $ilde{H}^{\pi} = rac{1}{3\sqrt{2}} [2 ilde{H}^u + ilde{H}^d]$ $ilde{H}^u$ and $ilde{H}^d$ have opposite signes

S. Goloskokov and P. Kroll S. Liuti and G. Goldstein

$$ig\langle ilde{H}ig
angle = \sum_{\lambda} \int_{-1}^{1} dx M(x,\xi,Q^2,\lambda) ilde{H}(x,\xi,t) \ ig\langle ilde{E}ig
angle = \sum_{\lambda} \int_{-1}^{1} dx M(x,\xi,Q^2,\lambda) ilde{E}(x,\xi,t)$$

The brackets <F> denote the convolution of the elementary process with the GPD F (generalized form factors)

Structure functions and GPDs

 $\frac{d^4\sigma}{dQ^2dx_Bdtd\phi_{\pi}} = \Gamma(Q^2, x_B, E)\frac{1}{2\pi}(\sigma_T + \epsilon\sigma_L + \epsilon\cos 2\phi_{\pi}\sigma_{TT} + \sqrt{2\epsilon(1+\epsilon)}\cos\phi_{\pi}\sigma_{LT})$

$$\sigma_T = \frac{4\pi\alpha_e}{2\kappa} \frac{\mu_\pi^2}{Q^4} [(1-\xi^2)|\langle H_T \rangle|^2 - \frac{t'}{8m^2} |\langle \bar{E}_T \rangle|^2]$$

$$\sigma_{TT} = \frac{4\pi\alpha_e}{2\kappa} \frac{\mu_\pi^2}{Q^4} \frac{t'}{8m^2} |\langle \bar{E}_T \rangle|^2$$

<u>Transversity GPD model</u> S. Goloskokov and P. Kroll S. Liuti and G. Goldstein

 $\sigma_{L} << \sigma_{T}$

 $ig\langle ilde{H}ig
angle = \sum_{\lambda} \int_{-1}^{1} dx M(x,\xi,Q^2,\lambda) ilde{H}(x,\xi,t) \ ig\langle ilde{E}ig
angle = \sum_{\lambda} \int_{-1}^{1} dx M(x,\xi,Q^2,\lambda) ilde{E}(x,\xi,t)$

The brackets <F> denote the convolution of the elementary process with the GPD F (Generalized Form Factors, GFF)

2011-2017

π^0/η Exclusive Electroproduction (Jlab)

PHYSICAL REVIEW C 80, 035203 (2009)

 Exclusive neutral pionelectroproduction in the deeply virtual regime. Phys. Rev. C 83, 025201 (2011)
 A. N. Villano,^{1,*} P. Stoler,¹ P. E. Bosted,² S. H. Connell,³ M. M. Dalton,⁴ M. K. Jones,² V. Kubarovsky,¹ G. S. Adams,¹

A. N. Villano,^{1,*} P. Stoler,¹ P. E. Bosted,² S. H. Connell,³ M. M. Dalton,⁴ M. K. Jones,² V. Kubarovsky,¹ G. S. Adams,¹ A. Ahmidouch,⁵ J. Arrington,⁶ R. Asaturyan,^{7,†} O. K. Baker,^{2,8} H. Breuer,⁹ M. E. Christy,⁸ S. Danagoulian,⁵ D. Day,¹⁰
 Measurement of Exclusive π⁰ electroproduction Structure Functions and

- Measurement of Exclusive π⁰ electroproduction Structure Functions and their relationship to Transverse Generalized Parton Distribution., PRL 109, 112001 (2012)
- Exclusive π⁰ electroproduction at W>2 GeV with CLAS. Phys.Rev. C 90, 025205 (2014)
- Exclusive Rosenbluth Separation of the π^0 Electroproduction Cross Section. PRL **117**, 262001 **(2016)**
- Exclusive η electroproduction at W>2 GeV with CLAS and tranversity generalized parton distributions. Phys. Rev. C 95, 035202 (2017)

109, 112001 (2012)

Measurement of Exclusive π^0 Electroproduction Structure Functions and their Relationship to Transverse Generalized Parton Distributions

I. Bedlinskiy,²² V. Kubarovsky,^{35,30} S. Niccolai,²¹ P. Stoler,³⁰ K. P. Adhikari,²⁹ M. Aghasyan,¹⁸ M. J. Amaryan,²⁹

• The measured cross section of π^0 electroproduction is much larger than expected from leading-twist handbag calculation. This means that the contribution of the longitudinal cross section σ_L is small in comparison with σ_T . The same conclusion can be made in a almost model independent way from the comparison of the cross sections σ_U , σ_{TT} and σ_{TT} .

• The data appear to confirm the expectation that pseudoscalar and, in particular, π^0 electroproduction is a uniquely sensitive process to access the transversity GPDs \overline{E}_T and H_T .

Rosenbluth separation $\sigma_{\!\mathsf{T}}$ and $\sigma_{\!\mathsf{L}}$ Hall-A Jefferson Lab

 σ_{τ} (red circles) and σ_{t} (blue triangle) for Q²=1.5 GeV² x_p=0.36

- Experimental **proof** that the transverse π^0 cross section is dominant!
- It opens the direct way to study the transversity GPDs in pseudoscalar exclusive production

Hall-A, Phys.Rev.Lett. 117,262001(2016)

4 Dimensional Grid

Rectangular bins are used.

- Q² 7 bins(1.-4.5GeV²)
- x_B 7 bins(0.1-0.58)
- t 8 bins(0.09-2.0GeV)
- φ 20 bins(0-360°)
- π^0 data ~2000 points
- η data ~1000 points

$$ep \rightarrow ep(\pi^0 / \eta)$$

$$d\sigma_{\rm U}/dt$$

$$\frac{d\sigma}{dt}(\gamma^* p \to ep\pi^0) \propto e^{bt}$$

t-slope parameter: x_B dependence

Looking to this picture we can say that the perp width of the partons with $x \rightarrow 1$ goes to zero.

Structure Functions $(\sigma_{T} + \epsilon \sigma_{L}) \sigma_{TT} \sigma_{LT}$

CLAS data and GPD theory predictions

- **Transversity GPDs** H_T and $\overline{E}_T = 2\tilde{H}_T + E_T$ dominate in CLAS kinematics.
- The model was optimized for low x_B and high Q². The corrections t/Q² were omitted
 GPD model successfully describes 2
- GPD model successfully describes
 CLAS data even at low Q²
- Pseudoscalar meson production provides unique possibility to access the transversity GPDs.

CLAS collaboration. I Bedlinskiy et al. Phys.Rev.Lett. 109 (2012) 112001

η Structure Functions ($\sigma_{T} + \epsilon \sigma_{L}$) $\sigma_{TT} \sigma_{LT}$

Comparison π^0/η

- The statement about the ability of transversity GPD model to describe the pseudoscalar electroproduction becomes more solid with the inclusion of η data

η/π^0 ratio

 $\frac{\sigma(ep \to ep\eta)}{\sigma(ep \to ep\pi^0)}$

- The dependence on x_B and Q² is very weak.
- Chiral odd GPD models predict this ratio to be ~1/3 at CLAS kinematics
- Chiral even GPD models predict this ratio to be around 1 (at low –t).

η/π^0 ratio

 $\frac{\sigma(ep \to ep\eta)}{\sigma(ep \to ep\pi^0)}$

Structure functions and GPDs

$$\begin{aligned} \frac{d\sigma_T}{dt} &= \frac{4\pi\alpha}{2k'} \frac{\mu_P^2}{Q^8} \left[\left(1 - \xi^2\right) \left| \langle \boldsymbol{H_T} \rangle \right|^2 - \frac{t'}{8m^2} \left| \langle \bar{\boldsymbol{E}_T} \rangle \right|^2 \right] \\ \frac{d\sigma_{TT}}{dt} &= \frac{4\pi\alpha}{k'} \frac{\mu_P^2}{Q^8} \frac{t'}{16m^2} \left| \langle \bar{\boldsymbol{E}_T} \rangle \right|^2 \end{aligned}$$

Goloskokov, Kroll Transversity GPD model

$$\begin{split} \left| \langle \bar{E}_T \rangle^{\pi,\eta} \right|^2 &= \frac{k'}{4\pi\alpha} \frac{Q^8}{\mu_P^2} \frac{16m^2}{t'} \frac{d\sigma_{TT}^{\pi,\eta}}{dt} \\ \left| \langle H_T \rangle^{\pi,\eta} \right|^2 &= \frac{2k'}{4\pi\alpha} \frac{Q^8}{\mu_P^2} \frac{1}{1-\xi^2} \left[\frac{d\sigma_T^{\pi,\eta}}{dt} + \frac{d\sigma_{TT}^{\pi,\eta}}{dt} \right] \end{split}$$

• In the approximation of the transversity GPDs dominance, that is supported by Jlab data, $\sigma_L << \sigma_T$, we have direct access to the generalized form factors for π and η production.

$$egin{aligned} &\langle \pmb{H_T}
angle &= \Sigma_\lambda \int_{-1}^1 dx M(x,\xi,Q^2,\lambda) \pmb{H_T}(x,\xi,t) \ &\langle ar{\pmb{E}_T}
angle &= \Sigma_\lambda \int_{-1}^1 dx M(x,\xi,Q^2,\lambda) ar{\pmb{E}_T}(x,\xi,t) \end{aligned}$$

The brackets <F> denote the convolution of the elementary process with the GPD F (generalized form factors)

$$\overline{E}_{T}=2\widetilde{H}_{T}+E_{T}$$

π^0 Generalized Form Factors

- $\overline{E}_{T} > H_{T}$
- t-dependence is steeper for \overline{E}_{T} than for H_{T}
- $|\langle E_T, H_T \rangle| \sim \exp(bt)$
- b(E_T)=1.27 GeV⁻²
- b(H_T)=0.98 GeV⁻²

GPD Flavor Decomposition

$$egin{aligned} H^{\pi}_{T} &= rac{1}{3\sqrt{2}}[2H^{u}_{T} + H^{d}_{T}]\ H^{\eta}_{T} &= rac{1}{\sqrt{6}}[2H^{u}_{T} - H^{d}_{T}] \end{aligned}$$

_

$$H^u_T = rac{3}{2\sqrt{2}} [H^\pi_T + \sqrt{3} H^\eta_T] \ H^d_T = rac{3}{\sqrt{2}} [H^\pi_T - \sqrt{3} H^\eta_T]$$

Similar expressions for \overline{E}_{T}

- GPDs appear in different flavor combinations for π^0 and η
- The combined π^0 and η data permit the flavor (u and d) decomposition for GPDs H_T and \overline{E}_{T}
- The u/d decomposition was done under <u>assumption</u> that the relative phase between u and d is 0 or 180 degrees. This assumption confirmed at least for E_T

Flavor Decomposition of the Transversity GPDs

 $Q^2=1.8 \text{ GeV}^2$, $x_B=0.22$

- <H_T>^u and <H_T>^d have different signs for u and dquarks in accordance with the transversity function h₁ (Anselmino et al.)
- <\overline{E}_T >^d and <\overline{E}_T >^u seem to have the same signs
- Decisions shown with positive values of uquark's GPDs only

π^0 Electroproduction off <u>Neutron</u>

Flavor decomposition:n and p

$$H_T^p = \frac{1}{3\sqrt{2}} (2H_T^u + H_T^d)$$
$$H_T^n = \frac{1}{3\sqrt{2}} (H_T^u + 2H_T^d)$$

$$\begin{split} H^p_T &= \frac{1}{3\sqrt{2}} (2H^u_T + H^d_T) \\ H^n_T &= \frac{1}{3\sqrt{2}} (H^u_T + 2H^d_T) \\ H^\eta_T &= \frac{1}{\sqrt{6}} (2H^u_T - H^d_T) \end{split}$$

Proton, neutron and η data Will solve the problem of unknown phase between u and d GFF

From GFF to GPD

- The access to GPDs through DVMP is indirect because cross section depends on Generalized Form Factors (GFFs), i.e. convolution of GPDs with sub processes.
- GFFs (or CFF in DVCS) form factors are an intermediate step towards GPD extraction
- The way to go is the global fit of experimental observables using GPD models with parameters. It may include DVCS and DVMP experimental data set.
- The DVCS community made an impressive steps in this direction. We can do similar attempts for the transversity GPDs.
- There are several models on the market that provide such a parameterization (PK,SL,SG,GG,CW...)
- The Jlab pseudoscalar electroproduction data(cross section on different targets, asymmetries etc) gives the unique opportunity to access the critical parameters of the transversity GPDs.

The Fourier Transform of Generalized Parton Distribution

- The Fourier transforms of GPDs at $\xi = 0$ describe the distribution of partons in the transverse plane (M. Burkardt, 2002)
- It was shown that they satisfy positivity constraints which justify their physical interpretation as a probability density
- H is related to the impact parameter distribution of unpolarized quarks in an unpolarized nucleon
- H̃ is related to the distribution of longitudinally polarized quarks in a longitudinally polarized nucleon
- E is related to the distortion of the unpolarized quark distribution in the transverse plane when the nucleon has transverse polarization.
- \overline{E}_{T} is related to the distortion of the polarized quark distribution in the transverse plane for an unpolarized nucleon

$$\mathcal{K}(x,\vec{b}) = \int \frac{d^2\vec{\Delta}}{(2\pi)^2} \exp^{-i\vec{b}\cdot\vec{\Delta}} K(x,t) = -\Delta^2$$

GPD Parameterization and Fourier Transform $\mathcal{K}(x,\vec{b}) = \int \frac{d^2 \vec{\Delta}}{(2\pi)^2} \exp^{-i\vec{b}\cdot\vec{\Delta}} K(x,t=-\Delta^2)$

GPD Parameterization (Diehl, Kroll 2013) $K(x,t) = k(x) \cdot \exp^{t \cdot f(x)}$

forward limit k(x) and the profile function f(x)

$$\mathcal{K}(x, \vec{b}) = \frac{1}{4\pi} \frac{k(x)}{f(x)} \exp^{-b^2/4f(x)}$$

 $f(x) = (B + \alpha' \ln 1/x) \cdot (1 - x)^3 + A \cdot x \cdot (1 - x)^2$

A,B, α' are the model parameters

The Density of Transversely Polarized Quarks (in x-direction) in an Unpolarized Proton

 $\bar{\mathbf{E}}_{\mathsf{T}}$ is related to the distortion of the polarized quark distribution in the transverse plane for an unpolarized nucleon

$$\delta(x,\vec{b}) = \frac{1}{2} [H(x,\vec{b}) - \frac{b_y}{m} \frac{\partial}{\partial b^2} \bar{E}_T(x,\vec{b})]$$

The Density of Transversely Polarized Quarks (in x-direction) in an Unpolarized Proton

Ē is related to the distortion of the polarized quark distribution in the transverse plane for an upromarized nucleon

$$\delta(x,\vec{b}) = \frac{1}{2} [H(x,\vec{b}) - \frac{b_y}{m} \frac{\partial}{\partial b^2} \bar{E}_T(x,\vec{b})]$$

Integrated Over x Transverse Densities for u and d Quarks in the Proton

GPD model: integrated over x Impact Parameter Density for u-quarks

- Left: unpolarized u-quarks in a proton with transverse spin vector.
- **Right**: the distribution of u-quarks with transverse spin vector in an unpolarized proton.

M. Diehl and Ph Hagler (2005) GPD model with "some reasonable" parameters.

CLAS data and Proton Spin Density Distributions for u and quarks

- CLAS data on π^0/η electroproduction gives direct access to the Etbar GPD

$$\begin{aligned} \frac{d\sigma_T}{dt} &= \frac{4\pi\alpha}{2k'} \frac{\mu_P^2}{Q^8} \left[\left(1 - \xi^2\right) \left| \langle \boldsymbol{H_T} \rangle \right|^2 - \frac{t'}{8m^2} \left| \langle \bar{\boldsymbol{E}_T} \rangle \right|^2 \right] \\ \frac{d\sigma_{TT}}{dt} &= \frac{4\pi\alpha}{k'} \frac{\mu_P^2}{Q^8} \frac{t'}{16m^2} \left| \langle \bar{\boldsymbol{E}_T} \rangle \right|^2 \end{aligned}$$

- GPD model successfully described our data
- The spin density of the proton was extracted using the Kroll's model
- We can map the u and d –quarks spin density distributions as a function of x

M. Diehl and P. Kroll, Eur. Phys. J. C 73, no. 4, 2397 (2013)

Transverse Densities for u and d

Quarks in the Proton

Note distortions for transversely polarized u and d quarks.

Transverse Densities for u and d Quarks in the Proton

Polarized Quarks in Unpolarized Proton 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 u quarks 0 0 -0.2 -0.2 -0.4 -0.4 -0.6 -0.6 -0.8 -0.8 -1 -1 -0.5 0.5 1 -0.5 0 0.5 0 -1 -1 u, x=0.3 b_x,fm q u, x=0.4 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 d quarks 0 0 -0.2 -0.2 -0.4 -0.4 -0.6 -0.6 -0.8 -0.8 -1 -1 0.5 -0.5 0.5 -0.5 1 -1 0 1 -1 0 d, x=0.3 d, x=0.4 b_v,fm X=0.3 X=0.4

Transverse Densities for u and d Quarks in the Proton

CLAS12

Started to take data!

- HT Cherenkov Counter
- Drift chamber system
- LT Cherenkov Counter
- Forward ToF System
- Pre-shower calorimeter
- E.M. calorimeter
- Forward Tagger
- RICH detector

Central Detector (CD)

- Solenoid magnet
- Silicon Vertex Tracker
- Central Time-of-Flight
- Central Neutron Detector
- MicroMegas tracker

Beamline

- Photon Tagger Dump
- Shielding
- Targets
- Moller Polarimeter
- Faraday Cup

Central Vertex Detector

Central Neutron Detector

Central TOF

HT Cherenkov Counter

• Particle ID

• Electron trigger

360° seamless coverage in azimuth Radiator Gas: CO₂

Forward TOF

δT within 20% of specs

CLAS₁₂

Timing Calibration "Checkplots" for one counter

RICH Detector

Radiator: Aerogel tiles, Photon detectors: MAPMTs

- RICH took data during entire RGA production runs
- 25,000 channels were calibrated using laser stand
- RICH is using equalized gains for each pixel at 1000V

CLAS12 Electromagnetic Calorimeter

Forward Tagger

Charged Cluster E and $\boldsymbol{\theta}$ ranges

- Energy and angular acceptance match or exceed design ranges
- Extends capability to detect electrons and photons at small angles down to 2.5°

Measured Value

(0.3 – 9.5) GeV

3.3% @ 2 GeV

tbd

<200 ps

2.6° to 4.6°

- Lead tungstate PbWO₄ electromagnetic calorimeter, provide fast trigger decision
- Scintillator hodoscope to separate electrons/photons
- Tracker to measure the scattering electron angle

Expected Value 2.5° to 4.5°

 $\sigma_{\rm F}/{\rm E} \le 2\%/{\rm VE} \oplus 1\%$

 $\sigma_{\theta}/\theta \leq 1.5\%, \sigma_{\phi} \leq 2^{\circ}$

(0.5-8) GeV

≤ 300 ps

Performance

Azimuthal angular coverage

EM shower energy range

Energy resolution

Angular resolution

Time resolution

CLAS12 trigger

• Inclusive electron scattering trigger

High Threshold Cherenkov Counter Drift Chambers track reconstruction Electromagnetic calorimeter

• Photoproduction trigger (FT trigger)

Forward Tagger (FT) and Hodoscope, cluster funding is used to determine the electron energy and coordinate Charge particles in the Forward and Central Detectors.

• "Muon" trigger

Select events with two muons detected in the Forward Detectors ONLY. This trigger does not require to detect scattered electron.

CLAS₁₂

Event based triggers

Kinematic reach

Future developments

 CLAS12 took data this year with proton target and will continue taking data in the same configuration this fall. Next in a queue – deuteron target.

• Cross sections:

• Asymmetries:

•
$$ep \rightarrow ep(\pi^0, \eta)$$

• $en \rightarrow en(\pi^0, \eta)$
• $ep \rightarrow e\pi^+ n$
• $ep \rightarrow eK^+ \Lambda_{\Lambda_{LU}}$ - $beam \ spin$
 \mathcal{A}_{UL} - $target \ spin$
 \mathcal{A}_{LL} - $beam \ target$

Summary

- Jlab π^0 and η data supports the dominance of the transversity GPDs H_T and \overline{E}_T in the processes of the pseudoscalar meson electroproduction
- The combined π^0 and η , proton and neutron data provide the way for the flavor decomposition of transversity GPD
- The density distributions of the polarized u and d quarks in an unpolarized proton were extracted with the GPD model parameters that describes CLAS π^0 and η data
- The measurement of deeply virtual exclusive pseudoscalar meson production uniquely measures transversity GPDs, and has already begun to access their underlying polarization distributions of quarks in the nucleon.
- The brand new CLAS12 detector began to take data with 10.6 GeV electron beam. The data analysis is in progress. Stay tuned!

The End

5 0 0.5 1 d.x=0.2 1 e...

1

-0.5

1

-0.5 0 0.5

d. x=0.1