

Interpretation of the unpolarized azimuthal asymmetries in SIDIS

Albi Kerbizi,
Trieste University and INFN

On behalf of the

COMPASS Collaboration

Asymmetries in unpolarized SIDIS

In the one photon exchange approximation, the unpolarized SIDIS cross section for an unpolarized beam is

$$\frac{d\sigma}{dx_B dz dy dP_T^2 d\phi_h} = \sigma_0 [1 + \epsilon_1 A_{\cos\phi_h}^{UU} \cos\phi_h + \epsilon_2 A_{\cos2\phi_h}^{UU} \cos2\phi_h]$$

$$\epsilon_1(y) = \frac{2(2-y)\sqrt{1-y}}{1+(1-y)^2}, \qquad \epsilon_2(y) = \frac{2(1-y)}{1+(1-y)^2}$$

The **unpolarized azimuthal asymmetries** $A^{UU}_{\cos\phi_h}$ and $A^{UU}_{\cos2\phi_h}$ receive contributions from

- **1.** Cahn effect (mostly $A_{\cos\phi_h}^{UU}$) \rightarrow kinematics of non-coplanar hard scattering
- 2. Boer-Mulders effect (mostly $A_{\cos 2\phi_h}^{UU}$) \rightarrow quarks inside an unpolarized nucleon may have transverse polarization

→ they give access to the quark intrinsic transverse momentum and to the Boer-Mulders function

Existing data

- The $A^{UU}_{\cos\phi_h}$ and $A^{UU}_{\cos2\phi_h}$ asymmetries in unpolarized SIDIS have been measured by several experiments, most recently by
 - HERMES: d, p [Phys.Rev. D87 (2013) no.1, 012010]
 - \circ COMPASS: d (NPB 886 (2014) 1046), (p \rightarrow see A. Moretti talk)
 - → Strong kinematic dependence

Existing data

- The $A^{UU}_{\cos\phi_h}$ and $A^{UU}_{\cos2\phi_h}$ asymmetries in unpolarized SIDIS have been measured by several experiments, most recently by
 - HERMES: d, p [Phys.Rev. D87 (2013) no.1, 012010]
 - \circ COMPASS: d (NPB 886 (2014) 1046), (p \rightarrow see A. Moretti talk)
 - → Strong kinematic dependence
- Difficulties in the interpretation of the asymmetries
 - → phenomenological fits not conclusive
 - \rightarrow problems in extracting $\langle k_T^2 \rangle$ from $A_{\cos \phi_h}^{UU}$
 - → BM function not yet extracted

Existing data

- The $A^{UU}_{\cos\phi_h}$ and $A^{UU}_{\cos2\phi_h}$ asymmetries in unpolarized SIDIS have been measured by several experiments, most recently by
 - HERMES: d, p [Phys.Rev. D87 (2013) no.1, 012010]
 - \circ COMPASS: d (NPB 886 (2014) 1046), (p \rightarrow see A. Moretti talk)
 - → Strong kinematic dependence
- Difficulties in the interpretation of the asymmetries
 - → phenomenological fits not conclusive
 - \rightarrow problems in extracting $\langle k_T^2 \rangle$ from $A_{\cos \phi_h}^{UU}$
 - → BM function not yet extracted

We tried to interpret COMPASS d $A_{\cos\phi_h}^{UU}$ asymmetry using a MC based on the 3P_0 +string model (*) for polarized quark jets where we implemented the Cahn effect

Intrinsic quark transverse momentum

To describe the $A_{\cos\phi_h}^{UU}$ asymmetry with the MC in a limited kinematical region (up to $z\sim0.5$) it is necessary to require

• the intrinsic $\langle k_T^2 \rangle$ of quarks to depend on x_B

• the dependence of the hadrons p_T in fragmentation to depend on z: in our case this is built-in in the model due to the underling string fragmentation framework.

Diffractive VM contribution in COMPASS SIDIS sample (LiD)

 π^- from diffractive $\rho^0 \rightarrow$ important at large z and small Q^2

PLB 764 (2017) 1

- COMPASS has estimated the contribution of hadrons produced in the decay of diffractive vector mesons (VM)
- $ightarrow
 ho^0$ contamination is not negligible at small $m{Q}^2$ and at large

Z

 $\rightarrow \phi$ mesons contribute less and mostly at $z \sim 0.5$

 About the same shape in different z bins

PLB 764 (2017) 1

 COMPASS has estimated the contribution of hadrons produced in the decay of diffractive vector mesons (VM)

Diffractive VM contribution

 $\rightarrow \rho^0$ contamination is not negligible at small \emph{Q}^2 and at large \emph{z} and at small \emph{P}_T

 $\rightarrow \phi$ mesons contribute less and mostly at $z \sim 0.5$

Fraction of pions from exclusive ρ^0

From previous results we evaluated the fraction

$$r = \frac{N_h^{excl}}{N_h^{excl} + N_h^{SIDIS}}$$

- Same binning as for the published unpolarized azimuthal asymmetries
- Up to 50% contamination in the highest z bin and at small P_T

Do hadrons from exclusive VMs also contribute to $A_{cos\ \phi_h}^{UU}$ and $A_{cos\ 2\phi_h}^{UU}$ asymmetries?

Do hadrons from exclusive VMs also contribute to $A^{UU}_{cos\ \phi_h}$ and $A^{UU}_{cos\ 2\phi_h}$ asymmetries?

We have studied this possible contribution for the first time.

- We have used 2006 SIDIS data →
 - similar conditions to the 2004 data, same LiD target, same μ^+ beam energy
 - used for the study of the P_T^2 multiplicities

- We have used 2006 SIDIS data →
 - similar conditions to the 2004 data, same LiD target, same μ^+ beam energy
 - used for the study of the P_T^2 multiplicities
- Selection of DIS events and hadrons → same cuts as in 2004 data
- $Q^2 > 1(\text{GeV}/c)^2$
- $W > 5(\text{GeV}/c^2)$
- -0.2 < y < 0.9
- $\theta_{\gamma^*}^{lab}$ < 60mrad
- $-0.003 < x_B < 0.13$
- -0.2 < z < 0.85
- $0.1(\text{GeV}/c) < P_T < 1.(\text{GeV}/c)$

- We have used 2006 SIDIS data →
 - similar conditions to the 2004 data, same LiD target, same μ^+ beam energy
 - used for the study of the P_T^2 multiplicities
- Selection of DIS events and hadrons → same cuts as in 2004 data

$$- Q^2 > 1(\text{GeV}/c)^2$$

-
$$W > 5(\text{GeV}/c^2)$$

$$-0.2 < y < 0.9$$

-
$$\theta_{\gamma^*}^{lab}$$
 < 60mrad

$$-0.003 < x_B < 0.13$$

$$-0.2 < z < 0.85$$

-
$$0.1(\text{GeV}/c) < P_T < 1.(\text{GeV}/c)$$

• selection of exclusive events \rightarrow only events with two final state hadrons of opposite charge with $z_t=z_1+z_2>0.95$

- We have used 2006 SIDIS data →
 - similar conditions to the 2004 data, same LiD target, same μ^+ beam energy
 - used for the study of the P_T^2 multiplicities
- Selection of DIS events and hadrons → same cuts as in 2004 data
- selection of exclusive events \rightarrow only events with two final state hadrons of opposite charge with $z_t=z_1+z_2>0.95$

- We have used 2006 SIDIS data →
 - similar conditions to the 2004 data, same LiD target, same μ^+ beam energy
 - used for the study of the P_T^2 multiplicities
- Selection of DIS events and hadrons → same cuts as in 2004 data
- selection of exclusive events \rightarrow only events with two final state hadrons of opposite charge with $z_t=z_1+z_2>0.95$

- We have used 2006 SIDIS data →
 - similar conditions to the 2004 data, same LiD target, same μ^+ beam energy
 - used for the study of the P_T^2 multiplicities
- Selection of DIS events and hadrons → same cuts as in 2004 data
- selection of exclusive events \rightarrow only events with two final state hadrons of opposite charge with $z_t=z_1+z_2>0.95$

Albi Kerbizi

20

- We have used 2006 SIDIS data →
 - similar conditions to the 2004 data, same LiD target, same μ^+ beam energy
 - used for the study of the P_T^2 multiplicities
- Selection of DIS events and hadrons → same cuts as in 2004 data
- selection of exclusive events \rightarrow only events with two final state hadrons of opposite charge with $z_t = z_1 + z_2 > 0.95$

Azimuthal distributions in exclusive events

- $|\phi_h|$ distributions show very large modulations
- Strong correlation between z and $|oldsymbol{\phi}_h|$

Modulations in the azimuthal distributions

 The acceptance corrected azimuthal distributions in exclusive events have been fitted using the function

$$N_{excl}(\phi_h; \boldsymbol{v}) = N_0[1 + \epsilon_1(y)a_{\cos\phi_h}^{UU,excl}(\boldsymbol{v})\cos\phi_h + \epsilon_2(y)a_{\cos2\phi_h}^{UU,excl}(\boldsymbol{v})\cos2\phi_h]$$
$$\boldsymbol{v} = (x_B, z, P_T)$$

in the same bins of the 2004 COMPASS azimuthal asymmetries for h^+ and h^-

$a_{\cos\phi_h}^{UU,excl}$ amplitude

- Large amplitudes at small P_T and x_B
- Strong z dependence
- Strong z dependence Change of sign with $z = \frac{1}{2}$
- Same for h^+ and h^-

$a_{\cos 2\phi_h}^{UU,excl}$ amplitude

- Smaller but still not negligible
- Positive values
- Same for h^+ and h^-

Exclusive contribution to the SIDIS asymmetries

 $ra_{\cos\phi_h}^{UU,excl}$

Clearly different from zero!

Exclusive contribution to the SIDIS asymmetries

 $ra_{\cos 2\phi_h}^{UU,excl}$

Clearly different from zero!

"true" SIDIS azimuthal asymmetries

Finaly, the true SIDIS azimuthal asymmetries have been evaluated as

$$A_{\cos n\phi_h}^{UU} \rightarrow \frac{1}{1-r} \left(A_{\cos n\phi_h}^{UU} - r a_{\cos n\phi_h}^{UU,excl} \right), \qquad n = 1,2$$

• $A_{cos\ \phi_h}^{UU}$ and $A_{cos\ 2\phi_h}^{UU}$ are the published values of the semi-inclusive azimuthal asymmetries

Comparison between the subtracted and the published A^{UU}

 $A_{cos\ \phi_h}^{UU}$ asymmetry for h+

Full points \rightarrow $A_{\cos\phi_h}^{UU}$ after exclusive VM subtraction

Comparison between the subtracted and the published

 $A_{cos\ 2\phi_h}^{UU}$ asymmetry for h+

Full points \rightarrow $A_{\cos 2\phi_h}^{UU}$ after exclusive VM subtraction

Comparison between MC and $A_{cos \phi_h}^{UU}$ asymmetries for h+ with subtracted VM contribution

$A_{\cos\phi_h}^{UU}$ asymmetry after subtracting exclusive VM contribution

 $A_{\cos 2\phi_h}^{UU}$ asymmetry after subtracting exclusive VM contribution

Conclusions

- A large contribution from exclusive VM production is present at small Q^2 , large z and small P_T
- For the first time we have measured the modulations in the azimuthal distributions of hadrons from the decay of exclusive VMs:
 - The amplitudes of $\cos\phi_h$ and $\cos2\phi_h$ modulations are very large, clearly different from zero, with strong kinematical dependence
- This contribution can not be neglected in measuring the SIDIS azimuthal asymmetries and in the phenomenological analyses

Conclusions

- A large contribution from exclusive VM production is present at small Q^2 , large z and small P_T
- For the first time we have measured the modulations in the azimuthal distributions of hadrons from the decay of exclusive VMs:
 - The amplitudes of $\cos\phi_h$ and $\cos2\phi_h$ modulations are very large, clearly different from zero, with strong kinematical dependence
- This contribution can not be neglected in measuring the SIDIS azimuthal asymmetries and in the phenomenological analyses

An important message for the past and future measurements...

Backup

Comparison between the subtracted and the published $A_{\cos\phi_h}^{UU} {\rm asymmetry\ for\ h-}$

Triangles

 $\triangle A_{\cos\phi_h}^{UU}$ published

Circles $A_{\cos\phi_h}^{UU}$ after exclusive VM subtraction

Comparison between the subtracted and the published $A^{UU}_{\cos\,2\phi_h} {\rm asymmetry} \ {\rm for} \ {\rm h-}$

Triangles $\triangle A_{cos\ 2\phi_h}^{UU}$ published

 $\begin{array}{ll} \text{Circles} \\ \circ & A^{UU}_{\cos 2\phi_h} \\ \text{after exclusive VM} \\ \text{subtraction} \end{array}$

Comparison between MC and $A_{cos\ \phi_h}^{UU}$ asymmetry for h- after subtracting the exclusive VM contribution

