Measurement of double helicity asymmetries in π^\pm production at mid-rapidity at PHENIX

Taebong Moon
for the PHENIX Collaboration

Yonsei Univ./RIKEN

Sep 12nd 2018
Motivation

- Jaffe-Manohar Sum Rule:

\[\text{Proton Spin} = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_q + L_g \]

 - \(\Delta \Sigma\): reasonably well measured. only 30% of proton spin.
 - Where is the missing part? (spin crisis)

- Many experimental endeavors to measure \(\Delta G\):
 - Polarized DIS (evolution), SIDIS (high pT hadrons/charmed mesons)
 - Polarized p+p collisions at RHIC and \(A_{LL}\) measurement:
Motivation: Accessing ΔG via A_{LL} in $p+p$ col.

\[A_{LL} = \frac{d\Delta \sigma}{d\sigma} = \frac{\sum_{f_1, f_2=q, \bar{q}, g} \Delta f_1 \otimes \Delta f_2 \otimes \Delta \hat{\sigma}^{f_1 f_2 \to fX} \otimes D_f^h}{\sum_{f_1, f_2=q, \bar{q}, g} f_1 \otimes f_2 \otimes \hat{\sigma}^{f_1 f_2 \to fX} \otimes D_f^h} \]

"Measured Particles"
Motivation: "Directly" access the sign of ΔG

- q-g scattering starts to dominate at RHIC p_T above ~ 5 GeV/c.
- Preferential fragmentation of u to π^+ and d to π.

\[A_{LL}^{\pi^+} \approx a_{gg} \Delta g \Delta g + \frac{a_{ug}}{a_{ug}} \Delta u \Delta g \]
\[> 0 \quad > 0 \]
\[A_{LL}^{\pi^-} \approx a_{gg} \Delta g \Delta g + \frac{a_{dg}}{a_{dg}} \Delta d \Delta g \]
\[> 0 \quad < 0 \]

\[\Delta g > 0 \rightarrow A_{LL}^{\pi^+} > A_{LL}^{\pi^-} \]

and vice versa
- The uncertainties have been reduced for $x > 0.05$ based on RHIC data up to Run-2009.

- Expanding experimental sensitivity to lower x region, $x < 0.05$, with PHENIX π^0 at 510 GeV.

- Confirms non-zero gluon polarization via hadron production.

- π^\pm as potential direct indicator for the sign of Δg via pion A_{LL} ordering.
• 14 (150) pb\(^{-1}\) polarized p+p data available from dataset in 2009 (2013).
• Higher rate of Run-13 than that of Run-9.
• Due to the lack of hadron trigger in PHENIX, the statistical precision of the π\(^{\pm}\) data is limited in both Run-9 and Run-13.
• Alternatively, high \(p_T\) γ triggers are used for high \(p_T\) π\(^{\pm}\) analysis.
Particle (π±) ID and background sources

- Trigger π± with a BBC and EMCal.
- Track can be divided into two categories according to RICH response at p_T 5~16GeV/c.
 - RICH Hit: $e^±$ and π±.
 - No RICH Hit: $K^±$ and p(-bar).

<table>
<thead>
<tr>
<th>Particle</th>
<th>Electron</th>
<th>Pion</th>
<th>Kaon</th>
<th>Proton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold</td>
<td>30MeV/c</td>
<td>4.7GeV/c</td>
<td>16GeV/c</td>
<td>30GeV/c</td>
</tr>
</tbody>
</table>

Raw Particle Spectra

- Good Track Cut
- + RICH Hit On

Counts vs. p_T [GeV/c]
Particle (π±) ID and background sources (continued)

- e± backgrounds:
 - Primary e± easily removed with e/p and shower shape cuts.
 - The tracking algorithm assumes that tracks originate from the vertex. Therefore, off-vertex tracks may be mis-reconstructed with an arbitrarily large momentum ($p_T \sim 1/\alpha$).
 - Conversion e± (decay-in-flight) removed by applying cuts on the deviation of the hit position from the track model projection (also shower shape cut and others).
Measuring A_{LL} in experiment

\[
A_{LL}^\pi = \frac{d\Delta \sigma}{d\sigma} = \frac{l}{|P_B P_Y|} \frac{N_{++} - R N_{+-}}{N_{++} + R N_{+-}}
\]

\[
R = \frac{L_{++}}{L_{+-}}
\]
Improvement of statistical precision of π^\pm A_{LL} in Run-13.

Expanding experimental sensitivity to lower x_T region, < 0.05, with in Run-13.
Theory curves follow measured A_{LL} within statistical uncertainty.

As a complementary probe, might help to double-check the sign of the gluon polarization.
Summary and outlook

- A_{LL} in π^\pm production are sensitive to the sign of the gluon polarization.
- A_{LL} in π^\pm production at 510 GeV has been measured for the first time in the world.
- As a complementary probe with improved statistics, might help to double-check the gluon polarization.
Thanks!
Latest $\pi^\pm X$-section results at 200 GeV with Run–9 data

π^\pm background < 2% averaged over the p_T range, thanks to the Hadron Blinder Detector (HBD).

PHENIX π^\pm are in good agreement with Star π^\pm and the DSS14 recent global fit.
• The world’s only polarized p+p collider
 - Longitudinal or transverse polarization
 - Up to $\sqrt{s} = 510$ GeV
• **Tracking**
 - Drift Chamber (DC)
 - Pad Chamber (PC1/PC3)
 - Silicon Vertex Tracker (VTX) in 2013

• **π^{\pm} Identification**
 - Ring Imaging Cherenkov Detector (RICH)
 - Electromagnetic Calorimeter (PbSc/PbGl)
 - Hadron Blider Detector (HBD) in 2009

• **Relative Luminosity**
 - Beam Beam Counter (BBC)
 - Zero Degree Calorimeter (ZDC)

• **Acceptance**
 - $|\eta|<0.35$
 - $\Delta\phi = 2 \times \pi/2$