3D Structure of the Nucleon: TMDs

Session Conveners:

A. Bacchetta, J. Drachenberg, B. Parsamyan

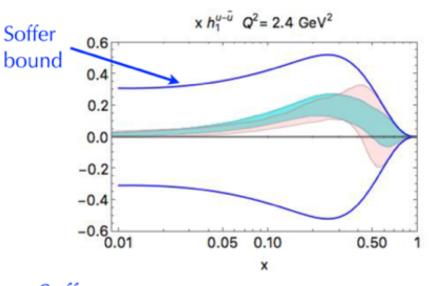
OUTLINE

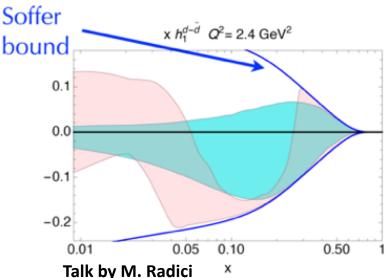
- Transversity
- Sivers
- Unpolarized TMDs
- Summary

Vital Stats

31 Talks

- SIDIS experiments (5)
- pp/pA experiments (9)
- Theory (9)
- Phenomenology (8)


Transversity


QUARKS	unpolarized	chiral	transverse
U	f_1		$h_{_{\mathrm{I}}}^{\perp}$
L		$\left(g_{1L}\right)$	$h_{_{1L}}^{\perp}$
Т	f_{1T}^{\perp}	$g_{_{1T}}$	$(h_{_{1T}},h_{_{1T}}^{\perp})$

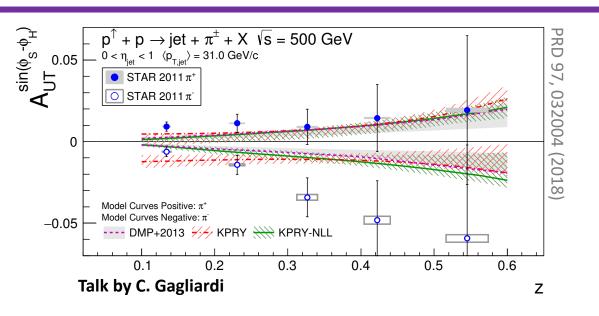
GLUONS	unpolarized	circular	linear
U	(f_1^g)		$h_1^{\perp g}$
L		$\left(g_{_{1L}}^{g}\right)$	$h_{_{1L}}^{_{\perp g}}$
Т	$f_{1T}^{\perp g}$	$g_{_{1T}}^{^g}$	$h_{1T}^g, h_{1T}^{\perp g}$

Transversity Extraction

Radici & Bacchetta (Based on PRL 120 (2018) 192001, arXiv:1802.05212 + updates)

First transversity extraction including p+p data

- Di-hadron data (collinear factorization)
- STAR pp data increase precision of u-quark
- Resolve some tension in d-quark
- Input on unpolarized gluon FF critical!
- Future COMPASS deuteron target run (2021) promises increased precision, in particular for d-quark

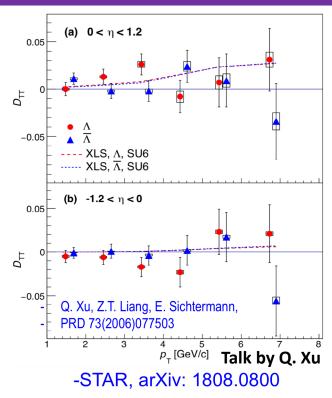

Radici & Bacchetta, P.R.L. **120** (18) 192001

global fit

old fit

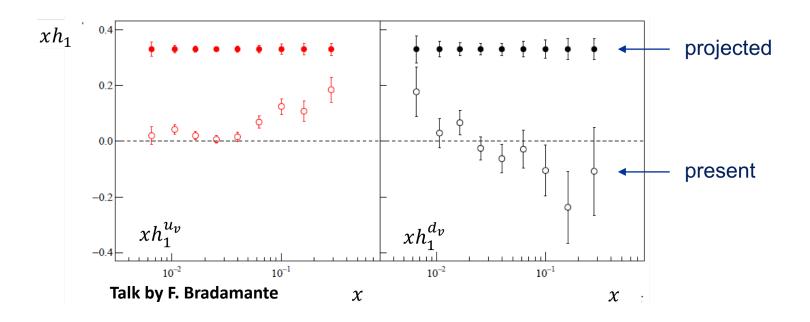
Radici et al., JHEP **1505** (15) 123

Transversity Results in p+p



- Reasonably described by SIDIS-based models
- Effects of TMD evolution appear to be small

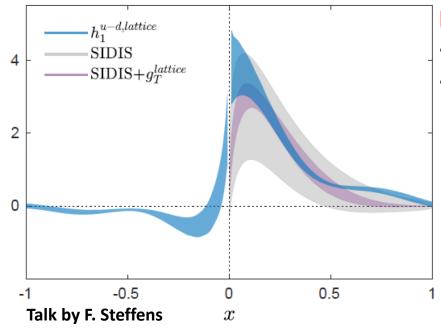
First Hyperon D_{TT} Result from STAR!


- Sensitive through transversely polarized FF
- Small but consistent with models at current precision

Recent (large!) STAR datasets currently under analysis

Proposed forward upgrade: new, innovative probes

Impact of Future COMPASS Run on Transversity

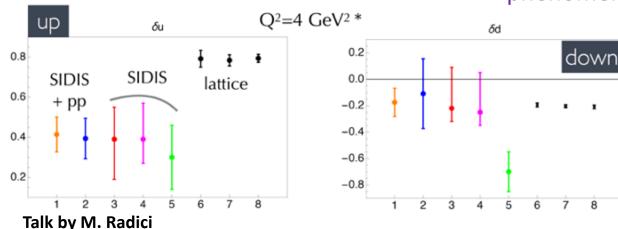


COMPASS 2021 deuteron run approved

- Measure deuteron Collins asymmetry with stat. errors smaller than those for proton $\sigma_d \sim 0.62 \sigma_p$ (~ 0.007 in last x bin)
- Allows much more precise extractions of transversity and Sivers PDFs
- $u_v[d_v]$ transversity: reduction of stat. uncertainties by up to a factor 2 [4]

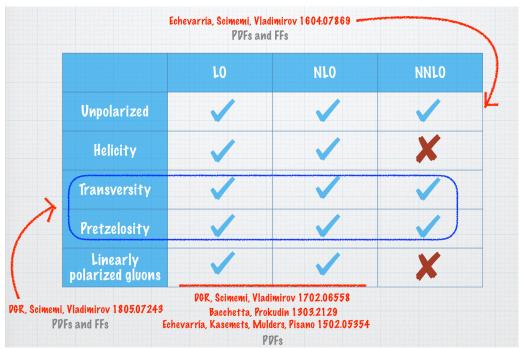
Multi-D analysis, weighted asymmetries etc.

Transversity and Tensor Charge Calculations



Improved calculation of transversity

- Based on quasi-PDF approach
- Allows one to obtain full x dependence, not just the moments (e.g., tensor charge)


Tensor charge calculation

- COMPASS pseudodata indicates increased precision, e.g. for d quark
- Tension between lattice & phenomenology

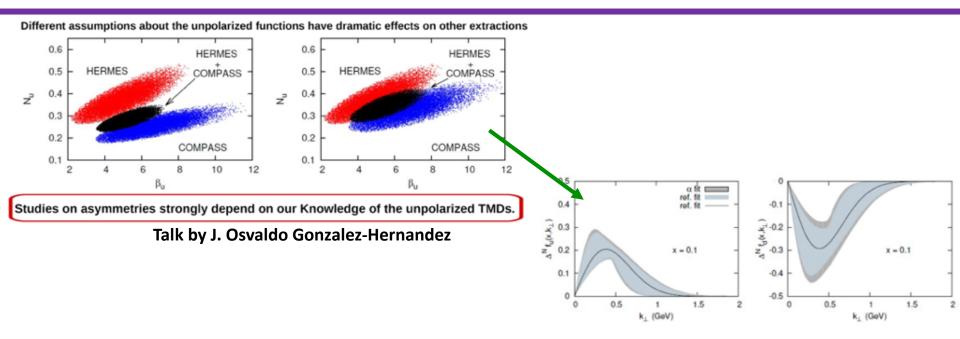

```
1- global fit + pseudodata
2- global fit Radici & Bacchetta, P.R.L. 120 (18) 192001
3- TMD fit Kang et al., P.R. D93 (16) 014009 * Q2=10
4- Torino Anselmino et al., P.R. D87 (13) 094019 * Q2=1
5- JAM fit Lin et al., P.R.L. 120 (18) 152502 * Q0<sup>2</sup>=2
6- PNDME16 Bhattacharya et al., P.R. D94 (16) 054508
7- PNDME18 Gupta et al., arXiv:1808.07597
8- ETMC17 Alexandrou et al., P.R. D95 (17) 114514;
E. P.R. D96 (17) 099906
```

Theoretical Advancements in Transversity

Talk by D. Gutierrez Reyes

New TMD Matching Coefficients!

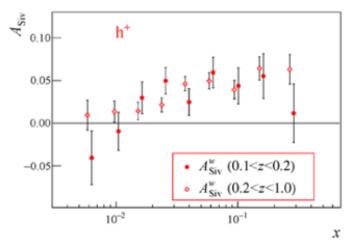
- Necessary perturbative ingredients for proper definition of TMDs
- Calculated up to NNLO for transversity and pretzelosity
- Pretzelosity coefficients are always ZERO! Are they zero at all orders?

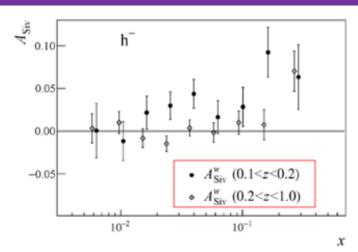

→ Would suggest pretzelosity is purely *nonperturbative* effect

Sivers Distribution

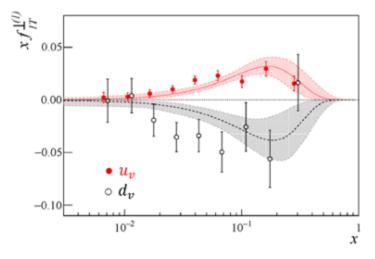
QUARKS	unpolarized	chiral	transverse
U	f_i		$h_{_{\mathrm{I}}}^{\perp}$
L		$\left(g_{1L}\right)$	$h_{_{1L}}^{\perp}$
Т	f_{1T}^{\perp}	$g_{_{1T}}$	$(h_{_{1T}},)h_{_{1T}}^{\perp}$

GLUONS	unpolarized	circular	linear
C	(f_1^g)		$h_{ m l}^{\perp g}$
L		$\left(g_{_{1L}}^{g}\right)$	$h_{_{1L}}^{_{\perp g}}$
Т	$f_{1T}^{\perp g}$	${\cal g}^g_{1T}$	$h_{1T}^g, h_{1T}^{\perp g}$


Improved Understanding of Sivers Function



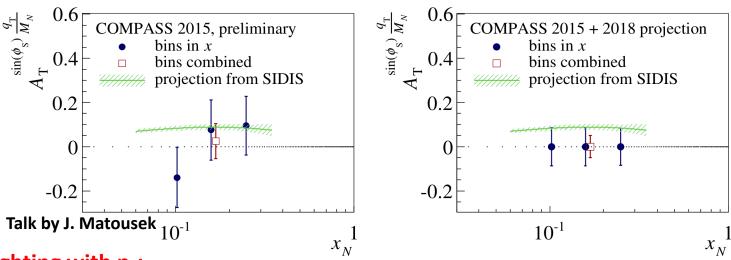
Knowledge of widths in *unpolarized* TMDs is crucial to extract *polarized* TMDs, e.g. Sivers function


- Need different widths for HERMES and COMPASS to give suitable fit to data
- Correlations in k_T & p_T mean you can describe SIDIS data equally well with different values that yield vastly different predictions for DY Talk by F. Murgia

Innovations in Sivers Measurements

Talk by A. Martin

bars: statistical uncertainties only


curves and bands: fit to the HERMES p and COMPASS p and d data by the Torino group $Q^2 = 4 \text{ GeV}^2$ PRD 86, 2012

at the Q^2 of the measurement (1.24 to 25.6 GeV²)

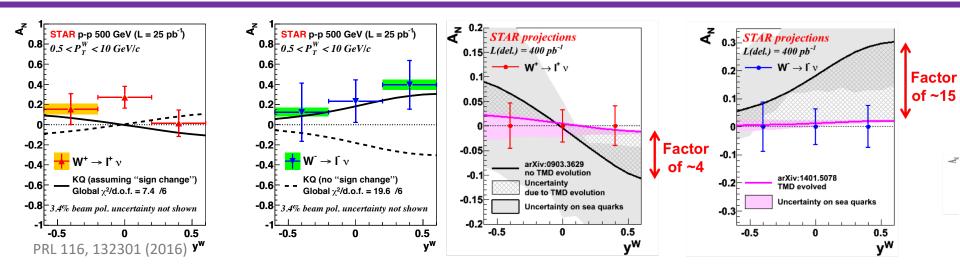
Weighting with p_T :

- removes convolution between PDF and FF
- (With some assumptions)
 Enables extraction of Sivers
 moment to compare with DY
- caution: Theory framework not as advanced as for unweighted observables

Innovations in Sivers Measurements

Weighting with p_T :

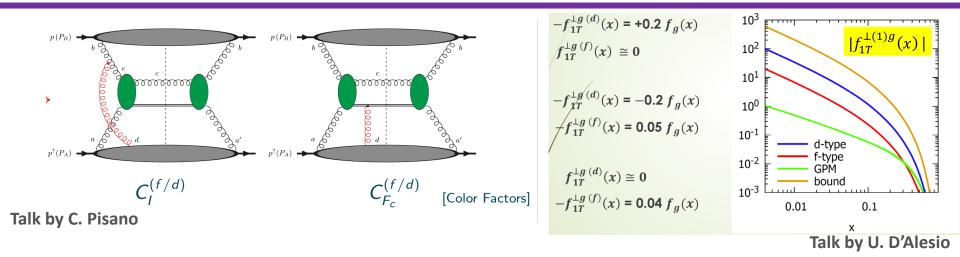
- Transverse momentum weighted Sivers asymmetry in Drell-Yan also gives access to first k_T moment of Sivers PDF
- Compare to (functional fit to) what was obtained in SIDIS
- > 1.5 times statistics expected this year!
- Timely processing of large amount of new data


→ process using Blue Waters supercomputer!

Talk by J. Matousek

https://bluewaters.ncsa.illinois.edu/usage-project-details?project=balh

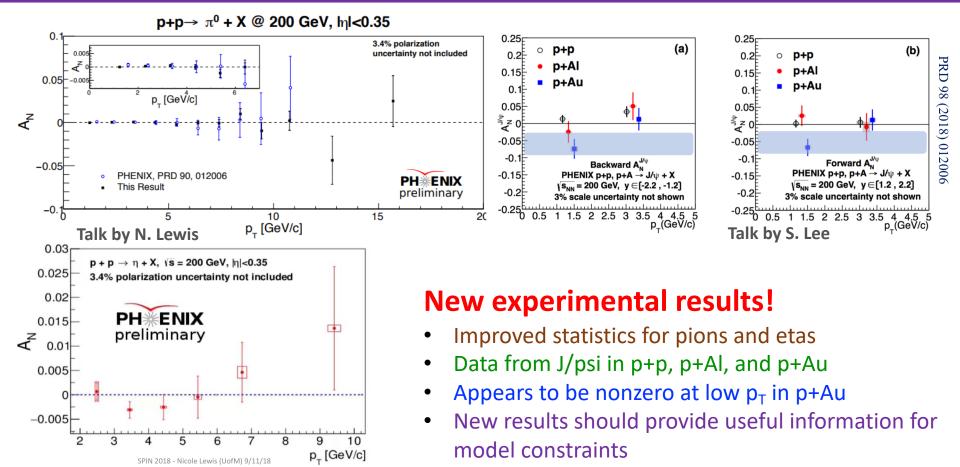
Innovations in Sivers Measurements

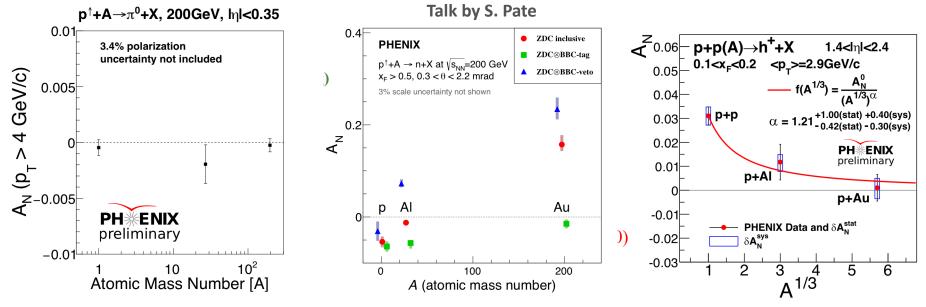

Sivers through weak bosons

- Higher scale than DY
- Sensitivity to evolution!
- Test through W/Z, DY, and direct photon (twist-3) through 2017 data set

Proposal for 2021

- Go beyond simply testing sign-change
- Test the magnitudes between SIDIS and p+p

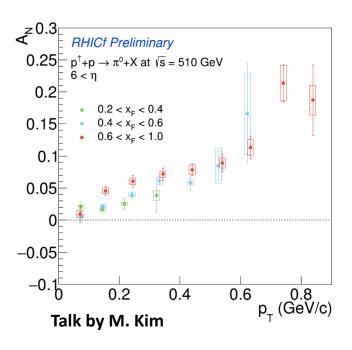

Advances in Sivers Phenomenology


Generalized Parton Model

- Apply in the Color-Gauge-Invariant approach
- Alternative approach: collinear twist-3
- Two DIFFERENT gluon Sivers functions enter (the so-called f and d type)
- Multiplied by different color factors depending on the process
- Generalize the ± factors for SIDIS and DY
- Explore three different possibilities for the two gluon Sivers functions in D meson and pion production
- Present data do not discriminate between the scenarios (maybe a large ftype Sivers is disfavoured?)

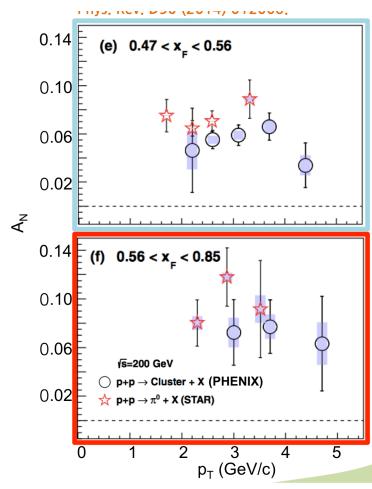
New Data Sensitive to Gluon Sivers

New Data Sensitive to Sivers and Nucleus

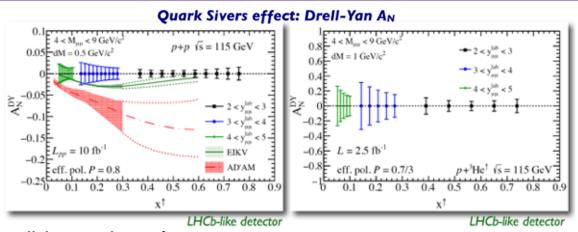


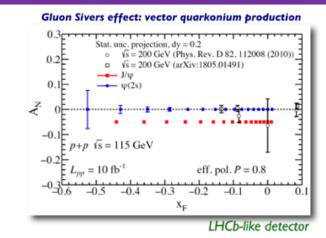
Insight from Nucleus

- Asymmetries small for pion regardless of nucleus
- Small for J/psi in p+p and negative at low p_T in p+Au?
- Large for forward charged hadrons, suppressed for large nuclei and centrality


Large for very forward neutrons and largest for UPC

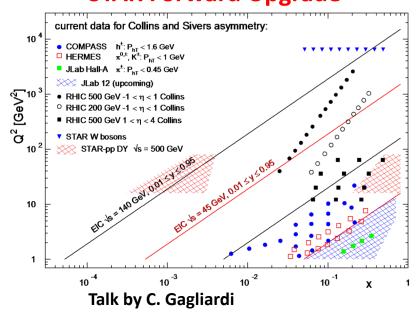
New Insights into Forward A_N





- Increases with p_T but not as strongly with x_F
- Possible diffraction contributions?
- Further studies correlated activity in STAR detectors coming soon

Future Experimental Programs


Talk by M. Echevarría

Fixed Target at LHC

- Map TMDs across kinematics space and test universality / factorization / evolution
- Critical information to make the most of an EIC!

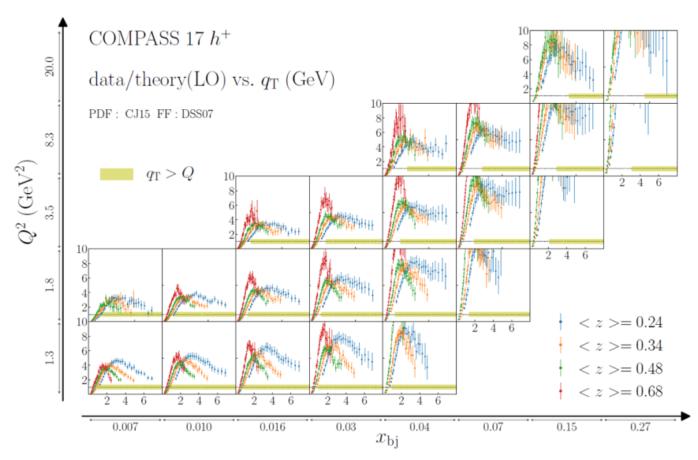
STAR Forward Upgrade

Channels to Study Linearly Polarized Gluons

$$W(\theta, p, p_{\bar{l}}, p_l) = \frac{1}{4} - \frac{1}{4} \left\{ [p^4 \sin^4 \theta + m^4] (\hat{p}_{\bar{l}})_x (\hat{p}_l)_{\bar{x}} + [p^2 (p^2 - 2m^2) \sin^4 \theta - m^4] (\hat{p}_{\bar{l}})_y (\hat{p}_l)_{\bar{y}} \right. \\
+ [p^4 \sin^4 \theta - 2p^2 (p^2 - m^2) \sin^2 \theta + m^2 (2p^2 - m^2)] (\hat{p}_{\bar{l}})_z (\hat{p}_l)_{\bar{z}} \\
+ 2mp^2 \sqrt{p^2 - m^2} \cos \theta \sin^3 \theta [(\hat{p}_{\bar{l}})_x (\hat{p}_l)_{\bar{z}} - (\hat{p}_{\bar{l}})_z (\hat{p}_l)_{\bar{x}}] \right\} \\
/ [p^2 (2m^2 - p^2) \sin^4 \theta + 2p^2 (p^2 - m^2) \sin^2 \theta + m^2 (2p^2 - m^2)]$$
(20)
$$= \frac{1}{4} - \frac{1}{4} \left\{ [(1 - \beta^2)^2 + \sin^4 \theta)] (\hat{p}_{\bar{l}})_x (\hat{p}_l)_{\bar{x}} \\
+ [-(1 - \beta^2)^2 - (1 - 2\beta^2) \sin^4 \theta] (\hat{p}_{\bar{l}})_y (\hat{p}_l)_{\bar{y}} \\
+ [(1 - \beta^4) - 2\beta^2 \sin^2 \theta + \sin^4 \theta] (\hat{p}_{\bar{l}})_z (\hat{p}_l)_{\bar{x}} \right\} \\
+ 2\frac{\beta}{\gamma} \sin^3 \theta \cos \theta [(\hat{p}_{\bar{l}})_x (\hat{p}_l)_{\bar{z}} - (\hat{p}_{\bar{l}})_z (\hat{p}_l)_{\bar{x}}] \right\} \\
/ [(1 - \beta^4) + 2\beta^2 \sin^2 \theta + (1 - 2\beta^2) \sin^4 \theta]$$
(21)

Talk by G. Goldstein

Proposed new channels to study gluon linear polarization via heavy quark production

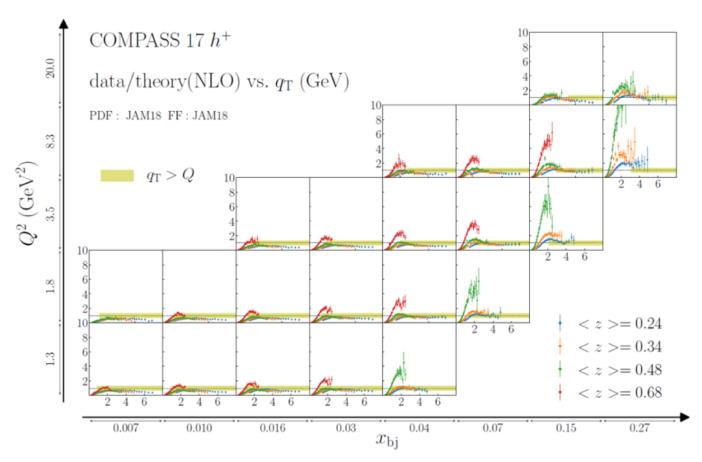

Unpolarized TMDs

QUARKS	unpolarized	chiral	transverse
U	f_1		$h_{_{\mathrm{I}}}^{\perp}$
L		$\left(g_{1L}\right)$	$h_{_{1L}}^{\perp}$
Т	f_{1T}^{\perp}	$g_{_{1T}}$	$(h_{_{1T}},h_{_{1T}}^{\perp})$

GLUONS	unpolarized	circular	linear
U	(f_1^g)		$h_{\mathrm{l}}^{\perp \mathrm{g}}$
L		$\left(g_{\scriptscriptstyle 1L}^g\right)$	$h_{_{1L}}^{_{\perp g}}$
Т	$f_{1T}^{\perp g}$	$g_{_{1T}}^{^{g}}$	$h_{\scriptscriptstyle 1T}^{\scriptscriptstyle g},h_{\scriptscriptstyle 1T}^{\scriptscriptstyle \perp g}$

Calculations at High Transverse Momentum

Old predictions (DSS07) @ LO

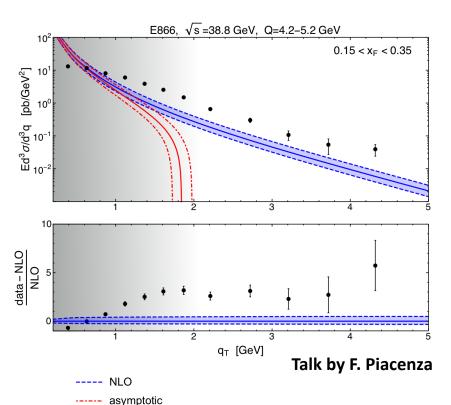


Apparent disagreement between data and FO can be resolved by tuning FFs

Talk by N. Sato

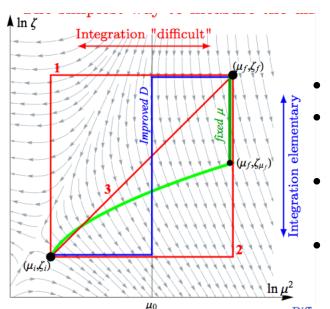
Calculations at High Transverse Momentum

New predictions (JAM18) @ NLO (DDS)

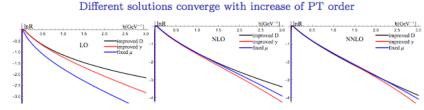


Apparent disagreement between data and FO can be resolved by tuning FFs

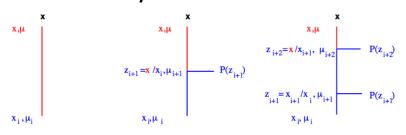
Talk by N. Sato


Calculations at High Transverse Momentum

$$p p \to \mu^+ \mu^- X$$
 $\sqrt{s} = 38.8 \, GeV$

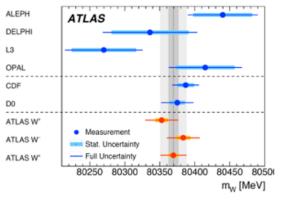

- Calculation based on collinear factorization DRASTICALLY UNDERESTIMATES data
- Higher order, PDF uncertainties, transverse momentum smearing, threshold resummation...none solve the issue...
- The calculation should work at high $q_T (q_T^Q)$

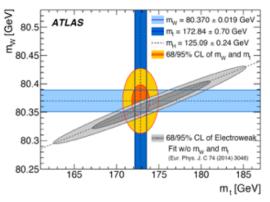
Creative Approaches to TMDs



- TMD evolution is a **double-scale evolution** (μ and ζ)
- Different paths can be chosen to calculate it and may lead to different results
- Implementation can be done in different ways, similar to a "scheme choice"
 - Some choices may be more convenient

Talk by A. Vladimirov




Talk by F. Hautmann

- Parton branching method that can be implemented in M.C. event generators
- Can be used for collinear as well as TMDs
- Angular ordering instead of k_T ordering

Flavor Dependence in Intrinsic Transverse Momentum

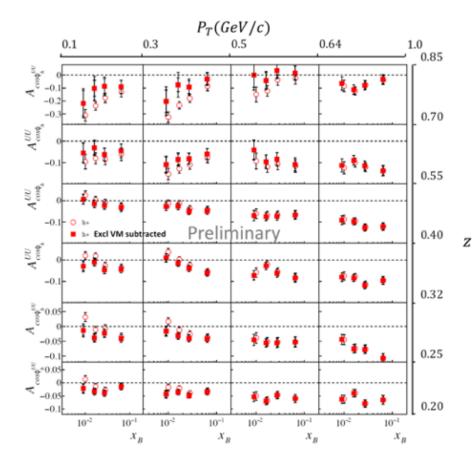
Set	u_v	d_v	u_s	d_s	s
1	0.34	0.26	0.46	0.59	0.32
2	0.34	0.46	0.56	0.32	0.51
3	0.55	0.34	0.33	0.55	0.30
4	0.53	0.49	0.37	0.22	0.52
5	0.42	0.38	0.29	0.57	0.27

Experimental measurements

 M_W =80.379±12 MeV (7 stat, 11 exp, 14 th)

Global EW fit Talk by G. Bozzi

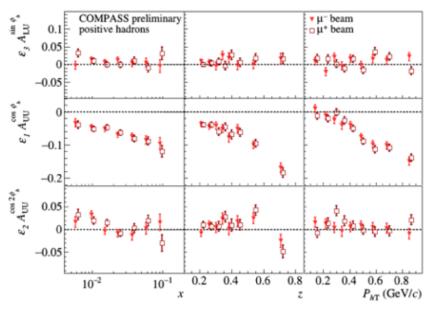
 $M_W = 80.356 \pm 8 \text{ MeV}$


	ΔM	I_{W^+}	ΔM	$[I_{W^-}]$
Set	m_T	$p_{T\ell}$	m_T	$p_{T\ell}$
1	0	-1	-2	3
2	0	-6	-2	0
3	-1	9	-2	-4
4	0	0	-2	-4
5	0	4	-1	-3

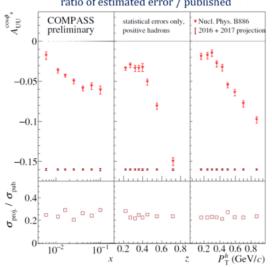
- First flavour-dependent study of the impact of intrinsic transverse momentum on the determination of the W mass
- Flavour effects are both *important and detectable*
- No "flavour-blind" analysis allowed!

Unpolarized TMDs

QUARKS	unpolarized	chiral	transverse
U	f_1		$h_{_{\mathrm{I}}}^{\perp}$
L		$\left(g_{_{1L}}\right)$	$h_{_{1L}}^{\perp}$
Т	f_{1T}^{\perp}	$g_{_{1T}}$	$(h_{_{1T}},)h_{_{1T}}^{\perp}$
GLUONS	unpolarized	circular	linear
GLUONS U	(f_1^g)	circular	$linear$ $h_1^{\perp g}$
GLUONS U	(f_1^g)	$circular$ $g_{_{1L}}^{g}$	


Azimuthal Asymmetries in Unpolarized SIDIS

Talk by Albi Kerbizi

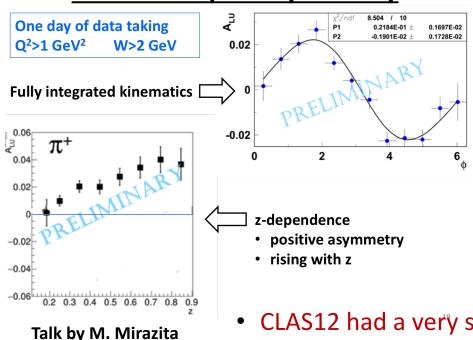

- Large contribution from hadrons from exclusive VM production to SIDIS samples (at small Q^2 , large z and small $P_{\rm T}$)
- For the first time COMPASS measures the amplitudes of azimuthal modulations for hadrons originating from the decay of exclusive VMs:
- Large amplitudes $\cos\phi_{\rm h}$ and $\cos2\phi_{\rm h}$ modulations
- This contribution can not be neglected and should be taken into account

Azimuthal Asymmetries in Unpolarized SIDIS

- Analysis of COMPASS unpolarized proton data collected in 2016/17
- First preliminary results (~4% of the statistics)
- The strong kinematic dependences of the asymmetries are confirmed

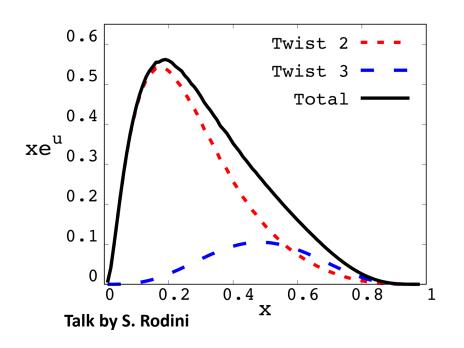
Talk by Andrea Moretti

- Considering entire 2016+2017 sample
 - Statistical error strongly reduced
 - Systematic error expected to be smaller than past measurements

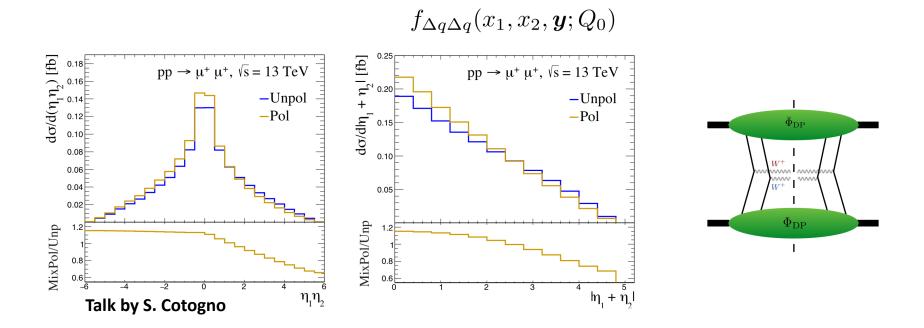

Last but not Least...

QUARKS	unpolarized	chiral	transverse
U	f_i		$h_{_{\mathrm{I}}}^{\perp}$
L		$\left(g_{1L}\right)$	$h_{_{1L}}^{\perp}$
Т	f_{1T}^{\perp}	$g_{_{1T}}$	$(h_{_{1T}},h_{_{1T}}^{\perp})$

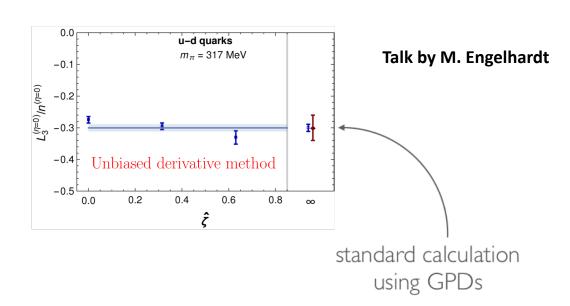
GLUONS	unpolarized	circular	linear
U	(f_1^g)		$h_{ m l}^{\perp g}$
L		$\left(g_{\scriptscriptstyle 1L}^g\right)$	$h_{_{1L}}^{_{\perp g}}$
Т	$f_{1T}^{\perp g}$	$\mathcal{g}_{_{1T}}^{^g}$	$h_{\scriptscriptstyle 1T}^{\scriptscriptstyle g},h_{\scriptscriptstyle 1T}^{\scriptscriptstyle \perp g}$

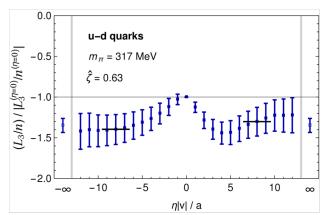

First Data from CLAS12

Pi+ Beam Spin Asymmetry


- CLAS12 had a very successful first run during spring
- Detectors performed well and consistent with expectations
- Data analysis progressing
- First physics results at the APS/DNP meeting in October
- Fall run in preparation
- Will continue up to spring 2019

Twist-3 Effects


- Calculation of twist-3 e(x) PDF based on light-front wave functions
- Pure twist-3 effects can be sizable


Polarized Double Parton Distributions

 Proposal to access POLARIZED double-parton distributions, in unpolarized collisions

Orbital Angular Momentum

- Lattice QCD calculation of Ji's orbital angular momentum based on Wigner distributions (with straight gauge link)
- The method works!...
- ...and can be used to calculated Jaffe-Manohar Orbital Angular Momentum (with staple-shaped gauge link going to infinity)

Jaffe-Manohar OAM turns out to 40% larger than Ji OAM

Thank You!

31 Talks

- SIDIS experiments (5)
- pp/pA experiments (9)
- Theory (9)
- Phenomenology (8)