

FERRARA - ITALY

The longitudinal double-spin asymmetries in semi-inclusive deep-inelastic scattering of electrons and positron by protons and deuterons

Polina Kravchenko

on behalf of HERMES collaboration

Motivation

DSA as an observable for helicity distribution extraction

Experimental results

Summary

Proton structure

looks simple in static quark model

Proton structure

much more complicated in QCD See talk J.Qiu on Monday

Motivation

Motivation I

Where does the Nucleon Spin come from?

$$S_z = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_z^q + L_z^g$$

Motivation

Motivation I

Where does the Nucleon Spin come from?

$$S_z = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_z^q + L_z^g$$

Motivation II

Polarization-depedent structure of the nucleon

•unpolarized q(x), g(x)

- •helicity $\Delta q(x)$, $\Delta g(x)$
- •transversity $\Delta_T q(x)$
- Transverse Momentum dependent (TMD) distributions
- •Generalized Parton (GPDs) distributions

Focus in this talk: nucleon helicity structure

- What do we know? $\Delta\Sigma \sim 0.3$
- But how do the different $\Delta q(x)$, q=u,d,s,... look like?
- How they can be measured?

What do we know? ΔΣ~0.3
But how do the different Δq(x), q=u,d,s,... look like?
How they can be measured?

Find a process where one probes interaction with quark of a given polarization with respect to the parent nucleon

What do we know? ΔΣ~0.3
But how do the different Δq(x), q=u,d,s,... look like?
How they can by measured?

Semi-inclusive Deep-Inelastic Scattering

What do we know? ΔΣ~0.3 But how do the different Δq(x), q=u,d,s,... look like? How they can by measured?

Semi-inclusive Deep-Inelastic Scattering

The possible contributions to the DIS cross section in the semi-inclusive measurement

$$\sigma^{h} = \sigma^{h}_{UU} + \lambda_{l}\sigma^{h}_{LU} + S_{L}\sigma^{h}_{UL} + \lambda_{l}S_{L}\sigma^{h}_{LL} - S_{T}\sigma^{h}_{UT} + \lambda_{l}S_{T}\sigma^{h}_{LT}$$

What do we know? ΔΣ~0.3 But how do the different Δq(x), q=u,d,s,... look like? How they can by measured?

Semi-inclusive Deep-Inelastic Scattering

The possible contributions to the DIS cross section in the semi-inclusive measurement

$$\sigma^{h} = \sigma^{h}_{UU} + \lambda_{l}\sigma^{h}_{LU} + S_{L}\sigma^{h}_{UL} + \lambda_{l}S_{L}\sigma^{h}_{LL} - S_{T}\sigma^{h}_{UT} + \lambda_{l}S_{T}\sigma^{h}_{LT}$$

two structure functions appear

$$S_L \lambda_l \Big[\sqrt{1 - \epsilon^2} F_{LL} + \sqrt{2\epsilon(1 - \epsilon)} \cos(\phi) F_{LL}^{\cos\phi} \Big]$$

HERMES experiment

See talk G.Schnell on Wednesday

HERMES experiment

HERA positron beam properties:

- E_e =27.6GeV, I_e <50mA, P_b =0.55
- lifetime=12-14h
- transversely polarized e± in storage ring
- polarization build-up by emission
- of synchrotron radiation (Sokolov-Ternov effect)
- Spin rotators around HERMES IP

HERMES experiment

Typical HERMES target properties :

- $P_t \sim 0.85$; polarized $H^{\uparrow \rightarrow}$, D^{\rightarrow}
- dilution factor=1
- Thickness = 10^{14} - 10^{15} nucl/cm²
- Temperature=100K

internal to the HERA storage ring 13 September 2018, Ferrara

Tracking: Drift Vertex Chambers, Front Chambers, Magnet Chambers, Back Chambers Particle Identification:

Čerenkov (RICH) Detector, Transition Radiation Detector, Preshower, Calorimeter Luminosity Monitor (Bhabha/Møller scattering)

Semi-inclusive Deep-Inelastic Scattering

 $\Big\{F^h_{UU,T} + \epsilon F^h_{UU,L} + \lambda\Lambda\sqrt{1-\epsilon^2}F^h_{LL}$

SIDIS cross section in the one-photon-exchange approximation

in term of moments of azimuthal modulations:

In the limit of small hadron momentum $P_{h\perp} << zQ$

$$F_{LL}^{h} \propto \sum_{q} e_q^2 [g_{1L}^q(x, p_T^2) \otimes_{\mathcal{W}_1} D_1^{q \to h}(z, k_T^2)] \phi + \epsilon F_{UU}^{h, \cos 2\phi} \cos 2\phi \}$$

 $A_{LL}^{h} = \frac{1}{\lambda_l S_L} \frac{d\sigma_h^{\stackrel{\rightarrow}{\leftarrow}}(\phi) - d\sigma_h^{\stackrel{\rightarrow}{\Rightarrow}}(\phi)}{d\sigma_h^{\stackrel{\rightarrow}{\leftarrow}}(\phi) + d\sigma_h^{\stackrel{\rightarrow}{\Rightarrow}}(\phi)}$

Helicity distributions $\Delta q(x)$

 $\frac{\mathrm{d}\sigma^{h}}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P_{h\perp}^{2}\,\mathrm{d}\phi} = \frac{2\pi\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\epsilon)}\left(1+\frac{\gamma^{2}}{2x}\right)$

 $+\sqrt{2\epsilon}\left[\lambda\sqrt{1-\epsilon}\,F_{LU}^{h,\sin\phi}+\Lambda\sqrt{1+\epsilon}\,F_{UL}^{h,\sin\phi}\right]\sin\phi$

 $+\sqrt{2\epsilon} \left[\lambda\Lambda\sqrt{1-\epsilon}F_{LL}^{h,\cos\phi} + \sqrt{1+\epsilon}F_{UU}^{h,\cos\phi}\right]\cos\phi$

3D binned asymmetry $A_1(x,z,p_{h\perp})$

Provide a dataset of semi-inclusive asymmetries binned simultaneously in x, z, and $p_{h\perp}$

to better isolate different regions of fragmentation

2D binned asymmetry $A_1(x,p_{h\perp})$

No significant p_{h⊥} dependence observed

2D binned asymmetry A₁(x,z)

No significant z dependence observed

13 September 2018, Ferrara

 $\frac{q}{s}$

Semi-inclusive Deep-Inelastic Scattering

SIDIS cross section in the one-photon-exchange approximation in term of moments of azimuthal modulations:

 ϕ angle is the azimuthal angle of the hadron plane around the virtual-photon direction

$\cos \phi$ moments of semi-inclusive double spin asymmetry $A_{LL}(p_{h\perp}, x)$

Hadron charge difference asymmetry

$$A_{1}^{h^{+}-h^{-}} = \frac{(d\sigma_{h^{+}}^{\stackrel{\rightarrow}{\leftarrow}} - d\sigma_{h^{-}}^{\stackrel{\rightarrow}{\leftarrow}}) - (d\sigma_{h^{+}}^{\stackrel{\rightarrow}{\Rightarrow}} - d\sigma_{h^{-}}^{\stackrel{\rightarrow}{\Rightarrow}})}{(d\sigma_{h^{+}}^{\stackrel{\leftarrow}{\leftarrow}} - d\sigma_{h^{-}}^{\stackrel{\rightarrow}{\leftarrow}}) + (d\sigma_{h^{+}}^{\stackrel{\rightarrow}{\Rightarrow}} - d\sigma_{h^{-}}^{\stackrel{\rightarrow}{\Rightarrow}})}$$

Provides additional spinstructure information

Smaller error bars on the kaon sample due to larger difference in kaon yields

Valence helicity distributionsAssuming charge conjugation symmetry $D_1^{q \rightarrow h^+} = D_1^{\overline{q} \rightarrow h^-}$

and isospin symmetry

$$D_1^{u \to \pi^-} = D_1^{d \to \pi^+}$$

 $D_1^{u \to \pi^+} = D_1^{d \to \pi^-}$

Valence helicity distributions

Assuming charge conjugation symmetry

$$D_1^{q \to h^+} = D_1^{\overline{q} \to h^-}$$

Deuteron target

$$A_{1,d}^{h^+ - h^-} \stackrel{LO\ LT}{=} \frac{g_1^{u_v} + g_1^{d_v}}{f_1^{u_v} + f_1^{d_v}}$$

helicity valence-quark distribution

$$g_1^{q_v} \equiv g_1^q - g_1^{\overline{q}}$$

and isospin symmetry

Proton target

$$D_1^{u \to \pi^+} = D_1^{d \to \pi^-}$$

$$D_1^{u \to \pi^-} = D_1^{d \to \pi^+}$$

 $A_{1,p}^{h^+-h^-} \stackrel{LO\ LT}{=} \frac{4g_1^{u_v} - g_1^{d_v}}{4f_1^{u_v} - f_1^{d_v}} \text{ polarization average valence-quark distribution}$

$$f_1^{q_v} \equiv f_1^q - f_1^{\overline{q}}$$

Valence helicity distributions

- LO parton model
- Charge conjugation
- Isospin symmetry
- No MC usage
- The contribution of FF drop out

Semi-inclusive Deep-Inelastic Scattering

Method (Flavor tagging): Use correlation between detected hadron and struck quark → 'LO Purity method'

Observable: semi-inclusive double-spin asymmetry

A. Airapetian et al., PRD 75 (2007)

$$A_{1}^{h}(x,Q^{2}) \stackrel{LO}{\sim} \frac{\sum_{q} e_{q}^{2} \Delta q(x,Q^{2}) \int dz D_{q}^{h}(z,Q^{2})}{\sum_{q} e_{q}^{2} q(x,Q^{2}) \int dz D_{q}^{h}(z,Q^{2})} \\ \sim \sum_{q} \frac{e_{q}^{2} q(x) \int dz D_{q}^{h}(z)}{\sum_{q'} e_{q'}^{2} q' \int dz D_{q'}^{h}(z)} \cdot \frac{\Delta q(x)}{q(x)} \sim P_{q}^{h} \frac{\Delta q}{q}$$

Semi-inclusive Deep-Inelastic Scattering

Method (Flavor tagging):

Use correlation between detected hadron

and struck quark → 'LO Purity method'

Observable: semi-inclusive double-spin asymmetry

A. Airapetian et al., PRD 75 (2007)

Semi-inclusive Deep-Inelastic Scattering

Method (Flavor tagging):

Use correlation between detected hadron

and struck quark → 'LO Purity method'

Observable: semi-inclusive double-spin asymmetry

Valence helicity distributions

- LO parton model
- Charge conjugation
- Isospin symmetry
- No MC usage
- The contribution of FF drop out

• LO parton model

• Purity from MC

• Theoretical model for FF

Summary

Several longitudinal double-spin asymmetries in SIDIS have been presented. The extend the analysis of the previous HERMES publication to include also transverse-momentum dependence.

With the precision of the measurements, the virtual-photon-nucleon asymmetries display no significant dependence on z, $p_{h\perp}$.

The **cos** ϕ moments of semi-inclusive double spin asymmetry as a function $p_{h\perp}$ are shown and compatible with zero.

Hadron charge difference asymmetries have been measured . Valence helicity densities are presented in comparison with the same quantities from previous HERMES purity extraction.

These data are expected to provide an essentially model-independent constrain for theory and parametrization as they provide **the first even longitudinal double-spin semi-inclusive dataset** binned in three kinematic variables simultaneously.

Backup slides

cos *ϕ* moments of semi-inclusive double spin asymmetry A_{LL}(z, x)

Theoretical prediction 32 M. Anselmino et al., PRD 74, 074015 (2006)

Politionia na vernemeroko

NETA

 $\cos \phi$ moments of semi-inclusive double spin asymmetry A_{LL}(x, z)

Theoretical prediction ₃₃ M. Anselmino et al., PRD 74, 074015 (2006)

Longitudinal semi-inclusive double-spin asymmetries at HERMES.

Longitudinal semi-inclusive double-spin asymmetries at HERMES.

