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Happy 40th Anniversary !!

…

http://inspirehep.net/record/130569/
files/slac-pub-2148.pdf

• C.Y. Prescott et al. (E122) first observed the weak neutral 
current interaction in electron scattering

• This lead to the cementing of SU(2)L x U(1)Y electroweak 
model

• 1979 Glashow, Weinberg and Salam were awarded the 
Nobel Prize in Physics

https://previews.123rf.com/
images/ruthblack/

ruthblack1502/
ruthblack150200016/364483
37-40th-birthday-cake-with-

sparklers.jpg



Ciprian Gal University of Virginia!3

Parity violating electron scattering

…

http://inspirehep.net/record/130569/files/slac-pub-2148.pdf
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⇠ 10�4 ⇥Q2

Parity violating electron scattering

• uses longitudinally polarized electron beams to scatter off of e, p, d, Pb ..

• measures asymmetries in elastic or inelastic scattering

• generally on the level of ppm or less

• This requires a lot of statistics leading to particular detection choices
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PVES landscape
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• PVES has a long history of pushing 
the limits of precision and discovery

• E122: (ΔA=10 ppm)

• pioneering experiment 
(already had most of the 
features of modern PVES 
experiments)

• G0, A4, HAPPEX (ΔA=0.25 to 2 
ppm)

• E158 (ΔA=17 ppb)

• Qweak (ΔA=9 ppb)

• Moller (ΔA=0.7 ppb)

• P2 (ΔA=0.44 ppb)
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PVES setup overview
E122

Phys.Lett. B77 (1978) 347-352

Qweak
Nature 557, 207-211 (2018)
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Electron source
E122 Present

Future

“Of crucial importance to this experiment was the 
development of an intense source of longitudinally 

polarized electrons” (Prescott et al 1978)

• Produced 37% polarized electrons

• 1.5 us pulses at 120 pulses per second

• random helicity for each pulse 

• 4*1011 electrons per pulse (~8 uA current)

• Regularly produce ~90% polarized 
electrons (CEBAF) with superlattice 
cathodes that have high QE and 
lifetime

• up to 1kHz random helicity flip

• high electron current 180 uA

• faster helicity flips of 2kHz with 
faster transition times will be 
needed for the next generation 
of experiments

• along with high polarization and 
high currents
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Polarimeters
E122 Present

FutureHall A Compton

Hall A Moller

• Moller polarimeter with 
precision of 3% stat and 
5% syst uncertainties 

• Three types of polarimeters: Mott, Moller 
and Compton

• Compton can be run continuously to 
monitor polarization stability

• All have achieved at least 1% uncertainty 
(0.5% precision reported by Hall C Moller)

• Plans in place for all three 
polarimeters to achieve 0.5% or 
better uncertainty in the next 5 years

• New double Mott polarimeter 
planned to be used



Ciprian Gal University of Virginia!9

Integrating detectors
E122 Present

Future

• Measurements have reached 
deadtime-less readout at ~6GHz

• Tracking detectors used at low 
current to better determine the 
average Q2

• Integrates all signal in a helicity signal and 
reads out one number for each detector 

• Used nitrogen-filled Cerenkov counter and 
9rad length lead glass shower counter

• Detected about 1000 electrons per pulse 
(120Hz pulse rate)

• Experiments are 
planned to be able to 
detect 500 GHz rates
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Spectrometers
E122 Present

Future

• Magnetic spectrometer used to 
separate signal from 
background

• defines and calibrates the 
acceptance and kinematics for 
the experiment

• Different magnetic 
spectrometers used in 
conjunction with 
collimators to better 
separate signal

• Novel spectrometer 
designs are needed to 
achieve precision for the 
next generation of 
experiments
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PVES landscape: Upcoming nuclear studies
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PREXII and CREX
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• Some of the additional 44 neutrons 
inside Pb are pushed out to form a 
crust

• The neutron radius inside nuclei is 
not as well understood as the 
proton radius (i.e. electric charge 
distribution)

• Using PVES one can directly 
access the neutron distribution and 
cleanly measure the neutron radius 
with minimal theoretical input

unpolarized target
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Probing neutron stars?
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• Both systems are described with the nuclear equation of state

• Measurements in Pb have a high sensitivity to the density dependence of the symmetry 
energy in the nuclear EOS

• BNS merger results from gravitational waves and from PREX could lead us to conclude a 
phase transition exists before very high density nuclear matter is reached

 Farrukh J. Fattoyev - Jan 24 2018 JLab seminar
                       Neutron Star                                    Nucleus of Pb

       

arXiv 1711.06615

18 orders of magnitude!!
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Bridging the divide
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• By making two measurements at different nuclear densities we can 
provide crucial input to ab-initio and DFT models

• Recent calculations based on nuclear coupled cluster method (arXiv 
1509.07169) make a prediction for the 48Ca 0.12≦Rskin≦0.15 fm
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Upcoming runs
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• We expect a decrease of the 
uncertainty for PREX by a factor 
of 3 and a brand new 
measurement for Ca

• Will run with the standard Hall A 
equipment (@JLab), together 
with small additions (septum, 
GEMs and integrating detectors)

APV = 0.657 ± 0.060(stat) ± 
0.014(syst) ppm

Phys. Rev. Lett. 108, 112502 (2012)

Rn �Rp = 0.33+0.16
�0.18

• Preparations are nearly complete and 
experimental equipment is being 
designed and build  

• PREXII is scheduled to run in summer 
of 2019 and CREX will follow in the fall
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PVES landscape: Upcoming BSM studies
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Testing the SM
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SM

• SM has withstood 
assaults for decades 
with only a few hints at 
something beyond it
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Testing the SM

!18

To fully map out the phase space of possible beyond the 
SM physics we need a comprehensive strategy with will 

need to include:
• Direct searches at the LHC need to be 

complemented by searches at Q2 << MZ2

• Dark Matter searches

• Rare/Forbidden processes: EDMs, CP(or T) 
violations, Lepton flavor violations

• Neutrino physics: neutrinoless double beta 
decay

• Precision electroweak measurements
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Contact interaction
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• At low Q2 (Q2<<MZ) the SM Lagrangian is 
effectively a 4-fermion contact interaction

• Depending on the experimental 
configuration one can access the vector 
of axial charge of the target

For electron-fermion scattering:

APV =
�R � �L

�R + �L
⇠ Aweak

A�
⇠ GFQ2

4⇡↵
(geAg

T
V + �geV g

T
A)

Forward 
Scattering

Backward 
Scattering
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Contact interaction

!20

For electron-fermion scattering:

APV =
�R � �L

�R + �L
⇠ Aweak
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(geAg
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Vector charge

• Vector charge searches with elastic scattering can be 
more experimentally accessible 
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Weak vector charge
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• Weak charge is the analog to the 
electric charge: 

• also defined as Q2->0 (intrinsic 
property of particle)

• combined with the very well 
defined SM prediction makes it a 
good place to look for deviations 
(and new physics)

Qp
W = +1� 4 sin2 ✓W ⇡ 0
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Weak vector charge

!23

Weak charge “triad” 
(M. Ramsey-Musolf)

QA
W

Qe
W

Qp
W

• In the early 2000s E158 made the first 
measurement of electron weak charge QeW

• Atomic Parity Violation measurements on 
133Cs gave unique insights into d-quark 
weak vector charge

• Qweak directly measures the proton weak 
vector charge QpW

• Weak charge is the analog to the 
electric charge: 

• also defined as Q2->0 (intrinsic 
property of particle)

• combined with the very well 
defined SM prediction makes it a 
good place to look for deviations 
(and new physics)

Qp
W = +1� 4 sin2 ✓W ⇡ 0
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Weak triad
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QA
W

Qe
W

Qp
W

E158

Qweak133Cs
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Weak triad
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Weak triad
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MOLLER @ JLab
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• 11 GeV, 90% polarization, 60 µA  

• 150cm LH2 target (5kW) 

• Novel toroidal spectrometer

• Fine segmentation on detector allows for 
measurements of both background and signal

• Novel two toroid design used to separate signal from 
background into different rings

• Odd number of sectors gives 50% coverage in azimuth 
but 100% of the acceptance (always get one of the 
electrons from the event)

beam energy: 11 GeV
spectrometer E’: 2.5 to 8.5 GeV 
θlab: 0.3 to 11 deg
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MOLLER @ JLab
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• Passed CD0 DOE review recently and is planned for a JLab Director’s review this 
winter

• Strong prospects to get results by the middle of the 2020s

��
|g2

RR � g2
LL|

= 7.5 TeVLe1e2 =
�

i,j=L,R

g2
ij

2�2
ēi�µeiēj�

µej

APV = 35.60± 0.73 ppb

�(Qe
W ) = 2.1 (stat)± 1.0 (syst) %

�(sin2 ✓W ) = 0.00024 (stat)± 0.00013 (syst) ⇠ 0.1%

• Will set the highest contact interaction lepton limits (either low or high Q2):

ee

ep (el)
ep (in)

eAl (el)

eAl (q)
eAl (in)

pions
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Weak triad
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Qweak

!30

• E158 and Qweak are sensitive 
to different types of new physics 

• strong consistency with SM 
for Qweak should put a 
stronger limit on scalar lepto-
quarks (E158 insensitive)

• weak mixing angle determined from 
Global fit of PVES data together with 
weak charge of the proton (for results and 
more detail see G. Smith’s talk tomorrow)
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P2 @ Mainz
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• Will make measurement at significantly 
lower Q2 compared to Qweak (0.0048 vs 
0.0248 (GeV/c)2)

• hadronic contributions negligible

• 100x the rate of Qweak 

• Scattering angles between 25 and 45 
degrees

• 60 cm long target that can take 150 uA of 
current

• Needs about 1.3 years (11000 hours) to 
complete main physics program
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P2 @ Mainz
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• Solenoid spectrometer enables novel 
detector configuration 

• The new ERL based research machine will 
support 100-200 MeV parity quality beam

• Development underway and CDR has 
been submitted to EPJ (https://arxiv.org/
abs/1802.04759)

• Will provide test for BSM physics with mass ranges between 70 MeV to 50 TeV

• Expected to run in the early 2020s

• possible run with Pb (and other nuclei) to better improve neutron radius results from 
PREX/CREX

�(sin2 ✓W ) = 0.00036 (0.15%)

APV = �24.03± 0.44 ppb

https://arxiv.org/abs/1802.04759
https://arxiv.org/abs/1802.04759
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Weak mixing angle
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• Both P2 and MOLLER make measurements at very low Q2 but they will have 
uncertainties comparable to the best single collider measurement at the Z-pole

• The low Q2 nature of the measurements will give significant constraints on 
physics beyond the Standard Model

Qweak

Collider Z-pole average

SM calculation
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The remaining component

• While most of the PV searches so far have focused on 
vector current extensions to the SM the hadronic-axial 
vector phase space has been left mostly untouched
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PVDIS with SoLID@JLab
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APV =
GFQ2

p
2⇡↵

[a(x) + f(y)b(x)]

for Q2 >> 1 and W2 >> 4 GeV2

• PVDIS uses direct interaction 
with quarks to access axial-
vector component of the 
interaction where radiative 
corrections can be directly 
calculated

• For a deuterium target the 
structure functions mostly cancel 
(assuming charge symmetry)

• PVES in DIS allows for 
determinations of the axial-
vector contributions (C2q terms) 
without interpretation difficulties 
due to radiative corrections 

a(x) =
3

10


(2C1u � C1d)

✓
1 +

0.6s(x)

u(x) + d(x)

◆�

b(x) =
3

10


(2C2u � C2d)

✓
uv(x) + dv(x)

u(x) + d(x)

◆�
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PVDIS with SoLID@JLab
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• Large kinematic range allows to 
measure several interesting effects 
including:

• charge symmetry violation

• higher twist effects

• d/u ratios without the need to 
nuclear effects

• The CLEO solenoid is being repurposed for these 
experiments and more (extensive TMD studies)

• will use GEMs for tracking and Cerenkov + segmented 
calorimeter

• 𝛿p/p of ~2%, angle coverage of about 15 degrees 
(20-35) and scattered energies between 1.5 and 5 GeV
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PVDIS with SoLID@JLab
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2C1u - C1d

2C
2u

 - 
C

2d

• SoLID (orange) will significantly increase our reach in 
mass range compared to published data (magenta)

Credit J. Erler
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Conclusions
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• PVES is a very versatile and clean measurement 
technique that has been employed to study nuclear and 
hadronic topics as well as SM tests

• improved technical capability pushes to higher and 
higher precision

• The upcoming neutron skin measurements will provide 
invaluable information about high density nuclear matter

• Electroweak physics will test BSM scenarios in phase 
space regions not available to direct searches with new 
interaction mass scales up to 10s of TeV
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Backup

!39
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BNS mergers and the nuclear EOS

!40

• Binary neutron star mergers 
can give us information about 
the nuclear equation of state

• The waveform and frequency of 
the inspiral right before the 
merger are directly correlated to 
the stiffness of the neutron star  

1
2

Credit: Takami et al. (2014)

APR4 (compact) and GNH3 (fluffy)

Fattoyev, Piekarewicz, Horowitz 
 arXiv 1711.06615
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X. Roca-Maza, M. Centelles, X. Vi˜nas, and
M. Warda, Phys. Rev. Lett. 106 252501 (2011)

Models

Weak charge density

Predicted Asymmetry

Solve Dirac Eq.

Predicted Neutron Skin

• Clear correlation between APV and the neutron skin from theoretical models 

• The minimal theoretical assumptions (Helm model for the weak form factor and different mean field weak charge 
densities) produce a much small spread than the statistical uncertainty from the final PREX2 result (https://arxiv.org/pdf/
1202.1468.pdf) 

• This analysis takes into account the significant Coulomb distortions affecting the 208Pb extraction (https://arxiv.org/pdf/
nucl-th/9801011.pdf)

Neutron skin extraction

https://arxiv.org/pdf/1202.1468.pdf
https://arxiv.org/pdf/1202.1468.pdf
https://arxiv.org/pdf/nucl-th/9801011.pdf
https://arxiv.org/pdf/nucl-th/9801011.pdf
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Qweak
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e- beam
E = 1.16 GeV
I = 180 µA
P = 89%

35 cm LH2 target
3 kW cooling 
power at ~20 K

Toroidal 
Spectrometer

Acceptance defining 
Pb collimator

5.8o  ✓  11.6o
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Target
E122 Present

Future

• 30 cm liquid deuterium 
target

• more than 2.3kW cryo target 

• stability measured to better 
than 40 ppm at 250 Hz

• 1.5 m cryo target

• capable to absorb 4kW and 
remain stable to better than 
25 ppm at 1kHz
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Beam monitors
E122 Present

Future

• measured helicity correlated charge and 
position differences (10 microns 
resolution for position differences, 0.02% 
for charge) 

• made use of microwave cavities

• use fast analysis to feedback on 
accelerator parameters 

• we use RF antenna or RF cavities for beam 
position and charge measurements

• Precisions of ~ 30 ppm for charge and ~1 
micron for position at 250 Hz helicity flip rate

• Use fast analysis from the cavities to 
feedback on the parameters in the injector

• we will need a factor of 3 
improvement for the charge 
measurements

• a further factor of 2 
improvements on both angle and  
position differences



Electroweak radiative corrections
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Correction to Qp
Weak     Uncertainty 

 

Δ sin θW (MZ) ± 0.0006 
 

Zγ box (6.4% ± 0.6%)     0.00459 ± 0.00044 
  

Δ sin θW (Q)hadronic ± 0.0003 

WW, ZZ box - pQCD ± 0.0001 

Charge symmetry      0 
 

Total ± 0.0008

Erler et al., PRD 68(2003)016006.

*courtesy of R. Carlini


