

DVCS off the Neutron in Jlab Hall A (6 GeV experiments)

Meriem BENALI

Faculte des Sciences de Monastir (Tunisia)

Generalized Parton Distribution GPDs

Form Factors
(Transverse position of partons)

Deep inelastic scattering

Deep exclusive scattering

Parton Distribution Function (PDFs)
(Longitudinal momentum distribution of the partons in the nucleon)

Two independent informations about the nucleon structure

Correlate
3-D picture of the nucleon

Generalized Parton Distribution GPDs

At leading order, 8 GPDs for each flavor quark \boldsymbol{f} :

- 4 chiral even GPDS :

$$
H^{f}(x, \xi, t), E^{f}(x, \xi, t), \tilde{H}^{f}(x, \xi, t), \widetilde{E}^{f}(x, \xi, t) \quad \text { Conserve the parton helicity }
$$

- 4 chiral odd (transversity) GPDs:

$$
H_{T}^{f}(x, \xi, t), E_{T}^{f}(x, \xi, t), \tilde{H}_{T}^{f}(x, \xi, t), \tilde{E}_{T}^{f}(x, \xi, t) \quad \text { Flip the parton helicity }
$$

$>$ Link to Parton distribution functions at $(\xi=\mathbf{t}=\mathbf{0})$

$$
\begin{aligned}
& H^{q}(x, 0,0) \begin{cases}=q(x) ; & x>0 \\
=-\bar{q}(x) x<0\end{cases} \\
& \tilde{H}^{q}(x, 0,0) \begin{cases}=\Delta q(x) ; & x>0 \\
=\Delta \bar{q}(-x) ; & x<0\end{cases}
\end{aligned}
$$

$$
\tilde{\boldsymbol{H}}_{T}^{q}(x, 0,0) \begin{cases}=\delta q(x) ; & x>0 \\ =\delta \bar{q}(-x) ; & x<0\end{cases}
$$

$$
\begin{aligned}
& \sum_{q} e_{q} \int_{-1}^{1} d x H^{q}(x, \xi, t)=F_{1}(t) \\
& \sum_{q} e_{q} \int_{-1}^{1} d x E^{q}(x, \xi, t)=F_{2}(t) \\
& \sum_{q} e_{q} \int_{-1}^{1} d x \tilde{H}^{q}(x, \xi, t)=G_{A}(t) \\
& \sum_{q} e_{q} \int_{-1}^{1} d x \tilde{H}^{q}(x, \xi, t)=G_{p}(t) \\
& \sum_{q} e_{q} \int_{-1}^{1} d x \tilde{H}_{T}^{q}(x, \xi, t)=G_{T}(t)
\end{aligned}
$$

Generalized Parton Distribution GPDs

At leading order, 8 GPDs for each flavor quark \boldsymbol{f} :

- 4 chiral even GPDS :

$$
H^{f}(x, \xi, t), E^{f}(x, \xi, t), \tilde{H}^{f}(x, \xi, t), \widetilde{E}^{f}(x, \xi, t) \quad \text { Conserve the parton helicity }
$$

- 4 chiral odd (transversity) GPDs:

$$
H_{T}^{f}(x, \xi, t), E_{T}^{f}(x, \xi, t), \tilde{H}_{T}^{f}(x, \xi, t), \tilde{E}_{T}^{f}(x, \xi, t) \quad \text { Flip the parton helicity }
$$

$>$ Access to quark angular momentum, via Ji sum rule [X. Ji 1997]:

$$
\frac{1}{2} \int_{-1}^{+1} d x x\left[H_{q}(x, \xi, t=0)+E_{q}(x, \xi, t=0)\right]=J_{q}=\frac{1}{2} \Delta \Sigma_{q}+L_{q}
$$

$>$ Solving the problem of the "spin puzzle"

How to access GPDs ?

The deep exclusive processes in the Bjorken regime are the simplest process which can be described in terms of GPDs by measuring its cross section

Deeply Virtual Compton Scattering (DVCS)
and fixed

$$
x_{B}=\frac{Q^{2}}{2 M v}
$$

Deeply Virtual Meson Production (DVMP)

Deeply Virtual Compton Scattering

The unpolarized cross section accesses the accesses the real part of the interference and the $\left|\mathrm{T}^{\text {DVCS }}\right|^{2}$ term which are sensitive to an integral of GPDs over \mathbf{x}

The polarized cross-section difference accesses the imaginary part of the interference and therefore GPDs at $\mathbf{x}= \pm \xi$

$$
d^{4} \stackrel{\overleftarrow{\sigma}}{ }-d^{4} \vec{\sigma}=2 \mathfrak{I} \mathrm{~m}\left(T^{D V C S} . T^{B H}\right)
$$

Deeply Virtual Compton Scattering

At leading order (LO) and leading twist (LT) (twist-2):

$$
d^{4} \overleftarrow{\sigma}-d^{4} \vec{\sigma}=2 \mathfrak{J} m_{1}^{r}\left(T^{D V C S} \cdot T^{B H_{1}}\right)
$$

$$
d^{4} \stackrel{\leftarrow}{\sigma}+d^{4} \vec{\sigma}=2 \Re e\left(T_{-}^{D V C S} T_{-}^{B H}\right)+\left|T_{\downarrow}^{D V C S}\right|^{2}+\left.\left.\right|_{-} ^{B H}\right|_{--} ^{2} \quad \begin{aligned}
& \text { (fully calculable } \\
& \text { with nucleon FFs) }
\end{aligned}
$$

Bilinear combination of Compton Form Factors CFFs $C^{\text {DVCS }}\left(\mathcal{F}, \mathcal{F}^{*}\right) \propto 4\left(1-x_{B}\right) \mathcal{H} \mathcal{H} \mathcal{L}^{*}-f\left(x_{B}, Q^{2}, t\right)\left(\mathcal{H} \mathcal{E}^{*}+\mathcal{E} \mathcal{H} \mathcal{L}^{*}\right)+\ldots$

Linear combination of CFFs

$$
\begin{aligned}
C^{\mathrm{I}}(\mathcal{F}) & =F_{1}(t) \mathcal{H}+\frac{x_{B}}{2-x_{B}}\left(F_{1}(t)+F_{2}(t)\right) \tilde{\mathcal{H}}-\frac{t}{4 M^{2}} F_{2}(t) \mathcal{E} \\
& \left\{\begin{array}{l}
\mathfrak{R e}(\mathcal{H})=\sum_{q} P \int_{-1}^{1} d x\left(\frac{1}{x-\xi} \pm \frac{1}{x+\xi}\right) \mathcal{H}^{q}(x, \xi, t) \leftarrow \text { GPDs } \\
\mathfrak{J} m(\mathcal{H})=-\pi \sum_{q} e_{q}^{2}\left(\mathcal{H}^{q}(x=\xi, \xi, t)-\mathcal{H}^{q}(x=-\xi, \xi, t)\right)
\end{array}\right.
\end{aligned}
$$

BMK : Belitsky et al.
Phys.Rev.D82:074010,2010
BMP : Braun et al.
Phys.Rev.D89:074022,2014
We can extract 8 GPDs observables at LO/LT: $\mathfrak{R e}$ and $\mathfrak{I} m(\mathcal{F} \in\{\mathcal{H}, \tilde{\mathcal{H}}, \mathcal{E}, \widetilde{\mathcal{E}}\})$,

Deeply Virtual Compton Scattering

Access to GPDs via the unpolarized cross section :
$>$ Subtract the known contribution of BH

$$
d^{4} \stackrel{\rightharpoonup}{\sigma}+d^{4} \vec{\sigma}=2 \mathfrak{R} e\left(T^{D V C S} \cdot T^{B H}\right)+\left|T^{\text {DVCS }}\right|^{2}+\left|T^{B H}\right|
$$

Known
(fully calculable
with nucleon FFs)

Deeply Virtual Compton Scattering

Access to GPDs via the unpolarized cross section :
$>$ Studying the φ and $\mathrm{E}_{\text {beam }}$ dependence of I and $\left|T^{D V C S}\right|^{2}$ at fixed $\mathrm{x}_{\mathrm{B}}, \mathrm{Q}^{2}$ and t allows to deduce some observables

$$
d^{4} \overleftarrow{\sigma}+d^{4} \vec{\sigma}=2 \mathfrak{R} e\left(T^{D V C S} \cdot T^{B H}\right)+\left|T^{D V C S}\right|^{2}+\left|T^{B H}\right|^{2}
$$

$$
\left|T^{D V C S}\right|^{2} \propto \Gamma^{\text {DVCS }} E_{\text {beam }}^{2}\left[c_{0}^{\text {DVCS }}(\mathcal{F})+c_{1}^{\text {DVCS }}(\mathcal{F}) \cos \phi+\ldots\right]
$$

$2 \mathfrak{R e}\left(T^{\text {DVCS }} . T^{\text {BH }}\right) \propto \Gamma^{1} E_{\text {beam }}^{3}\left[\mathrm{c}_{0}^{1}(\mathcal{F})+\mathrm{c}_{1}^{1}(\mathcal{F}) \cos \phi+\mathrm{c}_{2}^{1}(\mathcal{F}) \cos 2 \phi+\mathrm{c}_{3}^{1}(\mathcal{F}) \cos 3 \phi+\ldots\right]$
$\mathcal{F} \in\{\mathcal{H}, \tilde{\mathcal{H}}, \mathcal{E}, \widetilde{\mathcal{E}}\} \quad: \quad$ Compton Form Factors CFFs

Motivation (DVCS off the neutron)

DVCS off the neutron : $F_{1}(t) \ll F_{2}(t)$

$$
C^{\mathrm{I}}(\mathcal{F})=F_{1}(t) \mathcal{H}+\frac{x_{B}}{2-x_{B}}\left(\mathcal{F}_{1}(t)+F_{2}(t)\right) \tilde{\mathcal{H}}-\frac{t}{4 M^{2}} F_{2}(t) \mathcal{E}
$$

> Sensitive to GPD E (least constrained GPD) and which is important to access quarks orbital momentum via Ji's sum rule:

$$
\frac{1}{2} \int_{-1}^{+1} d x x\left[H_{q}(x, \xi, t=0)+E_{q}(x, \xi, t=0)\right]=J^{q}=\frac{1}{2} \Delta \Sigma_{q}+L_{q}
$$

* Neutron has different flavors from the proton => GPDs flavor separation:
$H^{p}(\xi, \xi, t)=\frac{4}{9} H^{u}(\xi, \xi, t)+\frac{1}{9} H^{d}(\xi, \xi, t) \quad H^{n}(\xi, \xi, t)=\frac{4}{9} H^{d}(\xi, \xi, t)+\frac{1}{9} H^{u}(\xi, \xi, t)$

DVCS off the neutron (Experiment E06-106)

E03-106: pioneer experiment of the DVCS off the neutron (2004):
Polarized cross section difference was determined at: $\mathbf{Q}^{\mathbf{2}}=\mathbf{1 . 9 1} \mathrm{GeV}^{\mathbf{2}} ; \mathbf{x}_{\mathrm{B}}=\mathbf{0 . 3 6}, \mathrm{E}_{\text {beam }}=\mathbf{5 . 7 5} \mathbf{~ G e V}$
M. MAZOUZ et al., Phys. Rev. Lett. 99:242501, 2007

Unpolarized cross section could not be extracted (huge systematic uncertainties)

Next experiment

Experimental setup

The E08-025 (n-DVCS) experiment was performed at JLab Hall A in 2010
$>$ Goal : Measure the n-DVCS total cross-section

Beam Energy $=4.45 \mathrm{GeV}$ \& 5.54 GeV $\mathbf{I}_{\text {beam }} \approx 2-3 \mu \mathrm{~A}(80 \%$ polar. $)$
$\xrightarrow{\text { Polarized Electron Beam }}$
$e p \rightarrow e \gamma p$ $e d \rightarrow e \gamma n(p)$ $P\left(p^{\prime}\right)$

* The data were taken at two kinematics (Kin2high and Kin2low):
$\checkmark \mathbf{Q}^{2}=1.75 \mathrm{GeV}^{2}$
$\checkmark \mathrm{x}_{\mathrm{Bj}}=\mathbf{0 . 3 6}$
$\checkmark \mathrm{t} \sim[-0.5,-0.1] \mathrm{GeV}^{2}$
\checkmark Maximal luminosity $=\mathbf{3} . \mathbf{1 0}^{\mathbf{3 7}} \mathbf{c m}^{-2} \mathbf{s}^{-1}$
- 13 X 16 PbF2 blocs (density $7.77 \mathrm{~g} / \mathrm{cm}^{3}$) - block size : $3 \times 3 \mathrm{~cm}^{2} \times 20 \mathrm{X}_{0}$
- Each blok is conected to (PM + base)
-The detection Based on Čerenkov light detection

Selection of the n-DVCS events Accidentals $\& \& \pi^{0}$ contamination subtraction

The raw data: detect e^{\prime} and γ in coincidence ($e N \rightarrow e^{\prime} \gamma X$)

$\cdot 1$ track in the HRS and 1 cluster in the calorimeter (energy> 1 GeV)
\rightarrow The detected photon may be in fortuitous coincidence with the scattered electron
\rightarrow The photon detected in the calorimeter may come from the decay of π^{0} and resembles kinematically to a DVCS photon : $\mathrm{eN} \rightarrow \mathrm{e}^{\prime} \boldsymbol{\pi}^{0} \mathrm{X} \rightarrow \mathrm{e}^{\ominus} \gamma_{1} \mathrm{~V}_{2} \mathrm{X}$

Spectrum : $M_{X}{ }^{2}=\left(e+N-e^{\prime}-\gamma\right)^{2}$

Selection of the n-DVCS events

After

- subtracting the accidentals,
- subtracting single photons coming from π^{0} decay (π^{0} contamination),
- adding Fermi momentum to H2 data,
- normalizing H2 and D2 data to the same luminosity,

We obtain the difference
$D\left(e, e^{\prime} \gamma\right) X-H\left(e, e^{\prime} \gamma\right) X$
$=n\left(e, e^{\prime} \gamma\right) n+l\left(e, e^{\prime} \gamma\right) d+.$.

$$
D\left(e, e^{\prime} \gamma\right) p n=p\left(e, e^{\prime} \gamma\right) p+n\left(e, e^{\prime} \gamma\right) n+d\left(e, e^{\prime} \gamma\right) d
$$

Adjusting the simulation to the experimental data

Experimental data

$+$

simulated data:

1- have the same cuts applied to the experimental data
2- have the same resolution and the same calibration as experimental data
3 - takes into account the radiative corrections

Adjusting the simulation to the experimental data

Experimental data

$+$

simulated data:

1- have the same cuts applied to the experimental data
2- have the same resolution and the same calibration as experimental data
3 - takes into account the radiative corrections

n-DVCS cross section (+d-DVCS)

Binning: $12 \times 2 \times 5 \times 30$ bins in φ, E, t and $M_{X}{ }^{2}$

- Dependence in $\varphi \rightarrow$ Separate the different neutron LO/LT CFFs observables Xin (neutron) (or Xid (coherent deuton))
\bullet Binning in $M_{X}{ }^{2} \rightarrow$ Separate $n\left(e, e^{\prime} \gamma\right) n$ and $d\left(e, e^{\prime} \gamma\right) d$ contributions

$$
\mathrm{M}_{\mathrm{X}}{ }^{2} \mathbf{d} \approx \mathrm{M}_{\mathrm{X}}{ }^{2} \mathbf{n}+\mathbf{t} / \mathbf{2}
$$

The unpolarized (nDVCS + dDVCS) total cross section (simplified expression) :

$$
\frac{d^{4} \sigma_{(n D V C S+d D V C S)}}{d Q^{2} d x_{B} d t d \varphi} \underbrace{}_{\substack{\text { BH_neutron } \\ \text { contribution }}}=H_{n}+B H_{c}
$$

Kinematical factor

Contribution

The observables we want to extract: the linear combinations of CFFS
which contain GPDs

n-DVCS cross section (+d-DVCS)

Unpolarized cross section as a function of ϕ, E and t bins :

I: neutron and coherent deuteron cross sections
: neutron contribution (inclu syst. and stat. errors)
-ー-ー : neutron BH
: deutron contribution
(inclu syst. and stat. errors)
---- : deutron BH
—:VGG prediction Phys. Rev. D 60, 094017, (1999).

- Cano and Pire

Eur. Phys. J. A19, 423 (2004).

n-DVCS cross section (+d-DVCS)

Unpolarized cross section as a function of ϕ, E and t bins :

> First experimental determination of the unpolarized
\$: neutron and coherent deuteron cross sections
: neutron contribution (inclu syst. and stat. errors)
---- : neutron BH
: deutron contribution (inclu syst. and stat. errors)
---- : deutron BH

- : VGG prediction Phys. Rev. D 60, 094017, (1999).
- : Cano and Pire Eur. Phys. J. A19, 423 (2004).
cross section
the first experimental evidence of a positive n-DVCS signal

n-DVCS cross section (+d-DVCS)

Simultaneous fit of two $\mathrm{E}_{\text {beam }} \Rightarrow$ Separate \mid DVCS $\left.\right|^{2}$ and I|DVCS.BH| contributions

n-DVCS cross section (+d-DVCS)

\mid DVCS $\left.\right|^{2}$ and I|DVCS.BH| contributions off the neutron as a function of ϕ, E and t bins :

- \mid DVCS $\left.\right|^{2}$ neutron contribution
: I|DVCS.BH| neutron contribution
---- : VGG prediction Phys. Rev. D 60, 094017,

The interference term is compatible with zero within error bars (In agreement with E03-106 experiment 2004, M. MAZOUZ et al., Phys. Rev. Lett. 99:242501, 2007)
\Rightarrow The DVCS ${ }^{2}$ has a significant contribution to the cross section (in agreement with proton results at the same kinematics : M. Defurne et al., Nature Commun. 8, 1408,2017)

Conclusion

$>$ First measurements of the unpolarized cross section of the photon electroproduction off a deuterium target
$>$ Rosenbluth separation of the DVCS $^{\mathbf{2}}$ and the interference terms for the neutron and the coherent deuteron
$>$ Neutron results: significant deviation of the cross section from the n-BH : a non-zero n-DVCS signal
> Deutron results: compatible with d-BH and theoretical expectations

- A flavor decomposition of the CFFs can be performed by combining proton and neutron data
- The neutron results are sensitive to GPD E and can be exploited to constraint the quark angular momentum

Thank you for your attention

BACK-UP

Extraction of the cross section

According to the formalism of Muller Belitsky and the differential cross section is:

$$
C_{n}^{I}=\Gamma^{I} \mathfrak{R e} C_{++}^{I}(n \mid \mathcal{F})+\Gamma^{I} \mathfrak{R e} C_{0_{+}}^{I}\left(n \mid \mathcal{F}_{\text {eff }}\right)+\Gamma^{I} \mathfrak{R e} C_{-+}^{I}\left(n \mid \mathcal{F}_{\tau}\right)
$$

$\mathfrak{R e} C_{++}^{I}(n \mid \mathcal{F})=\operatorname{Re}^{\mathrm{I}}\left(\mathcal{F}+\frac{C^{\mathrm{V}}(n)}{C_{++}(n)} \mathfrak{R e} C^{l, V}(\mathcal{F})+\ldots\right.$
2

$$
\mathfrak{R e} C_{0+}^{\mathcal{T}^{-}}\left(n \mid \mathcal{F}_{\text {eff }}\right)=\left[\ldots\left(\operatorname{Re} C^{\mathrm{I}}\left(\mathcal{F}_{\text {eff }}\right)\right)+\frac{C_{0+}^{\mathrm{V}}(n)}{C_{0+}(n)} \mathfrak{R e} C^{l, V}\left(\mathcal{F}_{\text {eff }}\right)+\ldots\right.
$$

Electromagnetic Calorimeter

Electromagnetic Calorimeter

-13x16 PbF_{2} blocks (Čerenkov light detection)

- Block size: $3 \times 3 \mathrm{~cm}^{2} \times 20 \mathrm{X}_{0}$
-short radiation length :
$->X_{0}=(1 / 20)$ crystal length
- Molière redius=2.2 cm
-> electromagnetic shower is contained in 9 adjacent blocks
- Each block is connected to (PMT + base + ARS)
\checkmark recording the input signal on 128 ns (ARS) as in a digital oscilloscope in order to solve the pile up signals.
\checkmark Digitization and recording of all calorimeter channels for each electron detected in HRS (trigger) \checkmark The energy deposit determination is based on a wave form analysis of the ARS signals.
blackening blocks under the effects of radiation:
\rightarrow the gains of the blocks decreases
Calibrate the response of the electromagnetic calorimeter

arrival times signal

Calorimeter energy calibration

Calibration method

$$
\mathbf{e N} \rightarrow \mathbf{e}^{\prime} \xrightarrow{\pi^{0} \mathbf{N}} \gamma 1 \gamma^{2} \text { (Detected) }
$$

The calibration method is based on the comparison between the measured energy of a detected π^{0} from $\mathrm{H}\left(\mathrm{e}, \mathrm{e}^{\prime} \pi^{0}\right)$ p events and its expected energy calculated with its scattering angle:

$$
\cos \left(\theta_{r^{r \pi z}}\right)=\frac{\vec{q}_{r,} \cdot \vec{q}_{\pi 0}}{\left\|\vec{q}_{r \cdot}\right\|\left\|\vec{q}_{\pi 0}\right\|}
$$

After the minimization we get the coefficients

$$
\frac{\partial x^{2}}{\partial C_{1}}=0 \Rightarrow[C]=[M]\left[\begin{array}{ll}
\text { sen }
\end{array}\right.
$$

The momentum of π^{0} reconstructed using

$$
\vec{q}_{\gamma 1} \text { et } \vec{q}_{\gamma^{2}}
$$

several iterations to get the final coefficients for each block i

Selection of the n-DVCS events

2- π^{0} contamination subtraction

\rightarrow The photon detected in the calorimeter may come from the decay of $\pi 0$ and resembles kinematically to a DVCS photon : $\mathbf{e N} \rightarrow \mathrm{e}^{\boldsymbol{\prime}} \boldsymbol{\pi}^{0} \mathbf{X} \rightarrow \mathrm{e}^{\boldsymbol{\prime}} \gamma_{1} \gamma_{2} \mathbf{X}$

We applied a cut on the blocks of the edges and on the corner of the calorimeter to better estimate the $\pi 0$ contamination (Efficiency $=100 \%+/-1$)

Smearing of the simulation data

Smearing Result

For 5 in t and 20 in ϕ
$>$ Good agreement between the resolution of the data and the simulation for each bin (t and φ)
$>$ Good agreement between the calibration of the data and the simulation for each bin (t and φ)
>The first 20 bins are rejected (blocks on board of the calorimeter)
$>$ The coefficients of the smearing determined with LH2_data and the p_DVCS simulation are then applied to d_DVCS and n_DVCS simulation.

Smearing of the simulation data

Smearing Result

For 5 in t and 20 in ϕ
$>$ Good agreement between the resolution of the data and the simulation for each bin (t and φ) $>$ Good agreement between the calibration of the data and the simulation for each bin (t and φ) $>$ The first 20 bins are rejected (blocks on board of the calorimeter)
$>$ The coefficients of the smearing determined with LH2_data and the p_DVCS simulation are then applied to d_DVCS and n_DVCS simulation.

