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Precision measurements of VudStandard Model
3 interactions, 3 generations of quarks and leptons, Higgs

Charged current interaction - β-decay (μ, π±, n)
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CKM - Determines the relative strength of the  
weak CC interaction of quarks vs. that of leptons

CKM unitarity - measure of completeness of the SM:  |Vud|2+ |Vus|2+ |Vub|2=1

W coupling to leptons and hadrons very close but not exactly the same:  
quark mixing - Cabbibo-Kabayashi-Maskawa matrix
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Current status of Vud and CKM unitarity
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CKM unitarity: Vud the main contributor  
to the sum and to the uncertainty
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|Vud|2 + |Vud|2 + |Vud|2 = 0.9994± 0.0005 |Vud|2 = 0.94906± 0.00041

|Vub|2 = 0.00002

|Vus|2 = 0.05031± 0.00022

0+-0+ nuclear decays

K decays

B decays



Current status of Vud and CKM unitarity
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Experiment: f - phase space (QEC) 
t - partial half-life (t1/2, BR)

Superallowed 0+-0+ nuclear decays - only conserved vector current; many decays
Ft = ft(1 + �0R)[1� (�C � �NS)]

Theory: δ’R - Bremsstrahlung, IR-sensitive 
δC -  Isospin breaking (Coulomb, …) 
δNS - Nuclear structure
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Current status of Vud and CKM unitarity
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Universal correction - 𝛾W-box + ZW-box 
Marciano&Sirlin ’87, ‘06
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The only piece that depends on physics at hadronic scale is the V*A term in the Wγ−box 
diagram:

Its contribution to Rec (“m.d”: model-dependent) is:

where the forward Compton amplitude is defined as:

q q

Radiative Corrections: Modern Treatment
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Contributions of these diagrams are either exactly known (by CA) or depend only on UV 
physics which can be computed perturbatively

Radiative Corrections: Modern Treatment

Basis for precision Vud extraction  
from superallowed decays:

Free neutron decay: axial coupling  
- requires additional measurements

|Vud|2 =
5024.49(30) s

⌧n(1 + 3�2)(1 +�V
R) λ=gA/gV
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�pre2002 = 1.2637(21)

�post2002 = 1.2755(11)

|V 0+�0+

ud | = 0.97420(21)

If using bottle τn + latest λ: consistent but 7 times less precise

Unfortunate discrepancy between decay in flight vs. trapped UCN

Same universal correction ΔRV - main limitation for Vud extraction from superallowed decays

|V n
ud| = 0.9743(15)
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We analyze the universal radiative correction �V
R to neutron and superallowed nuclear � decay

by expressing the hadronic �W -box contribution in terms of a dispersion relation, which we identify
as an integral over the first Nachtmann moment of the �W interference structure function F (0)

3 . By
connecting the needed input to existing data on neutrino and antineutrino scattering, we obtain
an updated value of �V

R = 0.02467(22), wherein the hadronic uncertainty is reduced. Assuming
other Standard Model theoretical calculations and experimental measurements remain unchanged,
we obtain an updated value of |Vud| = 0.97366(15), raising tension with the first row CKM unitarity
constraint. We comment on ways current and future experiments can provide input to our dispersive
analysis.

The unitarity test of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix serves as one of the most important pre-
cision tests of the Standard Model. In particular, tests of
first-row CKM unitarity |Vud|

2 + |Vus|
2 + |Vub|

2 = 1 re-
ceive the most attention since these matrix elements are
known with highest precision, all with comparable uncer-
tainties. The good agreement with unitarity [1] serves as
a powerful tool to constrain New Physics scenarios.

Currently, the most precise determination of |Vud|

comes from measurements of half-lives of superallowed
0+ ! 0+ nuclear � decays with a precision of 10�4 [2]. At
tree-level, these decays are mediated by the vector part of
the weak charged current only, which is protected against
renormalization by strong interactions due to conserved
vector current (CVC), making the extraction of |Vud| rel-
atively clean. Beyond tree-level, however, electroweak ra-
diative corrections (EWRC) involving the axial current
are not protected, and lead to a hadronic uncertainty
that dominates the error in the determination of |Vud|.

The master formula relating the CKM matrix element
|Vud| to the superallowed nuclear � decay half-life is [2]:

|Vud|
2 =

2984.432(3) s

Ft(1 +�V
R)

, (1)

where the nucleus-independent Ft-value is obtained from
the experimentally measured ft-value by absorbing all
nuclear-dependent corrections, and where �V

R represents
the nucleus-independent EWRC. Currently, an average
of the 14 best measured half-lives yields an extraordinar-
ily precise value of Ft = 3072.27(72) s. A similar mas-
ter formula exists for free neutron � decay [3] depend-
ing additionally on the axial-to-vector nucleon coupling
ratio � = gA/gV , and is free of nuclear-structure uncer-
tainties. But the much larger experimental errors in the
measurement of its lifetime and the ratio � [4] makes it

less competitive in the extraction of |Vud|. Regardless, if
first-row CKM unitarity is to be tested at a higher level
of precision, improvement in the theoretical estimate of
�V

R by reducing hadronic uncertainties is essential.
The best determination of �V

R = 0.02361(38) was ob-
tained in 2006 by Marciano and Sirlin [5] (in the fol-
lowing, we refer to their work as [MS]). They were able
to reduce the hadronic uncertainty by a factor of 2 over
their earlier calculation [6] by using high order pertur-
bative QCD corrections originally derived for the polar-
ized Bjorken sum rule to precisely estimate the short dis-
tance contribution. At intermediate distances, an inter-
polating function motivated by vector meson dominance
(VMD) was used to connect the long and short distances
and was identified as the dominant source of theoreti-
cal uncertainty. This result leads to the current value of
|Vud| = 0.97420(21) [1].
In this Letter, we introduce a new approach for eval-

uating �V
R based on dispersion relations which relate

it to directly measurable inclusive lepton-hadron and
neutrino-hadron structure functions. Dispersion rela-
tions have proved crucial for evaluating the �Z-box cor-
rection to parity violating electron-hadron interaction in
atoms and in scattering processes [7–19]. It led to a sig-
nificant shift in the 1-loop SM prediction for the hadronic
weak charges, and ensured a correct extraction of the
weak mixing angle at low energy [20]. Using existing
data on neutrino and anti-neutrino scattering, we obtain
a more precise value of the nucleus-independent EWRC,

�V
R = 0.02467(22) , (2)

and therefore a new determination of |Vud|,

|Vud| = 0.97366(15). (3)



Radiative corrections - Inner & Outer
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Contributions of these diagrams are either exactly known (by CA) or depend only on UV 
physics which can be computed perturbatively

Radiative Corrections: Modern Treatment
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The only piece that depends on physics at hadronic scale is the V*A term in the Wγ−box 
diagram:

Its contribution to Rec (“m.d”: model-dependent) is:

where the forward Compton amplitude is defined as:

q q

Radiative Corrections: Modern Treatment

W,Z-exchange: UV-sensitive, pQCD;  
model-independent

• Pioneering work by Sirlin (Phys.Rev. 164, 1767 (1967) , before the 
establishment of SM) was to separate RC into two pieces:

1. “Outer” correction: depends critically on the electron spectrum 
but not on the details of strong and weak interaction

2. “Inner” correction: depends on the details of strong and weak 
interaction but not so much on the electron spectrum

• The “outer” contributions are obtained by retaining only the IR-
singular pieces in the loop diagrams

• Bremsstrahlung diagrams are also needed to cancel IR divergence

Radiative Corrections:Pre-SM

5
Diagrams taken from Ando et al, PLB 595 (2004) 250

• Pioneering work by Sirlin (Phys.Rev. 164, 1767 (1967) , before the 
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Radiative Corrections:Pre-SM
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Outer (depend on e-energy) retain only IR divergent pieces 

Inner (energy-independent)

When 𝛾 involved:  
sensitive to long range physics; 
model-dependent!
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We analyze the universal radiative correction �V
R to neutron and superallowed nuclear � decay

by expressing the hadronic �W -box contribution in terms of a dispersion relation, which we identify
as an integral over the first Nachtmann moment of the �W interference structure function F (0)

3 . By
connecting the needed input to existing data on neutrino and antineutrino scattering, we obtain
an updated value of �V

R = 0.02467(22), wherein the hadronic uncertainty is reduced. Assuming
other Standard Model theoretical calculations and experimental measurements remain unchanged,
we obtain an updated value of |Vud| = 0.97366(15), raising tension with the first row CKM unitarity
constraint. We comment on ways current and future experiments can provide input to our dispersive
analysis.

The unitarity test of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix serves as one of the most important pre-
cision tests of the Standard Model. In particular, tests of
first-row CKM unitarity |Vud|

2 + |Vus|
2 + |Vub|

2 = 1 re-
ceive the most attention since these matrix elements are
known with highest precision, all with comparable uncer-
tainties. The good agreement with unitarity [1] serves as
a powerful tool to constrain New Physics scenarios.

Currently, the most precise determination of |Vud|

comes from measurements of half-lives of superallowed
0+ ! 0+ nuclear � decays with a precision of 10�4 [2]. At
tree-level, these decays are mediated by the vector part of
the weak charged current only, which is protected against
renormalization by strong interactions due to conserved
vector current (CVC), making the extraction of |Vud| rel-
atively clean. Beyond tree-level, however, electroweak ra-
diative corrections (EWRC) involving the axial current
are not protected, and lead to a hadronic uncertainty
that dominates the error in the determination of |Vud|.

The master formula relating the CKM matrix element
|Vud| to the superallowed nuclear � decay half-life is [2]:

|Vud|
2 =

2984.432(3) s

Ft(1 +�V
R)

, (1)

where the nucleus-independent Ft-value is obtained from
the experimentally measured ft-value by absorbing all
nuclear-dependent corrections, and where �V

R represents
the nucleus-independent EWRC. Currently, an average
of the 14 best measured half-lives yields an extraordinar-
ily precise value of Ft = 3072.27(72) s. A similar mas-
ter formula exists for free neutron � decay [3] depend-
ing additionally on the axial-to-vector nucleon coupling
ratio � = gA/gV , and is free of nuclear-structure uncer-
tainties. But the much larger experimental errors in the
measurement of its lifetime and the ratio � [4] makes it

less competitive in the extraction of |Vud|. Regardless, if
first-row CKM unitarity is to be tested at a higher level
of precision, improvement in the theoretical estimate of
�V

R by reducing hadronic uncertainties is essential.
The best determination of �V

R = 0.02361(38) was ob-
tained in 2006 by Marciano and Sirlin [5] (in the fol-
lowing, we refer to their work as [MS]). They were able
to reduce the hadronic uncertainty by a factor of 2 over
their earlier calculation [6] by using high order pertur-
bative QCD corrections originally derived for the polar-
ized Bjorken sum rule to precisely estimate the short dis-
tance contribution. At intermediate distances, an inter-
polating function motivated by vector meson dominance
(VMD) was used to connect the long and short distances
and was identified as the dominant source of theoreti-
cal uncertainty. This result leads to the current value of
|Vud| = 0.97420(21) [1].
In this Letter, we introduce a new approach for eval-

uating �V
R based on dispersion relations which relate

it to directly measurable inclusive lepton-hadron and
neutrino-hadron structure functions. Dispersion rela-
tions have proved crucial for evaluating the �Z-box cor-
rection to parity violating electron-hadron interaction in
atoms and in scattering processes [7–19]. It led to a sig-
nificant shift in the 1-loop SM prediction for the hadronic
weak charges, and ensured a correct extraction of the
weak mixing angle at low energy [20]. Using existing
data on neutrino and anti-neutrino scattering, we obtain
a more precise value of the nucleus-independent EWRC,

�V
R = 0.02467(22) , (2)

and therefore a new determination of |Vud|,

|Vud| = 0.97366(15). (3)

Until recently: best determination  
Marciano & Sirlin 2006
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𝛾W-box

3

FIG. 1: The �W -box diagram relevant for the �
� neutron decay.

III. DISPERSION REPRESENTATION OF THE ”INNER” �W -BOX CORRECTION TO gV .

The �W -box correction is shown in Fig. 1, and is defined as

T�W =
p
2e2GFVud

Z
d4q

(2⇡)4
ūe�µ(k/� q/+me)�⌫(1� �5)v⌫

q2[(k � q)2 �m2
e]

M2
W

q2 �M2
W

T �W
µ⌫ , (6)

where k is the outgoing momentum of the electron. The forward generalized Compton tensor for the �� decay process
W+n ! �p (W�p ! �n for the �+ process relevant for nuclei) represented by the lower blob in Fig. 1 is given by

Tµ⌫
�W =

Z
dxeiqxhp|T [Jµ

em(x)J⌫
W (0)]|ni (7)

with the following definitions of the electromagnetic and charged weak current:

Jµ
em =

2

3
ū�µu�

1

3
d̄�µd

Jµ
W = ūL�

µdL. (8)

Notice that the definition of Tµ⌫
�W above follows that in Ref. [6], which has a di↵erence of factor i comparing to more

common definitions in the analysis of deep-inelastic processes.
As the box diagram contains only one heavy boson propagator, it receives contribution from the loop momentum

q of all scales, ranging from infrared (i.e. q ⇠ me) to ultraviolet. The infrared-singular piece in T�W , together with
the electron and proton wavefunction renormalization as well as the real-photon bremsstrahlung diagrams, give rise
to the Fermi function F (�) and the outer-corrections �(1,2) which are known analytically. In the meantime, most
parts of the inner corrections from T�W to gV are either exactly known due to current algebra or depend only on
physics at high-scale and so are perturbatively calculable. The only piece that depends on the physics at the hadron
scale involves the vector-axial vector correlator in Tµ⌫

�W . Following a notation similar to that in Ref. [2], we define its
correction to the tree-level W -exchange amplitude as:

TW + TV A
�W = �

p
2GFVud

�
1 +⇤V A

�W

�
ūep/(1� �5)v⌫ , (9)

and so its connection to the older notation in [5] is just ⇤V A
�W = (↵/2⇡) (Re c)V A

�W . The explicit expression of ⇤V A
�W is

given by:

⇤V A
�W = 4⇡↵Re

Z
d4q

(2⇡)4
M2

W

M2
W +Q2

Q2 + ⌫2

Q4

T3(⌫, Q2)

M⌫
(10)

where Q2 = �q2, ⌫ = p · q/M with M the average nucleon mass, and T3(⌫, Q2) the parity-odd spin-independent
invariant amplitude of the forward Compton tensor Tµ⌫

�W defined through:

Tµ⌫
�W =

✓
�gµ⌫ +

qµq⌫

q2

◆
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1

(p · q)

✓
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q
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T2 +
i✏µ⌫↵�p↵q�
2(p · q)

T3. (11)

Notice that since ⇤V A
�W is insensitive to physics at the scale q ⇠ me, we have set me, k ! 0 as well as mn = mp = M

to arrive Eq. (10). Furthermore, the fact that the electromagnetic current comes as a mixture of an isoscalar and
isovector permits a decomposition of the forward amplitude in two isospin channels,

T3 = T (0)
3 + T (3)

3 . (12)
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given by:

⇤V A
�W = 4⇡↵Re

Z
d4q

(2⇡)4
M2

W

M2
W +Q2

Q2 + ⌫2

Q4

T3(⌫, Q2)

M⌫
(10)

where Q2 = �q2, ⌫ = p · q/M with M the average nucleon mass, and T3(⌫, Q2) the parity-odd spin-independent
invariant amplitude of the forward Compton tensor Tµ⌫

�W defined through:

Tµ⌫
�W =
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�gµ⌫ +

qµq⌫
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T1 +
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(p · q)
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i✏µ⌫↵�p↵q�
2(p · q)

T3. (11)

Notice that since ⇤V A
�W is insensitive to physics at the scale q ⇠ me, we have set me, k ! 0 as well as mn = mp = M

to arrive Eq. (10). Furthermore, the fact that the electromagnetic current comes as a mixture of an isoscalar and
isovector permits a decomposition of the forward amplitude in two isospin channels,

T3 = T (0)
3 + T (3)

3 . (12)
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The only piece that depends on physics at hadronic scale is the V*A term in the Wγ−box 
diagram:

Its contribution to Rec (“m.d”: model-dependent) is:

where the forward Compton amplitude is defined as:

q q
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FIG. 1: The �W -box diagram relevant for the �
� neutron decay.

III. DISPERSION REPRESENTATION OF THE ”INNER” �W -BOX CORRECTION TO gV .

The �W -box correction is shown in Fig. 1, and is defined as

T�W =
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q2[(k � q)2 �m2
e]

M2
W

q2 �M2
W

T �W
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where k is the outgoing momentum of the electron. The forward generalized Compton tensor for the �� decay process
W+n ! �p (W�p ! �n for the �+ process relevant for nuclei) represented by the lower blob in Fig. 1 is given by

Tµ⌫
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W (0)]|ni (7)

with the following definitions of the electromagnetic and charged weak current:
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Jµ
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µdL. (8)

Notice that the definition of Tµ⌫
�W above follows that in Ref. [6], which has a di↵erence of factor i comparing to more

common definitions in the analysis of deep-inelastic processes.
As the box diagram contains only one heavy boson propagator, it receives contribution from the loop momentum

q of all scales, ranging from infrared (i.e. q ⇠ me) to ultraviolet. The infrared-singular piece in T�W , together with
the electron and proton wavefunction renormalization as well as the real-photon bremsstrahlung diagrams, give rise
to the Fermi function F (�) and the outer-corrections �(1,2) which are known analytically. In the meantime, most
parts of the inner corrections from T�W to gV are either exactly known due to current algebra or depend only on
physics at high-scale and so are perturbatively calculable. The only piece that depends on the physics at the hadron
scale involves the vector-axial vector correlator in Tµ⌫

�W . Following a notation similar to that in Ref. [2], we define its
correction to the tree-level W -exchange amplitude as:

TW + TV A
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1 +⇤V A
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�
ūep/(1� �5)v⌫ , (9)

and so its connection to the older notation in [5] is just ⇤V A
�W = (↵/2⇡) (Re c)V A

�W . The explicit expression of ⇤V A
�W is

given by:
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where Q2 = �q2, ⌫ = p · q/M with M the average nucleon mass, and T3(⌫, Q2) the parity-odd spin-independent
invariant amplitude of the forward Compton tensor Tµ⌫

�W defined through:
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Notice that since ⇤V A
�W is insensitive to physics at the scale q ⇠ me, we have set me, k ! 0 as well as mn = mp = M

to arrive Eq. (10). Furthermore, the fact that the electromagnetic current comes as a mixture of an isoscalar and
isovector permits a decomposition of the forward amplitude in two isospin channels,

T3 = T (0)
3 + T (3)

3 . (12)
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The only piece that depends on physics at hadronic scale is the V*A term in the Wγ−box 
diagram:

Its contribution to Rec (“m.d”: model-dependent) is:

where the forward Compton amplitude is defined as:
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The only piece that depends on physics at hadronic scale is the V*A term in the Wγ−box 
diagram:

Its contribution to Rec (“m.d”: model-dependent) is:

where the forward Compton amplitude is defined as:
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FIG. 1: The �W -box diagram relevant for the �
� neutron decay.

III. DISPERSION REPRESENTATION OF THE ”INNER” �W -BOX CORRECTION TO gV .

The �W -box correction is shown in Fig. 1, and is defined as

T�W =
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where k is the outgoing momentum of the electron. The forward generalized Compton tensor for the �� decay process
W+n ! �p (W�p ! �n for the �+ process relevant for nuclei) represented by the lower blob in Fig. 1 is given by

Tµ⌫
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Z
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em(x)J⌫
W (0)]|ni (7)

with the following definitions of the electromagnetic and charged weak current:

Jµ
em =
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1

3
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W = ūL�

µdL. (8)

Notice that the definition of Tµ⌫
�W above follows that in Ref. [6], which has a di↵erence of factor i comparing to more

common definitions in the analysis of deep-inelastic processes.
As the box diagram contains only one heavy boson propagator, it receives contribution from the loop momentum

q of all scales, ranging from infrared (i.e. q ⇠ me) to ultraviolet. The infrared-singular piece in T�W , together with
the electron and proton wavefunction renormalization as well as the real-photon bremsstrahlung diagrams, give rise
to the Fermi function F (�) and the outer-corrections �(1,2) which are known analytically. In the meantime, most
parts of the inner corrections from T�W to gV are either exactly known due to current algebra or depend only on
physics at high-scale and so are perturbatively calculable. The only piece that depends on the physics at the hadron
scale involves the vector-axial vector correlator in Tµ⌫

�W . Following a notation similar to that in Ref. [2], we define its
correction to the tree-level W -exchange amplitude as:

TW + TV A
�W = �
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2GFVud
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1 +⇤V A
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�
ūep/(1� �5)v⌫ , (9)

and so its connection to the older notation in [5] is just ⇤V A
�W = (↵/2⇡) (Re c)V A

�W . The explicit expression of ⇤V A
�W is

given by:
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where Q2 = �q2, ⌫ = p · q/M with M the average nucleon mass, and T3(⌫, Q2) the parity-odd spin-independent
invariant amplitude of the forward Compton tensor Tµ⌫

�W defined through:
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Notice that since ⇤V A
�W is insensitive to physics at the scale q ⇠ me, we have set me, k ! 0 as well as mn = mp = M

to arrive Eq. (10). Furthermore, the fact that the electromagnetic current comes as a mixture of an isoscalar and
isovector permits a decomposition of the forward amplitude in two isospin channels,

T3 = T (0)
3 + T (3)
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FIG. 3: Idealized structure of virtual photoabsorption on the nucleon (upper panel) and nuclei (lower panel). Plot taken from
the web but we’d need to make one ourselves.

Caution: We need to put back the superscript V A to ⇤�W because ⇤�W 6= ⇤V A
�W !! (i.e. V ⇥ A is NOT the only

non-zero piece in �W box diagram)
Compared to the old result by MS

⇤V A
�W =

↵

8⇡

Z 1

0

dQ2M2
W

M2
W +Q2

F (Q2), (17)

which only explicitly considered Q2 as a dynamical variable, our result allows for a greater detalization as we provide
a dispersion representation of that function,

F (Q2) =

Z 1

0
d⌫

8(⌫ + 2q)

M⌫(⌫ + q)2
F (0)
3 (⌫, Q2). (18)

This is the first essentially new result of our work. Armed with this new dispersive representation we can address
model dependence of the box graph calculation on a qualitatively new level. In doing so we can also rely on experi-
mental data: while F �W

3 (⌫, Q2) itself is not directly observable, its weak isospin partners F �Z
3 (⌫, Q2), FZZ

3 (⌫, Q2) and
FWW
3 (⌫, Q2) enter observables in inclusive electron and neutrino scattering.

IV. PHYSICS INPUT INTO THE DISPERSION RELATION FOR F
�W
3

It is informative to take a look at the general structure of the virtual photoabsorption spectrum displayed in Fig.
3. For a fixed value of Q2 one clearly sees three major structures as one goes from low to high energy ⌫: elastic peak
at Q2/(2M) (broadened by radiative corrections); nucleon resonances and non-resonant pion production starting
from the pion threshold [Q2 + (M +m⇡)2 �M2]/(2M) and up to roughly 2.5 GeV above the threshold; high-energy

𝛾W-box in the pre-2018 era

Short distance Q2>> FDIS(Q2) =
1

Q2 ⇤DIS
�W =

↵

8⇡

Z 1

⇤2

dQ2M2
W

M2
W +Q2

FDIS(Q2) =
↵

4⇡
ln

MW

⇤

Long distance Q2<< - elastic box
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As discussed in Ref. [5], the Standard Model prediction for
the PV asymmetry in the forward regime can be expressed as

APV = GF t

4
√

2παem

[
(1 + #ρ + #e)(1 − 4 sin2 θ̂W (0) + #′

e)

+ !WW + !ZZ + !γZ

]
+ . . . , (12)

where θ̂W (0) is the running weak mixing angle in the MS
scheme at zero momentum transfer [7]. The correction #ρ is
a universal radiative correction to the relative normalization
of the neutral and charged current amplitudes; the #e and #′

e

give, respectively, nonuniversal corrections to the axial vector
Zee and γ ee couplings; the !V V for V = W,Z, γ give the
nonuniversal box graph corrections; and the “+ · · · ” indicate
terms that vanish with higher powers of t in the forward limit,
such as those arising from the magnetic and strange quark form
factors and the two-photon dispersion correction, !γ γ . The
weak charge of the proton, considered as a static property, is
given by the quantity in the squark brackets in the zero-energy
limit.

Within the radiative corrections, the TBE effects are
separated explicitly. This is done because the TBE corrections,
unlike other corrections in the above equation, are in general
ν and t dependent. In particular, the ν (or ε) dependence of
the γ γ -box is believed to be responsible for the discrepancy
between the Rosenbluth and polarization transfer data for
G

γ
E/G

γ
M [18]. It should be noted that in the exact forward

direction !γ γ vanishes as a consequence of electromagnetic
gauge invariance.

The WW and ZZ-box diagrams were first considered in [8]
and subsequently investigated in Refs. [5,19]. The contribution
from !WW in particular is relatively large. Both corrections
are ν independent at any hadronic energy scale because they
are dominated by exchange of hard momenta in the loop
∼ MW,MZ . Higher-order perturbative QCD corrections to
!WW and !ZZ were computed in Ref. [5], and the overall
theoretical uncertainty associated with these contributions is
well below the expected uncertainty of the Q-Weak experi-
ment.

In contrast to !WW and !ZZ , !γZ receives substantial
contributions from loop momenta at all scales. For the electron
energy-independent contribution, this situation leads to the
presence of a large logarithm ln MZ/)had, where )had is a
typical hadronic scale [5,8,19]. Because the asymmetry must
be independent of the latter, !γZ includes also a “low-energy
constant” CγZ()had) whose hadronic scale dependence com-
pensates for that appearing in the logarithm. An analogous Wγ
box correction enters the vector current contribution to neutron
and nuclear β decay. Importantly for the PV asymmetry, these
energy-independent γZ box contributions are suppressed by
1 − 4 sin2 θW , thereby suppressing the associated theoretical
uncertainty.

In Ref. [11], the γZ-box contribution was reexamined in
the framework of dispersion relations and it was found that
it possesses a considerable energy dependence, so that at
energies in the GeV range its value can differ significantly from
that found at zero energy. Moreover, the energy-dependent
correction contains a term that is not 1 − 4 sin2 θW suppressed,
so the theoretical uncertainty associated with hadronic-scale

contributions is potentially more significant. This energy de-
pendence comes through contributions from hadronic energy
range inside the loop that cannot be calculated reliably using
perturbative techniques.

At present, a complete first-principles computation is not
feasible, forcing one to rely on hadronic modeling. For a proper
interpretation of the PV asymmetry, it is thus important to
investigate the theoretical hadronic model uncertainty. The
remainder of the paper is devoted to this task. In so doing, we
attempt to reduce this model uncertainty by relating–wherever
possible–contributions from hadronic intermediate states to
experimental PC electroproduction data through the use of a
dispersion relation and isospin rotation. As a corollary, we also
identify future experimental measurements, such as those of
the PV inelastic asymmetry in the regime of moderate Q2 and
W , that could be helpful in reducing the theoretical uncertainty.

III. DISPERSION CORRECTIONS

To calculate the real part of the γZ direct and crossed
box diagrams shown in Fig. 1, we follow [11] and adopt a
dispersion relation formalism. We start with the calculation
of the imaginary part of the direct box (the crossed box
contribution to the real part will be calculated using crossing),

ImTγZ = −GF√
2

e2

(2π )3

∫
d3k⃗1

2E1

lµν · W
µν
γZ

Q2
(
1 + Q2/M2

Z

) , (13)

where Q2 = −(k − k1)2 denotes the virtuality of the ex-
changed photon and Z (in the forward direction they carry
exactly the same Q2), and we explicitly set the intermediate
electron on shell. In the center of mass of the (initial) electron
and proton, one has E1 = s−W 2

2
√

s
, with s the full c.m. energy

squared and W the invariant mass of the intermediate hadronic
state. Note that for on-shell intermediate states, the exchanged
bosons are always spacelike.

The leptonic tensor is given by

lµν = ū(k′)γνk/1γµ

(
ge

V + ge
Aγ5

)
u(k). (14)

We next turn to the lower part of the diagrams in Fig. 1. The
blobs stand for an inclusive sum over all possible hadronic
intermediate states, starting from the ground state (i.e., the
nucleon itself) and on to a sum over the whole nucleon
photoabsorption spectrum. The case of the elastic hadronic
intermediate state was considered in Ref. [20]. Here we
concentrate on the inelastic contribution. Such contributions
arise from the absorption of a photon (weak boson). In
electrodynamics, for a given material, the relation between

FIG. 1. Direct and crossed diagrams for γZ exchange. Dashed
lines correspond to an exchange of a Z boson, and wavy lines to
an exchange of a photon. The blob stands for an inclusive sum over
intermediate hadronic states.
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Consequently, upon neglecting the terms ⇠ M2/Q2 and allowing x⇡ ! 1 we obtain

⇤V,DIS
�W ⇡

3↵

2⇡

Z 1

⇤2

dQ2M2
W

Q2(Q2 +M2
W )

Z x⇡

0
dx

eu + ed
8

(d(x)� ū(x)). (28)

Note that the neglected kinematically suppressed terms have no impact on the final result. Assuming further a
symmetric sea in the nucleon, ū = d̄, the integral over x simply gives the number of valence d-quarks inside the
neutron,

R 1
0 dx(d(x)� d̄(x)) = 2, and we obtain the large logarithm term already obtained by MS:

⇤DIS
�W ⇡

3↵

2⇡

eu + ed
4

ln
M2

W

⇤2
=

↵

4⇡
ln

MW

⇤
, (29)

An important result from Ref. [2] was to realize that all pQCD corrections to this leading logarithm term are identical
to those entering Bjorken sum rule. These corrections modify the leading log (LL) result for the M&S function F (Q2),

FLL(Q2) =
1

Q2
! F pQCD =

1

Q2

2

41� ↵MS
s

⇡
� C2

 
↵MS
s

⇡

!2

� C3

 
↵MS
s

⇡

!3
3

5 , (30)

with C2 = 4.583 � 0.333NF and C3 = 41.440 � 7.607NF + 0.177N2
F , NF standing for the number of e↵ective quark

flavors, and ↵MS
s (Q2) denotes the running strong coupling constant in the modified minimal subtraction scheme.

Numerically, the pQCD corrections reduce the large log ln(MZ/⇤) ⇡ 4.11 by roughly 8 %, Ag = �0.34 [2].
The first moment of the structure function F3 is also known as Gross-Llewellyn-Smith (GLS) sum rule. It is directly

accessible in neutrino and antineutrino deep inelastic scattering:

d2�⌫(⌫̄)

dxdy
=

G2
FME

⇡


xy2F1 +

✓
1� y �

Mxy

2E

◆
F2 ± x

✓
y �

y2

2

◆
F3

�
, (31)

with +(�) referring to neutrino (antineutrino) scattering. Therefore, a measurement of the di↵erence of the neutrino
and antineutrino cross sections gives F3 which arises as an interference between the axial and vector currents of the
W . GLS sum rule has been extensively studied in the literature. Fig. 5 displays the comparison of a compilation of
world data on GLS sum rule above Q2 = 2 GeV2 together with the pQCD prediction. Note that it di↵ers from the
pQCD running of Bjorken sum rule in Eq. (30) just in one coe�cient at ↵3

s.

C. Inelastic contributions beyond DIS

In the remaining piece of the Q2-integral we can once again neglect the Q2-dependence of the W -propagator, and
it becomes

⇤lowQ2

�W =
↵

⇡

Z ⇤2

0
dQ2

Z 1

⌫⇡

d⌫

(⌫ + q)2
⌫ + 2q

M⌫
F (0)
3 . (32)

This contribution should be compared to the integral over what M&S called an interpolating contribution

⇤V A (0)
�W =

↵

8⇡

Z ⇤2

Q2
0

dQ2F INT(Q2), (33)

where the lower limit of integration was chosen to be Q2
0 = (0.823GeV)2. The respective function under the integral

was taken in the VDM-motivated form,

F INT(Q2) = �
1.490

Q2 +m2
⇢

+
6.855

Q2 +m2
A

�
4.414

Q2 +m2
⇢0
, (34)

with m⇢ = 0.776 GeV, mA = 1.230 GeV and m⇢0 = 1.465 GeV, and numerical coe�cients were obtained by imposing
three constraints:

I F INT(⇤2) = FDIS(⇤2)

II F INT((0.823GeV)2) = FBorn((0.823GeV)2)

III F INT(0) = 0. (35)

Matching conditions:
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FIG. 1: The �W -box diagram relevant for the �
� neutron decay.

III. DISPERSION REPRESENTATION OF THE ”INNER” �W -BOX CORRECTION TO gV .

The �W -box correction is shown in Fig. 1, and is defined as

T�W =
p
2e2GFVud

Z
d4q

(2⇡)4
ūe�µ(k/� q/+me)�⌫(1� �5)v⌫

q2[(k � q)2 �m2
e]

M2
W

q2 �M2
W

T �W
µ⌫ , (6)

where k is the outgoing momentum of the electron. The forward generalized Compton tensor for the �� decay process
W+n ! �p (W�p ! �n for the �+ process relevant for nuclei) represented by the lower blob in Fig. 1 is given by

Tµ⌫
�W =

Z
dxeiqxhp|T [Jµ

em(x)J⌫
W (0)]|ni (7)

with the following definitions of the electromagnetic and charged weak current:

Jµ
em =

2

3
ū�µu�

1

3
d̄�µd

Jµ
W = ūL�

µdL. (8)

Notice that the definition of Tµ⌫
�W above follows that in Ref. [6], which has a di↵erence of factor i comparing to more

common definitions in the analysis of deep-inelastic processes.
As the box diagram contains only one heavy boson propagator, it receives contribution from the loop momentum

q of all scales, ranging from infrared (i.e. q ⇠ me) to ultraviolet. The infrared-singular piece in T�W , together with
the electron and proton wavefunction renormalization as well as the real-photon bremsstrahlung diagrams, give rise
to the Fermi function F (�) and the outer-corrections �(1,2) which are known analytically. In the meantime, most
parts of the inner corrections from T�W to gV are either exactly known due to current algebra or depend only on
physics at high-scale and so are perturbatively calculable. The only piece that depends on the physics at the hadron
scale involves the vector-axial vector correlator in Tµ⌫

�W . Following a notation similar to that in Ref. [2], we define its
correction to the tree-level W -exchange amplitude as:

TW + TV A
�W = �

p
2GFVud

�
1 +⇤V A

�W

�
ūep/(1� �5)v⌫ , (9)

and so its connection to the older notation in [5] is just ⇤V A
�W = (↵/2⇡) (Re c)V A

�W . The explicit expression of ⇤V A
�W is

given by:

⇤V A
�W = 4⇡↵Re

Z
d4q

(2⇡)4
M2

W

M2
W +Q2

Q2 + ⌫2

Q4

T3(⌫, Q2)

M⌫
(10)

where Q2 = �q2, ⌫ = p · q/M with M the average nucleon mass, and T3(⌫, Q2) the parity-odd spin-independent
invariant amplitude of the forward Compton tensor Tµ⌫

�W defined through:

Tµ⌫
�W =

✓
�gµ⌫ +

qµq⌫

q2

◆
T1 +

1

(p · q)

✓
p�

(p · q)

q2
q

◆µ ✓
p�

(p · q)

q2
q

◆⌫

T2 +
i✏µ⌫↵�p↵q�
2(p · q)

T3. (11)

Notice that since ⇤V A
�W is insensitive to physics at the scale q ⇠ me, we have set me, k ! 0 as well as mn = mp = M

to arrive Eq. (10). Furthermore, the fact that the electromagnetic current comes as a mixture of an isoscalar and
isovector permits a decomposition of the forward amplitude in two isospin channels,

T3 = T (0)
3 + T (3)

3 . (12)
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The only piece that depends on physics at hadronic scale is the V*A term in the Wγ−box 
diagram:

Its contribution to Rec (“m.d”: model-dependent) is:

where the forward Compton amplitude is defined as:

q q

Radiative Corrections: Modern Treatment

Q2 = -q2 
ν = (pq)/M

Seng, MG, Patel, Ramsey-Musolf, arXiv: 1807.10197

Check MS result + uncertainty independently
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FIG. 2: The contour in the complex ⌫ plane.

We apply Cauchy’s theorem to the definite isospin amplitudes T (I)
3 (⌫, Q2) (I = 0, 3)accounting for their singularities

in the complex ⌫ plane. These lie on the real axis: poles due to a single nucleon intermediate state in the s� and

u-channels at ⌫ = ±⌫B = ±
Q2

2M , respectively, and unitarity cuts at ⌫ � ⌫⇡ and ⌫  �⌫⇡ where ⌫⇡ = (2Mm⇡ +m2
⇡ +

Q2)/(2M), m⇡ being the pion mass. The contour is constructed such as to go around all these singularities, and is
closed at infinity, see Fig. 2. The discontinuity of the forward amplitude in the physical region (i.e. ⌫ > 0) is given
by the generalization of the DIS structure functions to the �W -interference in the standard normalization,

DisT (I)
3 (⌫, Q2) = T (I)

3 (⌫ + i✏, Q2)� T (I)
3 (⌫ � i✏, Q2) = 4⇡iF (I)

3 (⌫, Q2) (13)

where

W (I)µ⌫
�W =

1

4⇡

X

X

(2⇡)4�4(p+ q � pX) hp| J (I)µ
em |Xi hX| J⌫

W |ni

=

✓
�gµ⌫ +

qµq⌫

q2

◆
F (I)
1 +

1

(p · q)

✓
p�

(p · q)

q2
q

◆µ ✓
p�

(p · q)

q2
q

◆⌫

F (I)
2 +

i✏µ⌫↵�p↵q�
2(p · q)

F (I)
3 , (14)

and for the sake of a unified description, within F (I)
i we keep both the �-functions at the nucleon poles, and the

discontinuities along the multi-particle cuts. The full function T (I)
3 (⌫, Q2) is reconstructed from a fixed-Q2 dispersion

relation

T (I)
3 (⌫, Q2) =

1

2⇡i

Z 1

0
d⌫0


1

⌫0 � ⌫ � i✏
+ ⇠I

1

⌫0 + ⌫ + i✏

�
4⇡iF (I)

3 (⌫0, Q2), (15)

modulo possible subtractions which are needed to make the dispersion integral convergent. The form of the dispersion
relation depends on the crossing behavior, the relative sign ⇠I between the contributions along the positive and
negative real ⌫ axis. It can be shown that the isoscalar amplitude is an odd function of ⌫, hence ⇠0 = �1, while the
isovector amplitude is even. Correspondingly, the isoscalar requires no subtractions, while the isovector one may have
to be subtracted one time.

Putting together Eqs. (10,15) and performing the loop integral via Wick rotation we arrive at

⇤V A (0)
�W =

↵

⇡M

Z 1

0

dQ2M2
W

M2
W +Q2

Z 1

0
d⌫

(⌫ + 2q)

⌫(⌫ + q)2
F (0)
3 (⌫, Q2),

⇤V A (3)
�W = 0, (16)

where we introduced the virtual photon three-momentum q =
p

⌫2 +Q2. The vanishing of the isovector contribution
is the consequence of the crossing symmetry, as has already been noticed by Sirlin [5]. Thus from now onward we

shall represent ⇤V A,(0)
�W simply by ⇤V A

�W without causing any confusion.
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Figure 1: Feynman diagrams corresponding to the amplitude
in (4) which contribute at order O(↵/⇡) to neutron � decay
and are sensitive to the hadronic scale.

We summarize in this Letter the essential features of our
analysis that lead us to these values, and defer details to
an upcoming longer paper [21].

Among the various contributions atO(↵/⇡) to the neu-
tron � decay amplitude, Sirlin established [22] that the
only one sensitive to the hadronic scale is the part in the
�W box amplitude (Fig. 1),

MV A = 2
p
2e2GFVud

Z
d4q

(2⇡)4



ūe(k)�µ(/k � /q +me)�⌫PLv⌫(k)

q2[(k � q)2 �m2
e]

M2
W

q2 �M2
W

Tµ⌫
V A

�
, (4)

involving the nucleon matrix element of the product of
the electromagnetic (EM) and the axial part of the weak
charged current

Tµ⌫
V A =

1

2

Z
d4x eiqxhp(p)|T [Jµ

em(x)J
⌫
W,A(0)]|n(p)i . (5)

After inserting the nucleon matrix element parametrized
in terms of the P -odd invariant function Tµ⌫

V A =
i✏µ⌫↵�p↵q�

2p·q T3 into the amplitude (4), the correction to the

tree level amplitude is expressed as [22]

⇤V A
�W =

↵

8⇡

Z 1

0
dQ2 M2

W

M2
W +Q2

⇥

Z i
p

Q2

�i
p

Q2

d⌫

⌫

4(Q2 + ⌫2)3/2

⇡MQ4
T3(⌫, Q

2) (6)

where after Wick rotation the azimuthal angles of the
loop momentum have been integrated over and the re-
maining integrals have been expressed in terms of Q2 =
�q2 and ⌫ = (p · q)/M . With negligible error, we assume
a common nucleon massM in the isospin symmetric limit
and we work in the recoil-free approximation. This con-
tributes to the nucleus-independent EWRC as

�V
R = 2⇤V A

�W + . . . , (7)

where the ellipses denote all other corrections insensitive
to the hadronic scale.

Marciano and Sirlin estimate ⇤V A
�W by phenomenolog-

ically treating the ⌫-integral FM.S.(Q2) ⌘
R
d⌫ . . . in the

second line of (6) as a function of Q2, and parametriz-
ing it piecewise over three domains: in the short distance
domain Q2 > (1.5 GeV)2, the leading term in the OPE
corrected by high order perturbative QCD is used; in
the long distance domain Q2 < (0.823 GeV)2, the elas-
tic nucleon with dipole form factors is used with a 10%
uncertainty; and at intermediate scales (0.823 GeV)2 <
Q2 < (1.5 GeV)2, an interpolating function inspired by
VMD is used and is assigned a generous 100% uncer-
tainty. Performing the integration over Q2 in (6) yields
their value of �V

R quoted above.
Our evaluation of ⇤V A

�W begins by first separating the
invariant amplitude T3 with respect to isosinglet and

isotriplet components of the EM current T3 = T (0)
3 +T (3)

3 .

Crossing symmetry implies T (0)
3 is odd under ⌫ ! �⌫

while T (3)
3 is even. Since the ⌫ integration measure in

(6) is odd, only T (0)
3 contributes to ⇤V A

�W . We then

write a dispersion relation in ⌫ for T (0)
3 , taking into ac-

count the physical sheet singularities. Poles at ⌫B =
±Q2/(2M) correspond to the elastic single-nucleon in-
termediate state, and branch points at ⌫⇡ = ±(m2

⇡ +
2Mm⇡ + Q2)/(2M) correspond to single pion produc-

tion thresholds. We identify the discontinuity of T (0)
3

across the cut as the �W -interference structure function,

4⇡F (0)
3 (⌫, Q2) = T (0)

3 (⌫ + i✏, Q2) � T (0)
3 (⌫ � i✏, Q2), so

that the dispersion relation reads

T (0)
3 (⌫, Q2) = �4i⌫

Z 1

0
d⌫0

F (0)
3 (⌫0, Q2)

⌫02 � ⌫2
. (8)

where F (0)
3 contains both the elastic and inelastic contri-

butions. No subtraction constant appears since T (0)
3 is an

odd function of ⌫. Only I = 1/2 intermediate states con-
tribute because the EM current is isoscalar. After insert-
ing (8) into (6), performing the ⌫-integral, and changing
the integration variable ⌫0 ! Q2/(2Mx) we obtain
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�W =
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Z 1
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dQ2
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W

M2
W +Q2

M (0)
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where M (0)
3 (1, Q2) is the first Nachtmann moment of the

structure function F (0)
3 [23, 24]
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3 (1, Q2) =

4

3

Z 1

0
dx

1 + 2r

(1 + r)2
F (0)
3 (x,Q2), (10)

and r =
p
1 + 4M2x2/Q2. To estimate ⇤V A

�W , we require

the functional form of F (0)
3 depending on x and Q2, or

equivalently, W 2 = M2 + (1� x)Q2/x and Q2.
We draw attention to the fact that (9) relates [MS]’s

phenomenological function to the first Nachtmann mo-
ment

FM.S.(Q
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12

Q2
M (0)
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Figure 1: Feynman diagrams corresponding to the amplitude
in (4) which contribute at order O(↵/⇡) to neutron � decay
and are sensitive to the hadronic scale.

We summarize in this Letter the essential features of our
analysis that lead us to these values, and defer details to
an upcoming longer paper [21].

Among the various contributions atO(↵/⇡) to the neu-
tron � decay amplitude, Sirlin established [22] that the
only one sensitive to the hadronic scale is the part in the
�W box amplitude (Fig. 1),
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involving the nucleon matrix element of the product of
the electromagnetic (EM) and the axial part of the weak
charged current
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where after Wick rotation the azimuthal angles of the
loop momentum have been integrated over and the re-
maining integrals have been expressed in terms of Q2 =
�q2 and ⌫ = (p · q)/M . With negligible error, we assume
a common nucleon massM in the isospin symmetric limit
and we work in the recoil-free approximation. This con-
tributes to the nucleus-independent EWRC as
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where the ellipses denote all other corrections insensitive
to the hadronic scale.
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d⌫ . . . in the
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domain Q2 > (1.5 GeV)2, the leading term in the OPE
corrected by high order perturbative QCD is used; in
the long distance domain Q2 < (0.823 GeV)2, the elas-
tic nucleon with dipole form factors is used with a 10%
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Q2 < (1.5 GeV)2, an interpolating function inspired by
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their value of �V

R quoted above.
Our evaluation of ⇤V A

�W begins by first separating the
invariant amplitude T3 with respect to isosinglet and

isotriplet components of the EM current T3 = T (0)
3 +T (3)

3 .

Crossing symmetry implies T (0)
3 is odd under ⌫ ! �⌫

while T (3)
3 is even. Since the ⌫ integration measure in

(6) is odd, only T (0)
3 contributes to ⇤V A

�W . We then

write a dispersion relation in ⌫ for T (0)
3 , taking into ac-

count the physical sheet singularities. Poles at ⌫B =
±Q2/(2M) correspond to the elastic single-nucleon in-
termediate state, and branch points at ⌫⇡ = ±(m2

⇡ +
2Mm⇡ + Q2)/(2M) correspond to single pion produc-

tion thresholds. We identify the discontinuity of T (0)
3

across the cut as the �W -interference structure function,

4⇡F (0)
3 (⌫, Q2) = T (0)

3 (⌫ + i✏, Q2) � T (0)
3 (⌫ � i✏, Q2), so

that the dispersion relation reads

T (0)
3 (⌫, Q2) = �4i⌫

Z 1

0
d⌫0

F (0)
3 (⌫0, Q2)

⌫02 � ⌫2
. (8)

where F (0)
3 contains both the elastic and inelastic contri-

butions. No subtraction constant appears since T (0)
3 is an

odd function of ⌫. Only I = 1/2 intermediate states con-
tribute because the EM current is isoscalar. After insert-
ing (8) into (6), performing the ⌫-integral, and changing
the integration variable ⌫0 ! Q2/(2Mx) we obtain

⇤V A
�W =

3↵

2⇡

Z 1

0

dQ2

Q2

M2
W

M2
W +Q2

M (0)
3 (1, Q2), (9)

where M (0)
3 (1, Q2) is the first Nachtmann moment of the

structure function F (0)
3 [23, 24]

M (0)
3 (1, Q2) =

4

3

Z 1

0
dx

1 + 2r

(1 + r)2
F (0)
3 (x,Q2), (10)

and r =
p
1 + 4M2x2/Q2. To estimate ⇤V A

�W , we require

the functional form of F (0)
3 depending on x and Q2, or

equivalently, W 2 = M2 + (1� x)Q2/x and Q2.
We draw attention to the fact that (9) relates [MS]’s

phenomenological function to the first Nachtmann mo-
ment

FM.S.(Q
2) =

12

Q2
M (0)

3 (1, Q2) , (11)

MS’s loop function F in terms of M3

2

Figure 1: Feynman diagrams corresponding to the amplitude
in (4) which contribute at order O(↵/⇡) to neutron � decay
and are sensitive to the hadronic scale.

We summarize in this Letter the essential features of our
analysis that lead us to these values, and defer details to
an upcoming longer paper [21].

Among the various contributions atO(↵/⇡) to the neu-
tron � decay amplitude, Sirlin established [22] that the
only one sensitive to the hadronic scale is the part in the
�W box amplitude (Fig. 1),
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ūe(k)�µ(/k � /q +me)�⌫PLv⌫(k)

q2[(k � q)2 �m2
e]

M2
W

q2 �M2
W

Tµ⌫
V A

�
, (4)

involving the nucleon matrix element of the product of
the electromagnetic (EM) and the axial part of the weak
charged current

Tµ⌫
V A =

1

2

Z
d4x eiqxhp(p)|T [Jµ

em(x)J
⌫
W,A(0)]|n(p)i . (5)

After inserting the nucleon matrix element parametrized
in terms of the P -odd invariant function Tµ⌫

V A =
i✏µ⌫↵�p↵q�

2p·q T3 into the amplitude (4), the correction to the

tree level amplitude is expressed as [22]

⇤V A
�W =

↵

8⇡

Z 1

0
dQ2 M2

W

M2
W +Q2

⇥

Z i
p

Q2

�i
p

Q2

d⌫

⌫

4(Q2 + ⌫2)3/2

⇡MQ4
T3(⌫, Q

2) (6)

where after Wick rotation the azimuthal angles of the
loop momentum have been integrated over and the re-
maining integrals have been expressed in terms of Q2 =
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and we work in the recoil-free approximation. This con-
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R
d⌫ . . . in the

second line of (6) as a function of Q2, and parametriz-
ing it piecewise over three domains: in the short distance
domain Q2 > (1.5 GeV)2, the leading term in the OPE
corrected by high order perturbative QCD is used; in
the long distance domain Q2 < (0.823 GeV)2, the elas-
tic nucleon with dipole form factors is used with a 10%
uncertainty; and at intermediate scales (0.823 GeV)2 <
Q2 < (1.5 GeV)2, an interpolating function inspired by
VMD is used and is assigned a generous 100% uncer-
tainty. Performing the integration over Q2 in (6) yields
their value of �V

R quoted above.
Our evaluation of ⇤V A

�W begins by first separating the
invariant amplitude T3 with respect to isosinglet and

isotriplet components of the EM current T3 = T (0)
3 +T (3)

3 .

Crossing symmetry implies T (0)
3 is odd under ⌫ ! �⌫

while T (3)
3 is even. Since the ⌫ integration measure in

(6) is odd, only T (0)
3 contributes to ⇤V A

�W . We then

write a dispersion relation in ⌫ for T (0)
3 , taking into ac-

count the physical sheet singularities. Poles at ⌫B =
±Q2/(2M) correspond to the elastic single-nucleon in-
termediate state, and branch points at ⌫⇡ = ±(m2

⇡ +
2Mm⇡ + Q2)/(2M) correspond to single pion produc-

tion thresholds. We identify the discontinuity of T (0)
3

across the cut as the �W -interference structure function,

4⇡F (0)
3 (⌫, Q2) = T (0)

3 (⌫ + i✏, Q2) � T (0)
3 (⌫ � i✏, Q2), so

that the dispersion relation reads

T (0)
3 (⌫, Q2) = �4i⌫

Z 1

0
d⌫0

F (0)
3 (⌫0, Q2)

⌫02 � ⌫2
. (8)

where F (0)
3 contains both the elastic and inelastic contri-

butions. No subtraction constant appears since T (0)
3 is an

odd function of ⌫. Only I = 1/2 intermediate states con-
tribute because the EM current is isoscalar. After insert-
ing (8) into (6), performing the ⌫-integral, and changing
the integration variable ⌫0 ! Q2/(2Mx) we obtain

⇤V A
�W =

3↵

2⇡

Z 1

0

dQ2

Q2

M2
W

M2
W +Q2

M (0)
3 (1, Q2), (9)

where M (0)
3 (1, Q2) is the first Nachtmann moment of the

structure function F (0)
3 [23, 24]

M (0)
3 (1, Q2) =

4

3

Z 1

0
dx

1 + 2r

(1 + r)2
F (0)
3 (x,Q2), (10)

and r =
p
1 + 4M2x2/Q2. To estimate ⇤V A

�W , we require

the functional form of F (0)
3 depending on x and Q2, or

equivalently, W 2 = M2 + (1� x)Q2/x and Q2.
We draw attention to the fact that (9) relates [MS]’s

phenomenological function to the first Nachtmann mo-
ment

FM.S.(Q
2) =

12

Q2
M (0)

3 (1, Q2) , (11)
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Input into dispersion integral

5

FIG. 3: Idealized structure of virtual photoabsorption on the nucleon (upper panel) and nuclei (lower panel). Plot taken from
the web but we’d need to make one ourselves.

Caution: We need to put back the superscript V A to ⇤�W because ⇤�W 6= ⇤V A
�W !! (i.e. V ⇥ A is NOT the only

non-zero piece in �W box diagram)
Compared to the old result by MS

⇤V A
�W =

↵

8⇡

Z 1

0

dQ2M2
W

M2
W +Q2

F (Q2), (17)

which only explicitly considered Q2 as a dynamical variable, our result allows for a greater detalization as we provide
a dispersion representation of that function,

F (Q2) =

Z 1

0
d⌫

8(⌫ + 2q)

M⌫(⌫ + q)2
F (0)
3 (⌫, Q2). (18)

This is the first essentially new result of our work. Armed with this new dispersive representation we can address
model dependence of the box graph calculation on a qualitatively new level. In doing so we can also rely on experi-
mental data: while F �W

3 (⌫, Q2) itself is not directly observable, its weak isospin partners F �Z
3 (⌫, Q2), FZZ

3 (⌫, Q2) and
FWW
3 (⌫, Q2) enter observables in inclusive electron and neutrino scattering.

IV. PHYSICS INPUT INTO THE DISPERSION RELATION FOR F
�W
3

It is informative to take a look at the general structure of the virtual photoabsorption spectrum displayed in Fig.
3. For a fixed value of Q2 one clearly sees three major structures as one goes from low to high energy ⌫: elastic peak
at Q2/(2M) (broadened by radiative corrections); nucleon resonances and non-resonant pion production starting
from the pion threshold [Q2 + (M +m⇡)2 �M2]/(2M) and up to roughly 2.5 GeV above the threshold; high-energy

14

W Wγγ

q q q q

p ppp

Optical theorem: ),(4),(Dis 2)0(
3
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3 QFQT νπν =
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30,
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ε
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Dispersive Approach: Formalism

Dispersion in energy:  
scanning hadronic intermediate states

Dispersion in Q2:  
scanning dominant physics pictures
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�(W+⇤ + n ! X)

Boundaries between regions - approximate 

Input in DR related (directly or indirectly) 
to experimentally accessible data 
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Figure 2: (Color online) Phase space of the structure functions

F (0)
3 and F ⌫p+⌫̄p

3 in the W 2–Q2 plane.

which will prove useful when comparing their results with

ours. Furthermore, since F (0)
3 depends directly on on-

shell intermediate hadronic states, it provides better han-
dle on the physics that may enter at various scales. Fig.
2 depicts the domain in the W 2–Q2 plane over which

F (0)
3 has support: the single-nucleon elastic pole is at

W 2 = M2, and the inelastic continuum covers the region
above W 2 > (M +m⇡)2.

Our parameterization of F (0)
3 is as follows:

F (0)
3 = FBorn +

8
<

:
FpQCD, Q2 & 2 GeV2

F⇡N+Fres+FR, Q2 . 2 GeV2 ,
(12)

where each component is given by

FBorn = �
1

4
(Gp

M +Gn
M )GA�(1� x) (13)

R 1
0 dxFpQCD =

1

12
[1 + pQCD] (14)

F⇡N = F�PT ⇥ (F p
1 + Fn

1 )
|GA|

gA
(15)

Fres = negligible (16)

FR = C�W fth
m2

!

m2
! +Q2

m2
a1

m2
a1

+Q2

✓
⌫

⌫0

◆↵⇢
0

, (17)

and supplies the dominant contribution to F (0)
3 in various

regions indicated in Fig. 2 which we describe next.
We obtain the elastic Born contribution at W 2 = M2

in (13) by using the updated values of the magnetic Sachs
form factor GM and the axial form factor GA for the
nucleon [25, 26]. Above threshold, W 2

� (M + m⇡)2,
we consider the dominant physics operating in various
of domains in the Q2–W 2 plane separately. At large

Q2 & 2 GeV2, the Nachtmann moment M (0)
3 reduces to

the Mellin moment and is fixed by the sum rule corrected
by pQCD in Eq. (14) by analogy with that of the polar-
ized Bjorken sum rule [MS]. At small Q2 . 2 GeV2, we

Figure 3: Regge exchange model (a) for F (0)
3 and (b) for

F ⌫p+⌫̄p
3 using vector meson dominance.

estimate the contribution (15) near the inelastic thresh-
old by computing the single pion production contribution
F�PT in Chiral Perturbation Theory (�PT) at leading
order. To improve the behavior of F�PT at larger Q2,
we replace the point-like nucleon vertices with measured
Dirac and axial nucleon form factors, F1 and GA. At
higher W 2, we investigated the impact of several low-
lying I = 1/2 resonances based on a few models [27–29],
and found their contributions to ⇤V A

�W to be negligible.

Finally, at large W 2, we use the form in Eq. (17) in-
spired by Regge phenomenology together with VMD [30]
as illustrated in Fig. 3a. In this picture, the Regge behav-
ior (⌫/⌫0)↵

⇢
0 arises from the exchange of the ⇢ trajectory

with intercept ↵⇢
0 = 0.477 [31], and is coupled to the ex-

ternal currents via a1 and ! mesons encoded by the VMD
factors m2

V /(m
2
V +Q2). We include a threshold function

fth = ⇥(W 2
� W 2

th)
�
1� exp[(W 2

th �W 2)/⇤2
th]

�
which

smoothly vanishes at the two-pion threshold point W 2
th =

(M +2m⇡)2 to model the smooth background in the res-
onance region [10]. We choose equal values for the Regge
and threshold scales of ⌫0 = ⇤th = 1 GeV, to ensure that
Regge behavior sets in around W 2

⇠ (2.5 GeV)2. The
function C�W (Q2) accounts for residual Q2-dependence
beyond that of the VMD, which we infer from experi-
mental data as explained below.

Since the isospin structure of F (0)
3 is (I = 0)⇥ (I = 1),

it is not directly accessible experimentally. However, in-
formation about the P -odd structure function with a
di↵erent isospin structure (I = 1)⇥ (I = 1) is available
from ⌫- and ⌫̄-scattering. In particular, data exists on
the first Nachtmann moment M⌫p+⌫̄p

3 for the combina-

tion F ⌫p+⌫̄p
3 = (FW�

3 + FW+

3 )/2 derived from the dif-
ference of ⌫p and ⌫̄p di↵erential cross sections. The data
by CCFR [32, 33], BEBC/Gargamelle [34] and WA25 [35]
cover a wide region of Q2 from 0.15 to 600 GeV2 (see Fig.
4). Although the precision below Q2

⇡ 1.4 GeV2 is less
satisfactory, we are able to use it to collect information
about the form of the analogous Regge coe�cient func-
tion CWW (Q2) for this structure function, and thereby
infer the form of the required C�W (Q2) as follows.

We parametrize the structure function F ⌫p+⌫̄p
3 in pre-

cisely the same way as in (12) for F (0)
3 , and establish

F ⌫p+⌫̄p
Born , F ⌫p+⌫̄p

pQCD , F ⌫p+⌫̄p
⇡N , F ⌫p+⌫̄p

res and F ⌫p+⌫̄p
R along sim-

ilar lines. In this case,
R 1
0 dxF ⌫p+⌫̄p

pQCD satisfies the Gross-

Our parametrization of the needed SF 
follows from this diagram

Born:  
elastic FF from most recent electron and neutrino scattering data 

πN:  
relativistic ChPT calculation plus nucleon FF 

Resonances:  
axial excitation from PCAC (Lalakulich et al 2006) - neutrino scattering 
isoscalar photo-excitation from MAID and PDG - electron and γ inelastic scattering 

Above resonance region:  
        multiparticle continuum economically described by Regge exchanges

!13
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Unfortunately, no data can be obtained for 

Use the data for the pure CC processes 

F �W (0)
3

8

model (VDM)-motivated form,

F
INT(Q2) = �

1.490

Q2 +m2
⇢

+
6.855

Q2 +m
2
A

�
4.414

Q2 +m
2
⇢0
, (30)

with m⇢ = 0.776 GeV, mA = 1.230 GeV and m⇢0 = 1.465 GeV, and numerical coe�cients were obtained by imposing
three constraints:

I

Z 1

⇤2

dQ
2 M

2
W

M
2
W +Q2

F
INT(Q2) =

Z 1

⇤2

dQ
2 M

2
W

M
2
W +Q2

F
DIS

Q
2)

II lim
Q2!1

Q
4

"
F

INT(Q2)�
limQ2!1

�
Q

2
F

INT(Q2)
�

Q2

#
= 0

III F
INT(0) = 0. (31)

Finally, the matching point Q = 0.823 GeV is determined by requiring that FBorn(Q2) = F
INT(Q2) at that point.

Among the three conditions above, we show via explicit calculation that condition III does not hold. The latter
requires that the following superconvergence relation holds exactly,

Z 1

⌫⇡

d⌫

⌫2
F

(0)
3 (⌫, Q2 = 0) = 0. (32)

To the validity of this conjecture Ref. [3] asserts that this is required by chiral perturbation theory (ChPT), and
a more detailed proof will be reported in an upcoming work. Unfortunately, this proof has never been published. In
Appendix B we perform an explicit calculation in relativistic ChPT and demonstrate that this relation does not hold.

IV. PHYSICS INPUT TO F ⌫p+⌫̄p
3

It is informative to take a look at the general structure of the virtual photoabsorption spectrum displayed in Fig. 4.
For a fixed value of Q2 one clearly sees three major structures as one goes from low to high energy ⌫: elastic peak at
Q

2
/(2M) (broadened by radiative corrections); nucleon resonances and non-resonant pion production starting from the

pion threshold [Q2+(M +m⇡)2�M
2]/(2M) and up to roughly 2.5 GeV above the threshold; high-energy continuum

corresponding to multi-particle production that, depending on the value of Q2, can be economically described by
t-channel Regge exchanges (low Q

2) or quasi-free quark knock-out in the deep-inelastic regime (high Q
2). Exactly

the same structure is expected in neutrino scattering associated with the absorption of a virtual W -boson.

FIG. 4: Idealized structure of virtual photoabsorption on the nucleon.

Accordingly, we aim at describing F
⌫p+⌫̄p
3 at Q

2
 2 GeV2 as a sum of elastic (Born) contribution, non-resonant

⇡N continuum, several low-lying � and N
⇤-resonances, and the high-energy Regge contribution,

F
⌫p+⌫̄p
3, low�Q2 = F

⌫p+⌫̄p
3, el. + F

⌫p+⌫̄p
3,⇡N + F

⌫p+⌫̄p
3, R + F

⌫p+⌫̄p
3,Regge. (33)

8

Consequently, upon neglecting the terms ⇠ M2/Q2 and allowing x⇡ ! 1 we obtain

⇤V,DIS
�W ⇡

3↵

2⇡

Z 1

⇤2

dQ2M2
W

Q2(Q2 +M2
W )

Z x⇡

0
dx

eu + ed
8

(d(x)� ū(x)). (28)

Note that the neglected kinematically suppressed terms have no impact on the final result. Assuming further a
symmetric sea in the nucleon, ū = d̄, the integral over x simply gives the number of valence d-quarks inside the
neutron,

R 1
0 dx(d(x)� d̄(x)) = 2, and we obtain the large logarithm term already obtained by MS:

⇤DIS
�W ⇡

3↵

2⇡

eu + ed
4

ln
M2

W

⇤2
=

↵

4⇡
ln

MW

⇤
, (29)

An important result from Ref. [2] was to realize that all pQCD corrections to this leading logarithm term are identical
to those entering Bjorken sum rule. These corrections modify the leading log (LL) result for the M&S function F (Q2),

FLL(Q2) =
1

Q2
! F pQCD =

1

Q2

2

41� ↵MS
s

⇡
� C2

 
↵MS
s

⇡

!2

� C3

 
↵MS
s

⇡

!3
3

5 , (30)

with C2 = 4.583 � 0.333NF and C3 = 41.440 � 7.607NF + 0.177N2
F , NF standing for the number of e↵ective quark

flavors, and ↵MS
s (Q2) denotes the running strong coupling constant in the modified minimal subtraction scheme.

Numerically, the pQCD corrections reduce the large log ln(MZ/⇤) ⇡ 4.11 by roughly 8 %, Ag = �0.34 [2].
The first moment of the structure function F3 is also known as Gross-Llewellyn-Smith (GLS) sum rule. It is directly

accessible in neutrino and antineutrino deep inelastic scattering:

d2�⌫(⌫̄)

dxdy
=

G2
FME

⇡


xy2F1 +

✓
1� y �

Mxy

2E

◆
F2 ± x

✓
y �

y2

2

◆
F3

�
, (31)

so a measurement of the di↵erence of the neutrino and antineutrino cross sections gives F3 which arises as an inter-
ference between the axial and vector currents of the W .

GLS sum rule has been extensively studied in the literature. Fig. 5 displays the comparison of a compilation of
world data on GLS sum rule and the pQCD prediction. Note that it di↵ers from the pQCD running of Bjorken sum
rule in Eq. (30) just in one coe�cient at ↵2

s.

C. Inelastic contributions beyond DIS

In the remaining piece of the Q2-integral we can once again neglect the Q2-dependence of the W -propagator, and
it becomes

⇤lowQ2

�W =
↵

⇡

Z ⇤2

0
dQ2

Z 1

⌫⇡

d⌫

(⌫ + q)2
⌫ + 2q

M⌫
F (0)
3 . (32)

This contribution should be compared to the integral over what M&S called an interpolating contribution

⇤V A (0)
�W =

↵

8⇡

Z ⇤2

Q2
0

dQ2F INT(Q2), (33)

where the lower limit of integration was chosen to be Q2
0 = (0.823GeV)2. The respective function under the integral

was taken in the VDM-motivated form,

F INT(Q2) = �
1.490

Q2 +m2
⇢

+
6.855

Q2 +m2
A

�
4.414

Q2 +m2
⇢0
, (34)

with m⇢ = 0.776 GeV, mA = 1.230 GeV and m⇢0 = 1.465 GeV, and numerical coe�cients were obtained by imposing
three constraints:

I F INT(⇤2) = FDIS(⇤2)

II F INT((0.823GeV)2) = FBorn((0.823GeV)2)

III F INT(0) = 0. (35)

The same ingredients but in a different isospin channel

!14

Low-W part of spectrum: neutrino data from MiniBooNE, Minerva, …  
- fix (to some extent) the axial FF, resonance contributions, pi-N continuum 
- High energies (low x): Regge behavior F3 ∼ q𝓋 ∼ x-𝛼, 𝛼 ∼ 0.5-0.7

Z 1

0
dx(up

v(x) + dpv(x)) = 3

�⌫p � �⌫̄p ⇠ F ⌫p
3 + F ⌫̄p

3 = up
v(x) + dpv(x)

Data used in the past to check Gross-Llewellyn-Smith sum rule

The plan: validate the model for CC process; apply an isospin rotation to obtain γW



Inelastic states - low Q2, high W

F (0),Regge
3 (⌫, Q2) = CR(Q

2)

✓
⌫

⌫0

◆↵⇢
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Scattering at high energy can be very effectively described by Regge exchanges

Content of the model (and parameters) - depend on the quantum numbers 
Consider vector - axial vector interference relevant for F3 

γW-box: conversion of W± (charged, I=1, axial) to γ (neutral, vector, I=0) 
requires charged vector exchange w. I=1 - ρ± 
effective a1 - ρ - ω vertex

Regge behavior in EW processes: hadron-like behavior of HE electroweak probes -  
Vector/Axial Vector Dominance is the proper language

Inclusive ν scattering: conversion of W± (charged, I=1, axial) to W± (charged, I=1, axial)  
requires neutral vector exchange w. I=0 - ω 
effective a1 - ω - ρ vertex

Minimal model for both reactions - check with data.



Parameters of the Regge model from neutrino scattering

Vector/axial vector dominance: Stodolsky, Piketty ‘70

0.1 1 10 100
Q² (GeV²)

0

0.5

1

1.5

2

2.5

3

3.5

WA25
CCFR
BEBC/GGM-PS
Regge + Born + Δ
pQCD

M
3!p

+!
p (1

,Q
2 )

−
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FWW,Regge
3 (⌫, Q2) = CWW

R (Q2)

✓
⌫

⌫0

◆↵!

FW�( 0),Regge
3 (⌫, Q2) = C�W

R (Q2)

✓
⌫

⌫0

◆↵⇢

CWW
R (Q2) = CWW

R (0)
m2

⇢

m2
⇢ +Q2

m2
a1

m2
a1

+Q2
⇥ hWW (Q2) C�W

R (Q2) = C�W
R (0)

m2
!

m2
! +Q2

m2
a1

m2
a1

+Q2
⇥ h�W (Q2)

CRWW, hWW and uncertainties  
- from neutrino data;

hWW (Q2) = 1 + aQ2

Pure VDM may not work at Q2 = 2 GeV2

CWW
R = 5.2± 1.5 aWW = 1.08+0.48

�0.28 GeV2

Uncertainties anti correlated

Low Q2 < 0.1 GeV2: Born + Δ(1232) dominate 
Not fitted: modern data more precise but  
cover only limited energy range 
Fit driven by 4 data points between 0.2 and 2 GeV2



Parameters of the Regge model from neutrino scattering
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hγW -  match at Q2 = 2 GeV2 (pQCD)

—> Isospin rotation —>

CWW
R (Q2) = CWW

R (0)
m2

⇢

m2
⇢ +Q2

m2
a1

m2
a1

+Q2
⇥ hWW (Q2) C�W

R (Q2) = C�W
R (0)

m2
!

m2
! +Q2

m2
a1

m2
a1

+Q2
⇥ h�W (Q2)

CWW
R (0) ⇠ e

g⇢
· g!NN · 2(V ⇥A+A⇥ V ) · 2(⌫̄p+ ⌫p)

C�W
R (0) ⇠ e

g!
· g⇢NN =

1

36
CWW

R (0)

g! ⇡ 3g⇢, g!NN ⇡ 3g⇢NN

CRγW(0) - matching in Regge + VDM

CWW
R (0) ⇠ e

g⇢
⇥ g!NN ⇥ 2⇥ 2

V*A+A*V

CWW
R (Q2)hWW (Q2)

��
2GeV 2 /

Z 1

0
dx(F ⌫p+⌫̄p

3 ) = 3 C�W
R (Q2)h�W (Q2)

���
2GeV 2

/
Z 1

0
dxF �W (0)

3 =
1

12

At both matching points the same relation holds, CRγW hγW = (1/36) CRWW hWW

Only overall normalization CR is changed! In the isospin-symmetry limit h�W (Q2) = hWW (Q2)

No additional uncertainty due to isospin rotation!
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Input into dispersion integral
Model & Uncertainty fully specified  
- compare M&S vs This work

Log scale for x-axis: 
the integral = surface under the curve

M&S: integrand discontinuous at Q2 = 2.25 GeV2
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�W =

3↵
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2
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We analyze the universal radiative correction �V
R to neutron and superallowed nuclear � decay

by expressing the hadronic �W -box contribution in terms of a dispersion relation, which we identify
as an integral over the first Nachtmann moment of the �W interference structure function F (0)

3 . By
connecting the needed input to existing data on neutrino and antineutrino scattering, we obtain
an updated value of �V

R = 0.02467(22), wherein the hadronic uncertainty is reduced. Assuming
other Standard Model theoretical calculations and experimental measurements remain unchanged,
we obtain an updated value of |Vud| = 0.97366(15), raising tension with the first row CKM unitarity
constraint. We comment on ways current and future experiments can provide input to our dispersive
analysis.

The unitarity test of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix serves as one of the most important pre-
cision tests of the Standard Model. In particular, tests of
first-row CKM unitarity |Vud|

2 + |Vus|
2 + |Vub|

2 = 1 re-
ceive the most attention since these matrix elements are
known with highest precision, all with comparable uncer-
tainties. The good agreement with unitarity [1] serves as
a powerful tool to constrain New Physics scenarios.

Currently, the most precise determination of |Vud|

comes from measurements of half-lives of superallowed
0+ ! 0+ nuclear � decays with a precision of 10�4 [2]. At
tree-level, these decays are mediated by the vector part of
the weak charged current only, which is protected against
renormalization by strong interactions due to conserved
vector current (CVC), making the extraction of |Vud| rel-
atively clean. Beyond tree-level, however, electroweak ra-
diative corrections (EWRC) involving the axial current
are not protected, and lead to a hadronic uncertainty
that dominates the error in the determination of |Vud|.

The master formula relating the CKM matrix element
|Vud| to the superallowed nuclear � decay half-life is [2]:

|Vud|
2 =

2984.432(3) s

Ft(1 +�V
R)

, (1)

where the nucleus-independent Ft-value is obtained from
the experimentally measured ft-value by absorbing all
nuclear-dependent corrections, and where �V

R represents
the nucleus-independent EWRC. Currently, an average
of the 14 best measured half-lives yields an extraordinar-
ily precise value of Ft = 3072.27(72) s. A similar mas-
ter formula exists for free neutron � decay [3] depend-
ing additionally on the axial-to-vector nucleon coupling
ratio � = gA/gV , and is free of nuclear-structure uncer-
tainties. But the much larger experimental errors in the
measurement of its lifetime and the ratio � [4] makes it

less competitive in the extraction of |Vud|. Regardless, if
first-row CKM unitarity is to be tested at a higher level
of precision, improvement in the theoretical estimate of
�V

R by reducing hadronic uncertainties is essential.
The best determination of �V

R = 0.02361(38) was ob-
tained in 2006 by Marciano and Sirlin [5] (in the fol-
lowing, we refer to their work as [MS]). They were able
to reduce the hadronic uncertainty by a factor of 2 over
their earlier calculation [6] by using high order pertur-
bative QCD corrections originally derived for the polar-
ized Bjorken sum rule to precisely estimate the short dis-
tance contribution. At intermediate distances, an inter-
polating function motivated by vector meson dominance
(VMD) was used to connect the long and short distances
and was identified as the dominant source of theoreti-
cal uncertainty. This result leads to the current value of
|Vud| = 0.97420(21) [1].
In this Letter, we introduce a new approach for eval-

uating �V
R based on dispersion relations which relate

it to directly measurable inclusive lepton-hadron and
neutrino-hadron structure functions. Dispersion rela-
tions have proved crucial for evaluating the �Z-box cor-
rection to parity violating electron-hadron interaction in
atoms and in scattering processes [7–19]. It led to a sig-
nificant shift in the 1-loop SM prediction for the hadronic
weak charges, and ensured a correct extraction of the
weak mixing angle at low energy [20]. Using existing
data on neutrino and anti-neutrino scattering, we obtain
a more precise value of the nucleus-independent EWRC,

�V
R = 0.02467(22) , (2)

and therefore a new determination of |Vud|,

|Vud| = 0.97366(15). (3)
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We analyze the universal radiative correction �V
R to neutron and superallowed nuclear � decay

by expressing the hadronic �W -box contribution in terms of a dispersion relation, which we identify
as an integral over the first Nachtmann moment of the �W interference structure function F (0)

3 . By
connecting the needed input to existing data on neutrino and antineutrino scattering, we obtain
an updated value of �V

R = 0.02467(22), wherein the hadronic uncertainty is reduced. Assuming
other Standard Model theoretical calculations and experimental measurements remain unchanged,
we obtain an updated value of |Vud| = 0.97366(15), raising tension with the first row CKM unitarity
constraint. We comment on ways current and future experiments can provide input to our dispersive
analysis.

The unitarity test of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix serves as one of the most important pre-
cision tests of the Standard Model. In particular, tests of
first-row CKM unitarity |Vud|

2 + |Vus|
2 + |Vub|

2 = 1 re-
ceive the most attention since these matrix elements are
known with highest precision, all with comparable uncer-
tainties. The good agreement with unitarity [1] serves as
a powerful tool to constrain New Physics scenarios.

Currently, the most precise determination of |Vud|

comes from measurements of half-lives of superallowed
0+ ! 0+ nuclear � decays with a precision of 10�4 [2]. At
tree-level, these decays are mediated by the vector part of
the weak charged current only, which is protected against
renormalization by strong interactions due to conserved
vector current (CVC), making the extraction of |Vud| rel-
atively clean. Beyond tree-level, however, electroweak ra-
diative corrections (EWRC) involving the axial current
are not protected, and lead to a hadronic uncertainty
that dominates the error in the determination of |Vud|.

The master formula relating the CKM matrix element
|Vud| to the superallowed nuclear � decay half-life is [2]:

|Vud|
2 =

2984.432(3) s

Ft(1 +�V
R)

, (1)

where the nucleus-independent Ft-value is obtained from
the experimentally measured ft-value by absorbing all
nuclear-dependent corrections, and where �V

R represents
the nucleus-independent EWRC. Currently, an average
of the 14 best measured half-lives yields an extraordinar-
ily precise value of Ft = 3072.27(72) s. A similar mas-
ter formula exists for free neutron � decay [3] depend-
ing additionally on the axial-to-vector nucleon coupling
ratio � = gA/gV , and is free of nuclear-structure uncer-
tainties. But the much larger experimental errors in the
measurement of its lifetime and the ratio � [4] makes it

less competitive in the extraction of |Vud|. Regardless, if
first-row CKM unitarity is to be tested at a higher level
of precision, improvement in the theoretical estimate of
�V

R by reducing hadronic uncertainties is essential.
The best determination of �V

R = 0.02361(38) was ob-
tained in 2006 by Marciano and Sirlin [5] (in the fol-
lowing, we refer to their work as [MS]). They were able
to reduce the hadronic uncertainty by a factor of 2 over
their earlier calculation [6] by using high order pertur-
bative QCD corrections originally derived for the polar-
ized Bjorken sum rule to precisely estimate the short dis-
tance contribution. At intermediate distances, an inter-
polating function motivated by vector meson dominance
(VMD) was used to connect the long and short distances
and was identified as the dominant source of theoreti-
cal uncertainty. This result leads to the current value of
|Vud| = 0.97420(21) [1].
In this Letter, we introduce a new approach for eval-

uating �V
R based on dispersion relations which relate

it to directly measurable inclusive lepton-hadron and
neutrino-hadron structure functions. Dispersion rela-
tions have proved crucial for evaluating the �Z-box cor-
rection to parity violating electron-hadron interaction in
atoms and in scattering processes [7–19]. It led to a sig-
nificant shift in the 1-loop SM prediction for the hadronic
weak charges, and ensured a correct extraction of the
weak mixing angle at low energy [20]. Using existing
data on neutrino and anti-neutrino scattering, we obtain
a more precise value of the nucleus-independent EWRC,

�V
R = 0.02467(22) , (2)

and therefore a new determination of |Vud|,

|Vud| = 0.97366(15). (3)
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We analyze the universal radiative correction �V
R to neutron and superallowed nuclear � decay

by expressing the hadronic �W -box contribution in terms of a dispersion relation, which we identify
as an integral over the first Nachtmann moment of the �W interference structure function F (0)

3 . By
connecting the needed input to existing data on neutrino and antineutrino scattering, we obtain
an updated value of �V

R = 0.02467(22), wherein the hadronic uncertainty is reduced. Assuming
other Standard Model theoretical calculations and experimental measurements remain unchanged,
we obtain an updated value of |Vud| = 0.97366(15), raising tension with the first row CKM unitarity
constraint. We comment on ways current and future experiments can provide input to our dispersive
analysis.

The unitarity test of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix serves as one of the most important pre-
cision tests of the Standard Model. In particular, tests of
first-row CKM unitarity |Vud|

2 + |Vus|
2 + |Vub|

2 = 1 re-
ceive the most attention since these matrix elements are
known with highest precision, all with comparable uncer-
tainties. The good agreement with unitarity [1] serves as
a powerful tool to constrain New Physics scenarios.

Currently, the most precise determination of |Vud|

comes from measurements of half-lives of superallowed
0+ ! 0+ nuclear � decays with a precision of 10�4 [2]. At
tree-level, these decays are mediated by the vector part of
the weak charged current only, which is protected against
renormalization by strong interactions due to conserved
vector current (CVC), making the extraction of |Vud| rel-
atively clean. Beyond tree-level, however, electroweak ra-
diative corrections (EWRC) involving the axial current
are not protected, and lead to a hadronic uncertainty
that dominates the error in the determination of |Vud|.

The master formula relating the CKM matrix element
|Vud| to the superallowed nuclear � decay half-life is [2]:

|Vud|
2 =

2984.432(3) s

Ft(1 +�V
R)

, (1)

where the nucleus-independent Ft-value is obtained from
the experimentally measured ft-value by absorbing all
nuclear-dependent corrections, and where �V

R represents
the nucleus-independent EWRC. Currently, an average
of the 14 best measured half-lives yields an extraordinar-
ily precise value of Ft = 3072.27(72) s. A similar mas-
ter formula exists for free neutron � decay [3] depend-
ing additionally on the axial-to-vector nucleon coupling
ratio � = gA/gV , and is free of nuclear-structure uncer-
tainties. But the much larger experimental errors in the
measurement of its lifetime and the ratio � [4] makes it

less competitive in the extraction of |Vud|. Regardless, if
first-row CKM unitarity is to be tested at a higher level
of precision, improvement in the theoretical estimate of
�V

R by reducing hadronic uncertainties is essential.
The best determination of �V

R = 0.02361(38) was ob-
tained in 2006 by Marciano and Sirlin [5] (in the fol-
lowing, we refer to their work as [MS]). They were able
to reduce the hadronic uncertainty by a factor of 2 over
their earlier calculation [6] by using high order pertur-
bative QCD corrections originally derived for the polar-
ized Bjorken sum rule to precisely estimate the short dis-
tance contribution. At intermediate distances, an inter-
polating function motivated by vector meson dominance
(VMD) was used to connect the long and short distances
and was identified as the dominant source of theoreti-
cal uncertainty. This result leads to the current value of
|Vud| = 0.97420(21) [1].
In this Letter, we introduce a new approach for eval-

uating �V
R based on dispersion relations which relate

it to directly measurable inclusive lepton-hadron and
neutrino-hadron structure functions. Dispersion rela-
tions have proved crucial for evaluating the �Z-box cor-
rection to parity violating electron-hadron interaction in
atoms and in scattering processes [7–19]. It led to a sig-
nificant shift in the 1-loop SM prediction for the hadronic
weak charges, and ensured a correct extraction of the
weak mixing angle at low energy [20]. Using existing
data on neutrino and anti-neutrino scattering, we obtain
a more precise value of the nucleus-independent EWRC,

�V
R = 0.02467(22) , (2)

and therefore a new determination of |Vud|,

|Vud| = 0.97366(15). (3)

ACFI-T18-12
MITP/18-070

Reduced hadronic uncertainty in the determination of Vud

Chien-Yeah Senga, Mikhail Gorchteinb,⇤ Hiren H. Patelc, and Michael J. Ramsey-Musolfc,d
aINPAC, Shanghai Key Laboratory for Particle Physics and Cosmology,
MOE Key Laboratory for Particle Physics, Astrophysics and Cosmology,

School of Physics and Astronomy, Shanghai Jiao-Tong University, Shanghai 200240, China
bInstitut für Kernphysik, PRISMA Cluster of Excellence

Johannes Gutenberg-Universität, Mainz, Germany
cAmherst Center for Fundamental Interactions, Department of Physics,

University of Massachusetts, Amherst, MA 01003 and
dKellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 USA

(Dated: August 22, 2018)

We analyze the universal radiative correction �V
R to neutron and superallowed nuclear � decay

by expressing the hadronic �W -box contribution in terms of a dispersion relation, which we identify
as an integral over the first Nachtmann moment of the �W interference structure function F (0)

3 . By
connecting the needed input to existing data on neutrino and antineutrino scattering, we obtain
an updated value of �V

R = 0.02467(22), wherein the hadronic uncertainty is reduced. Assuming
other Standard Model theoretical calculations and experimental measurements remain unchanged,
we obtain an updated value of |Vud| = 0.97366(15), raising tension with the first row CKM unitarity
constraint. We comment on ways current and future experiments can provide input to our dispersive
analysis.

The unitarity test of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix serves as one of the most important pre-
cision tests of the Standard Model. In particular, tests of
first-row CKM unitarity |Vud|

2 + |Vus|
2 + |Vub|

2 = 1 re-
ceive the most attention since these matrix elements are
known with highest precision, all with comparable uncer-
tainties. The good agreement with unitarity [1] serves as
a powerful tool to constrain New Physics scenarios.

Currently, the most precise determination of |Vud|

comes from measurements of half-lives of superallowed
0+ ! 0+ nuclear � decays with a precision of 10�4 [2]. At
tree-level, these decays are mediated by the vector part of
the weak charged current only, which is protected against
renormalization by strong interactions due to conserved
vector current (CVC), making the extraction of |Vud| rel-
atively clean. Beyond tree-level, however, electroweak ra-
diative corrections (EWRC) involving the axial current
are not protected, and lead to a hadronic uncertainty
that dominates the error in the determination of |Vud|.

The master formula relating the CKM matrix element
|Vud| to the superallowed nuclear � decay half-life is [2]:

|Vud|
2 =

2984.432(3) s

Ft(1 +�V
R)

, (1)

where the nucleus-independent Ft-value is obtained from
the experimentally measured ft-value by absorbing all
nuclear-dependent corrections, and where �V

R represents
the nucleus-independent EWRC. Currently, an average
of the 14 best measured half-lives yields an extraordinar-
ily precise value of Ft = 3072.27(72) s. A similar mas-
ter formula exists for free neutron � decay [3] depend-
ing additionally on the axial-to-vector nucleon coupling
ratio � = gA/gV , and is free of nuclear-structure uncer-
tainties. But the much larger experimental errors in the
measurement of its lifetime and the ratio � [4] makes it

less competitive in the extraction of |Vud|. Regardless, if
first-row CKM unitarity is to be tested at a higher level
of precision, improvement in the theoretical estimate of
�V

R by reducing hadronic uncertainties is essential.
The best determination of �V

R = 0.02361(38) was ob-
tained in 2006 by Marciano and Sirlin [5] (in the fol-
lowing, we refer to their work as [MS]). They were able
to reduce the hadronic uncertainty by a factor of 2 over
their earlier calculation [6] by using high order pertur-
bative QCD corrections originally derived for the polar-
ized Bjorken sum rule to precisely estimate the short dis-
tance contribution. At intermediate distances, an inter-
polating function motivated by vector meson dominance
(VMD) was used to connect the long and short distances
and was identified as the dominant source of theoreti-
cal uncertainty. This result leads to the current value of
|Vud| = 0.97420(21) [1].
In this Letter, we introduce a new approach for eval-

uating �V
R based on dispersion relations which relate

it to directly measurable inclusive lepton-hadron and
neutrino-hadron structure functions. Dispersion rela-
tions have proved crucial for evaluating the �Z-box cor-
rection to parity violating electron-hadron interaction in
atoms and in scattering processes [7–19]. It led to a sig-
nificant shift in the 1-loop SM prediction for the hadronic
weak charges, and ensured a correct extraction of the
weak mixing angle at low energy [20]. Using existing
data on neutrino and anti-neutrino scattering, we obtain
a more precise value of the nucleus-independent EWRC,

�V
R = 0.02467(22) , (2)

and therefore a new determination of |Vud|,

|Vud| = 0.97366(15). (3)
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We analyze the universal radiative correction �V
R to neutron and superallowed nuclear � decay

by expressing the hadronic �W -box contribution in terms of a dispersion relation, which we identify
as an integral over the first Nachtmann moment of the �W interference structure function F (0)

3 . By
connecting the needed input to existing data on neutrino and antineutrino scattering, we obtain
an updated value of �V

R = 0.02467(22), wherein the hadronic uncertainty is reduced. Assuming
other Standard Model theoretical calculations and experimental measurements remain unchanged,
we obtain an updated value of |Vud| = 0.97366(15), raising tension with the first row CKM unitarity
constraint. We comment on ways current and future experiments can provide input to our dispersive
analysis.

The unitarity test of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix serves as one of the most important pre-
cision tests of the Standard Model. In particular, tests of
first-row CKM unitarity |Vud|

2 + |Vus|
2 + |Vub|

2 = 1 re-
ceive the most attention since these matrix elements are
known with highest precision, all with comparable uncer-
tainties. The good agreement with unitarity [1] serves as
a powerful tool to constrain New Physics scenarios.

Currently, the most precise determination of |Vud|

comes from measurements of half-lives of superallowed
0+ ! 0+ nuclear � decays with a precision of 10�4 [2]. At
tree-level, these decays are mediated by the vector part of
the weak charged current only, which is protected against
renormalization by strong interactions due to conserved
vector current (CVC), making the extraction of |Vud| rel-
atively clean. Beyond tree-level, however, electroweak ra-
diative corrections (EWRC) involving the axial current
are not protected, and lead to a hadronic uncertainty
that dominates the error in the determination of |Vud|.

The master formula relating the CKM matrix element
|Vud| to the superallowed nuclear � decay half-life is [2]:

|Vud|
2 =

2984.432(3) s

Ft(1 +�V
R)

, (1)

where the nucleus-independent Ft-value is obtained from
the experimentally measured ft-value by absorbing all
nuclear-dependent corrections, and where �V

R represents
the nucleus-independent EWRC. Currently, an average
of the 14 best measured half-lives yields an extraordinar-
ily precise value of Ft = 3072.27(72) s. A similar mas-
ter formula exists for free neutron � decay [3] depend-
ing additionally on the axial-to-vector nucleon coupling
ratio � = gA/gV , and is free of nuclear-structure uncer-
tainties. But the much larger experimental errors in the
measurement of its lifetime and the ratio � [4] makes it

less competitive in the extraction of |Vud|. Regardless, if
first-row CKM unitarity is to be tested at a higher level
of precision, improvement in the theoretical estimate of
�V

R by reducing hadronic uncertainties is essential.
The best determination of �V

R = 0.02361(38) was ob-
tained in 2006 by Marciano and Sirlin [5] (in the fol-
lowing, we refer to their work as [MS]). They were able
to reduce the hadronic uncertainty by a factor of 2 over
their earlier calculation [6] by using high order pertur-
bative QCD corrections originally derived for the polar-
ized Bjorken sum rule to precisely estimate the short dis-
tance contribution. At intermediate distances, an inter-
polating function motivated by vector meson dominance
(VMD) was used to connect the long and short distances
and was identified as the dominant source of theoreti-
cal uncertainty. This result leads to the current value of
|Vud| = 0.97420(21) [1].
In this Letter, we introduce a new approach for eval-

uating �V
R based on dispersion relations which relate

it to directly measurable inclusive lepton-hadron and
neutrino-hadron structure functions. Dispersion rela-
tions have proved crucial for evaluating the �Z-box cor-
rection to parity violating electron-hadron interaction in
atoms and in scattering processes [7–19]. It led to a sig-
nificant shift in the 1-loop SM prediction for the hadronic
weak charges, and ensured a correct extraction of the
weak mixing angle at low energy [20]. Using existing
data on neutrino and anti-neutrino scattering, we obtain
a more precise value of the nucleus-independent EWRC,

�V
R = 0.02467(22) , (2)

and therefore a new determination of |Vud|,

|Vud| = 0.97366(15). (3)
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Figure 4: (Color online) World data on the first Nacht-
mann moment M⌫p+⌫̄p

3 (1, Q2). The red curve is the pQCD-
corrected GLS sum rule above Q2

⇡ 2 GeV2, and the blue
curve is the result of the fit for AWW and BWW in (19).

Llewellyn-Smith sum rule [36] corrected by pQCD [37],
while at low Q2, the �-resonance and the Born contri-
bution saturate the Nachtmann moment [34]. At large
W 2, the ! trajectory controls the leading behavior, and
couples to the external currents by the a1 and ⇢ mesons
(see Fig. 3b), leading to

F ⌫p+⌫̄p
R = CWW fth

m2
⇢

m2
⇢ +Q2

m2
a1

m2
a1

+Q2

✓
⌫

⌫0

◆↵!
0

. (18)

We then fit the unknown function CWW (Q2) to the data
for M⌫p+⌫̄p

3 (1, Q2) in the range Q2
 2 GeV2. Due to

the quality of the data, we choose the simple linear form

CWW (Q2) = AWW (1 +BWWQ2) (19)

and obtain AWW = 5.2± 1.5, BWW = 1.08+0.48
�0.28 GeV�2.

The result of the fit is shown by the blue curve in Fig. 4.
The solid curve corresponds to the central value of the fit,
and the dotted curve indicates the maximum variation in
M⌫p+⌫̄p

3 allowed by the errors in the fit. We do not fit
the three data points below Q2 = 0.1 GeV2 where Born
and resonance contributions dominate the GLS sum rule:
rather, we use the resonance parameters obtained in [27]
from a fit to modern neutrino data.

Finally, to obtain C�W (Q2), we require the ratio

of Nachtmann moments M (0)
3,R(1, Q

2)/M⌫p+⌫̄p
3,R (1, Q2) to

agree with the value predicted by VMD at Q2 = 0, and
the QCD-corrected parton model at Q2 = 2 GeV2. Since
the ⇢ and ! Regge trajectories are nearly degenerate [31],
the two conditions predict the same ratio [21]

M (0)
3,R(1, 0)

M⌫p+⌫̄p
3,R (1, 0)

⇡
M (0)

3,R(1, 2 GeV2)

M⌫p+⌫̄p
3,R (1, 2 GeV2)

⇡
1

36
. (20)

For the linear parametrization in Eq. (19), this implies

C�W (Q2) =
1

36
CWW (Q2) , (21)

providing us with the final piece of FR in (17).
Upon inserting our parameterization (12) for the struc-

ture function F (0)
3 into (9, 10) and performing the inte-

grations, we obtain the following contributions to ⇤V A
�W

in units of 10�3: 2.17(0) from parton+pQCD, 1.06(6)
from Born and 0.56(8) from Regge+resonance+⇡N , the
digit in parentheses indicating the uncertainty. Com-
bining them with the remaining known contributions
[MS] gives our new values, �V

R = 0.02467(22) and
|Vud| = 0.97366(15). Our reevaluation of �V

R repre-
sents a reduction in theoretical uncertainty over the pre-
vious [MS] result by nearly a factor of 2. However,
it also leads to a substantial upward shift in the cen-
tral value of �V

R and a corresponding downward shift of
|Vud| by nearly three times their quoted error, now rais-
ing tension with the first-row CKM unitarity constraint:
|Vud|

2 + |Vus|
2 + |Vub|

2 = 0.9983(4).
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Figure 5: (Color online) Log-linear plot of
M2

W
M2

W+Q2M
(0)
3 (1, Q2) as a function of Q2. The blue curve is

the result of our parameterization in (12), and the red curve
is the piecewise parametrization used by [MS]. For a given
parametrization, the contribution to ⇤V A

�W is proportional to
the area under the curve, see (9).

We pause to comment on the origin of the large shift
in the central value for �V

R with respect to [MS]. In Fig.

5 we plot the integrand M2
W

M2
W+Q2M

(0)
3 (1, Q2) of Eq. (9)

as a function of Q2. In solid blue, we show the re-
sult of our parametrization (12) after integrating over
x. In dashed red, we show the piecewise parametriza-
tion by [MS] obtained with the help of (11). The dis-
continuity in their parametrization at Q2 = (1.5 GeV)2

arises from their choice of matching the Q2 integrals of

|Vud|2 + |Vud|2 + |Vud|2 = 0.9994± 0.0005

DR treatment allowed to reduce the uncertainty in ΔRV by almost factor of 2 
due to the use of neutrino data 

But the shift is more significant than anticipated from the uncertainty estimate by MS 

Raises tension with CKM unitarity 

Shifts the emphasis on Vus and on the nuclear corrections entering Ft
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How to further test the model?

!20

5

pQCD and the interpolating function over the short dis-
tance domain, rather than matching the functions them-
selves. The log-linear scale conveniently accounts for the
integration measure dQ2/Q2 in (9) so that the correc-
tion ⇤V A

�W is directly proportional to the area under the
curve. Although the line shapes are in agreement above
Q2 & 2 GeV2 and below Q2 . 0.001 GeV2, ours lies sig-
nificantly above that of [MS] for intermediate Q2. This
di↵erence is the origin of the discrepancy between our
central values for �V

R . By working with the two-variable

structure function F (0)
3 (x,Q2), we were able to capture

a broad variety of physics (Born, N⇡, Regge) operat-
ing at intermediate Q2 in contrast with the one-variable
analysis of FM.S.(Q2) by [MS]. We therefore believe our
updated result provides a more realistic assessment of
�V

R , even though the di↵erence with them is larger than
their quoted theoretical uncertainty.

We conclude by discussing how new measurements

could provide tests of our parameterization of F (0)
3 and

further reduce the uncertainty in �V
R . In view of the

upcoming high-intensity neutrino beam program at Fer-
milab, we wish to point out the potential impact which
new, more precise measurements ofM⌫p+⌫̄p

3 (1, Q2) at low
Q2 can have on our fit, as evidenced by Fig. 4. That said,

we have related F (0)
3 and F ⌫p+⌫̄p

3 within a model. How-
ever, by making use of isospin symmetry, we can establish

a more robust relationship between F (0)
3 and the P -odd

structure function FN
3,�Z . The latter is accessible with

parity-violating deep inelastic (inclusive) electron scat-
tering. Since the axial component of the weak neutral
current is predominantly isovector, we obtain

4F (0)
3 ⇡ F p

3,�Z � Fn
3,�Z ⇡ 2F p

3,�Z � F d
3,�Z . (22)

Thus, fixed target measurements using hydrogen and
deuterium can in principle provide a more direct way to
determine⇤V A

�W from data. High quality data in the range

0.1 GeV2 . Q2 . 1 GeV2 and W 2 & 5 GeV2 would be

particularly advantageous, as our parametrization of F (0)
3

admits the greatest model-dependence and exhibits the
largest di↵erence from that of [MS] in this domain. Such
an experimental program will however require a dedi-
cated feasibility study, as the contribution of F3,�Z to
the parity-violating asymmetry with a polarized electron
beam is suppressed by the small weak charge of the elec-
tron. Finally, with the reduction in the uncertainty of
|Vud|, the error in the first-row CKM unitarity constraint
is dominated by the uncertainty in |Vus| = 0.2243(5).
Combined with our results presented here, a commensu-
rate reduction in the latter uncertainty would enhance
the impact of first row CKM unitarity tests.
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Neutrino data at low Q2 are not precise: 
upcoming DUNE experiment @ Fermilab may provide better data for  
the first Nachtmann moment of F3 

Isospin rotation needs to be tested separately! 

Use the connection between the CC V-A interference  
and a similar V-A term in the PVES!  

Assuming the axial Z-N coupling to be a pure isovector,  
build an isovector combination to isolate the isoscalar part of the photon

Need to measure F3 in PVES at high energy (above resonance region) and low Q2 
- MOLLER (the background measurement on proton) - can use deuteron target?



Summary & Outlook

• New dispersive representation of the 𝛾W-box:  

•data-driven uncertainties;  
•hadronic uncertainty almost halved;  
•raises tension with CKM unitarity 

• Further data to better constrain the model: DUNE, MOLLER, … ? 

• Nuclear effects? A shift in Ft value may partly cancel the shift in ΔRV 

• Electroweak boxes interconnected: how large is the shift for γZ-box? 

• Stay tuned!

!21



Nuclear β-decay
General structure of RC for nuclear decay

a reduction from our own previous result in Eq. (9), where
the integration was carried up to Q2 ! 1.

Details of the above calculations will be given in a
subsequent publication [12]. Here, we briefly discuss the
basis of our improvements along with the results of the
above analysis and its implications.

The QCD corrections to the asymptotic form of F"Q2#
have been given in Eq. (10) to O"!3

s#. The additional terms
are identical (in the chiral limit) to QCD corrections to the
Bjorken sum rule [13] for polarized electroproduction and
can be read off from well-studied calculations [14,15] for
that process. Their validity has been well tested experi-
mentally [16]. The equivalence of the QCD corrections to
all orders (in the chiral limit) can be easily understood. A
chiral transformation d! "5d followed by an isospin
rotation in the current correlator of Eq. (5) converts it
into the vector-vector correlator responsible for the
Bjorken sum rule. Since QCD respects both symmetries
in the chiral limit, the QCD corrections must be identical
for both cases.

The interpolating function in Eq. (13) is motivated by
large N QCD, which predicts it should correspond to an
infinite sum of vector and axial-vector resonances [17]. We
impose three conditions that determine the residues:
(i) The integral of Eqs. (6) and (13) should equal that of
Eqs. (6) and (10) in the asymptotic domain "1:5 GeV#2 $
Q2 $ 1, which amounts to a matching requirement be-
tween domains 1 and 2. (ii) In the large Q2 limit, the
coefficient of the 1=Q4 term in the expansion of Eq. (13)
should vanish as required by chiral symmetry [18].
(iii) The interpolator should vanish at Q2 ! 0 as required
by chiral perturbation theory. Three conditions limit us to
three resonances.

The Q2 ! "0:823 GeV#2 match between domains 2 and
3 was chosen to be the value at which Eq. (13) equals the
integrand of the long-distance contribution. Interestingly,
that matching occurs near the # mass. A novel technical
point in the formulation is that in the evaluation of the
Feynman diagrams associated with the long-distance con-
tributions the integral over the auxiliary variables is carried
out first. This leads to integrands that depend onQ2 and can
therefore be matched with Eq. (13).

Using this approach, we find that at the one-loop elec-
troweak level the last three terms in Eq. (4) are effectively
replaced by 2:82 !

$ in the case of neutron decay.
Comparison with Eqs. (4) and (9) in conjunction with
mA ! 1:2 GeV, Ag ! % 0:34 shows that in the new for-
mulation these corrections are reduced by 1:4 & 10% 4,
which increases Vud by 7 & 10% 5. The smallness of that
shift is a validation of our previous result [4,6].

More important than the small reduction in the radiative
corrections, our new method provides a more systematic
estimate of the hadronic uncertainties as well as experi-
mental verification of its validity [16]. Allowing for a
' 10% uncertainty for the CBorn correction in Eq. (17), a
' 100% uncertainty for the interpolator contribution in the

"0:823 GeV#2 $ Q2 < "1:5 GeV#2 region, and ' 0:0001
uncertainty from neglected higher order effects, we find
the total uncertainty in the electroweak radiative correc-
tions is ’ ' 0:00038, which leads to a ’' 0:000 19 uncer-
tainty in Vud. That corresponds to more than a factor of 2
reduction in the loop uncertainty from hadronic effects.

Employing our new analysis, we find the improved
relationship between Vud, the neutron lifetime, and gA (
GA=GV ,

jVudj2 !
4908:7"1:9# s

%n"1 ) 3g2
A#
"neutron#: (18)

Future precision measurements of %n and gA used in con-
junction with Eq. (18) will ultimately be the best way to
determine Vud, but for now it is not competitive [6].

In the case of superallowed (0) ! 0) transitions) nu-
clear & decays, there are a number of corrections, some
nucleus dependent, that must be applied to the ft values.
They are collectively called RC in Eq. (2). To make contact
with previous studies [1,7], we factorize them as follows:

1 ) RC ! "1 ) 'R#"1 % 'C#"1 ) !#: (19)

The first two factors are nucleus dependent, while ! is
roughly nucleus independent, coming primarily from
short-distance loop effects. The axial-vector contributions
discussed above are included in the product "1 ) 'R# &
"1 ) !#, where 'R includes long-distance radiative correc-
tions as well as nuclear structure effects. Because we
include leading logs from higher orders as well as some
next-to-leading logs [4,6], the factorization is not exact and
! will exhibit some small nucleus dependence. The uncer-
tainty in 1 ) 'R comes from Z2!3 and nuclear structure
contributions while a common ' 0:03% error in the
Coulomb distortion effect is assigned to 1 % 'C.

Employing the corrections given by Hardy and Towner
[7,11] along with the results in [6] and our new analysis
together with Eqs. (2) and (19) given above leads to the RC
and Vud values illustrated in Table I. One finds for the
weighted average

Vud ! 0:973 77"11#"15#"19#"superallowed & decays#:
(20)

Comparing with Eq. (3) we see that our analysis gives a
somewhat larger Vud due to a ' 0:000 07 increase from our
new prescription along with refinements from Ref. [6]
which were not included in Savard et al. [8]. Also,
Savard et al. rounded down in their analysis.

We note that 46V gives a somewhat low value for Vud. It
differs from the average by 2:7(. That particular nucleus
recently underwent a Q value revision [8] which lowered
its Vud. It may be indicating problems with other Q values.
If the other nuclear Q values follow the lead of 46V, we
could see a fairly significant reduction in the weighted
average for Vud. Clearly, remeasurements of Q values
and half-lives of the superallowed decays are highly
warranted.
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FIG. 3: Idealized structure of virtual photoabsorption on the nucleon (upper panel) and nuclei (lower panel). Plot taken from
the web but we’d need to make one ourselves.

Caution: We need to put back the superscript V A to ⇤�W because ⇤�W 6= ⇤V A
�W !! (i.e. V ⇥ A is NOT the only

non-zero piece in �W box diagram)
Compared to the old result by MS

⇤V A
�W =

↵

8⇡

Z 1

0

dQ2M2
W

M2
W +Q2

F (Q2), (17)

which only explicitly considered Q2 as a dynamical variable, our result allows for a greater detalization as we provide
a dispersion representation of that function,

F (Q2) =

Z 1

0
d⌫

8(⌫ + 2q)

M⌫(⌫ + q)2
F (0)
3 (⌫, Q2). (18)

This is the first essentially new result of our work. Armed with this new dispersive representation we can address
model dependence of the box graph calculation on a qualitatively new level. In doing so we can also rely on experi-
mental data: while F �W

3 (⌫, Q2) itself is not directly observable, its weak isospin partners F �Z
3 (⌫, Q2), FZZ

3 (⌫, Q2) and
FWW
3 (⌫, Q2) enter observables in inclusive electron and neutrino scattering.

IV. PHYSICS INPUT INTO THE DISPERSION RELATION FOR F
�W
3

It is informative to take a look at the general structure of the virtual photoabsorption spectrum displayed in Fig.
3. For a fixed value of Q2 one clearly sees three major structures as one goes from low to high energy ⌫: elastic peak
at Q2/(2M) (broadened by radiative corrections); nucleon resonances and non-resonant pion production starting
from the pion threshold [Q2 + (M +m⇡)2 �M2]/(2M) and up to roughly 2.5 GeV above the threshold; high-energy
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⇤Nucl.
�W =

↵

⇡

Z ⇤2

0
dQ2

Z 1

⌫N

d⌫

(⌫ + q)2
⌫ + 2q

M⌫
F (0)
3 .

But data tell us differently:

prominent broad QE peak - 

mostly 1N knock-out 

QE peak is common for all nuclei

Modify the universal correction

to account for bulk QE effect



QE contribution to γW-box
Bulk nuclear properties: Fermi momentum and break-up threshold

✏1 = MA�p +Mn �MA ✏2 = MA0�n +Mn �MA

✏ =
p
✏1✏2

20 decays: 10C -> 10B through 74Rb -> 74Kr (Towner&Hardy ’14 review)
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Decay ✏2 (MeV) ✏1 (MeV) ✏ (MeV)
10
C !10

B 8.44 4.79 6.36
14
O !14

N 10.55 5.41 7.55
18
Ne !18

F 9.15 4.71 6.56
22
Mg !22

Na 11.07 6.28 8.34
26
Si !26

Al 11.36 6.30 8.46
30
S !30

P 11.32 5.18 7.66
34
Ar !34

Cl 11.51 5.44 7.91
38
Ca !38

K 12.07 5.33 8.02
42
T i !42

Sc 11.55 4.55 7.25
26m

Al !26
Mg 11.09 6.86 8.72

34
Cl !34

S 11.42 5.92 8.22
38m

K !38
Ar 11.84 5.79 8.28

42
Sc !42

Ca 11.48 5.05 7.61
46
V a !46

T i 13.19 6.14 9.00
50
Mn !50

Cr 13.00 5.37 8.35
54
Co !54

Fe 13.38 5.13 8.28
62
Ga !62

Zn 12.90 3.72 6.94
66
As !66

Ge 13.29 3.16 6.48
70
Br !70

Se 13.82 3.20 6.65
74
Rb !74

Kr 13.85 3.44 6.90

TABLE I: E↵ective removal energy ✏ as calculated from the mother and daughter removal energies ✏2,1 for all superallowed �

decays listed in Hardy, Towner [3]

VIII. RELATION TO SCATTERING DATA

The ��W interference matrix element is not directly accessible in experiment. However, isospin symmetry relates
it to � � Z matrix element which can be measured in parity-violating eN -scattering. Defining:

W (0)µ⌫
�W =

1

4⇡

Z
d4xeiq·x hp| [J (0)µ

� (x), J⌫
W (0)] |ni =

i"µ⌫↵�p↵q�
2p · q

F (0)
3 + ... (58)

and

WN,µ⌫
�Z =

1

4⇡

Z
d4xeiq·x hN | [Jµ

� (x), J
⌫
Z(0)] |Ni =

i"µ⌫↵�p↵q�
2p · q

FN
3,�Z + ... (59)

(N = p, n) where J (0)µ
� is the isosinglet component of the electromagnetic current, isospin symmetry then gives:

F (0)
3 = F p

3,�Z � Fn
3,�Z . (60)

The structure functions at RHS are in principle measurable in PV scattering experiments.

Appendix A: Elastic (Born) contribution

In this appendix we present the details in obtaining the Born contribution (23) to ⇤�W . First, we notice that
according to our definitions, Gp

M (Q2) > 0, Gn
M (Q2) < 0, GA(Q2) < 0 and |Gp

M (Q2)| > |Gn
M (Q2)| for all relevant

values of Q2. So, we can write ⇤V A,Born
�W as:

⇤V A,Born
�W =

↵

⇡

Z 1

0
dQ

2
p
4m2

N +Q2 +Q
⇣p

4m2
N +Q2 +Q

⌘2 |GA(Q
2)|

�
|Gp

M (Q2)|� |Gn
M (Q2)|

�
(A1)

so that every single multiplicative term in the integrand is positive definite.
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Since in this model kF is the only relevant scale for the momentum distribution, the mismatch between the two
distributions may be expected to be not too large. Details of the calculation are reported in Appendix C, and we
show the final result,

F (0),A
3 (⌫, Q2) = NGAG

S
M

3Q2

16q
FP (|~q|, kF )

⇣
k̃2+ � k̃2�

⌘

k3F
(50)

Above, k± denote the limits of integration over the nucleon three-momentum k. These arise due to the on-shell
condition for the intermediate nucleon and are given by

k± = ±
q

2

MA�1 + ⌫ � ⌫min
MA
2 + ⌫ � ⌫min

+
MA + ⌫

2

p
(⌫ � ⌫min)(2MMA�1/MA + ⌫ � ⌫min)

MA
2 + ⌫ � ⌫min

, (51)

where we introduced the threshold energy for the quasielastic breakup,

⌫min =
Q2

2MA
+ ✏, (52)

with ✏ = MA�1 +M �MA the nucleon removal energy. This nucleon removal energy is another scale that is relevant
for QE scattering. Because of a non-zero Q-value for each decay, in every pair mother-daughter there is not one, but
two removal energies. Specifically, for �+ decay these are given by

✏1 = MA00 +Mp �MA0 ,

✏2 = MA00 +Mp �MA 6= ✏1, (53)

with A00 = A�p = A0
�n the spectator nucleus. For �� decay the proton and neutron masses should be exchanged in

this definition. Again, to avoid accounting for too much details of nuclear structure at this step we define an average
removal energy for each pair,

✏ =
p
✏1✏2 (54)

We consider 14 isotopes collected in the 2015 review by Hardy and Towner [3], use the known Q-values of the decays
and calculate relevant nucleon removal energies and summarize the results in Table I.

We notice that while individual breakup thresholds vary significantly from isotope to isotope, the average removal
energies are all reasonably close to each other, ✏ = 7.68 ± 1.32 MeV. Fermi momentum also varies in a small range,
from 228 MeV to 245 MeV, from lightest to heaviest nucleus. The use of a model with an average Fermi momentum
and average breakup threshold for calculating the universal, bulk nuclear e↵ect on ⇤Born

�W is thus well-justified. This
approximation will need to be corrected to account for fine details of the structure of individual nuclei, and this
correction will be accommodated in the nucleus-specific correction term �NS .

With the parameters obtained above, numerical evaluation of Eq. (??) with the QE contribution in Fermi gas
model gives

⇤QE
�W =

↵

2⇡
(0.44± 0.04), (55)

which should replace the free nucleon Born contribution from MS

⇤Born
�W =

↵

2⇡
(0.89± 0.03). (56)

We observe that the nuclear environment reduces the size of the elastic box correction by about a half. This e↵ect
can be qualitatively understood by noticing the 1/⌫2 weighting under the integral. As compared to the free nucleon
case where the threshold is at ⌫ = Q2/(2M), binding e↵ects in nuclei shift that threshold to ⌫ = Q2/(2MA)+ ✏. The
integral is peaked around < ⌫ >⇡ 76 MeV and < Q2 >⇡ 0.12 GeV2, and for these values of Q2 and A > 10 the shift
by a finite value ✏ leads to an observed reduction.

VII. RESULTS FOR NUCLEAR � DECAYS

I stick to the original MS notation,
↵

2⇡
(· · ·+ CB + . . . ), (57)

because CY gives his results in those terms. In units of (↵/2⇡) the free neutron result shifted by +0.25. Accounting
for quasielastic response reduces Born by �0.47±0.04. The sum then is shifted by �0.22±�0.04± . . . which is about
one sigma: �0.22(↵/2⇡) = �2.5⇥ 10�4. But the individual shifts are large.

Effective removal energies - all in a small range

Fermi momentum also not too different for all A
kF (A = 10) = 228MeV, kF (A = 74) = 245MeV

Can define a universal correction that 

correctly represents bulk nuclear effect!

Further ingredients:

Free Fermi gas model (or superscaling)

+ Pauli blocking



QE contribution to γW-box
⇤free n

�W =
↵

2⇡
0.91(5) ! ⇤QE

�W =
↵

2⇡
0.44(4)Elastic γW-box for bound neutron:

Reduction due to finite breakup threshold and Fermi motion

Towner & Hardy 2014: quenching of spin operators in nuclei:

about half the effect we observe.

Indicates that Ft values may shift down and compensate 

part of the shift in the universal correction

⇤B,Quenched
�W �⇤B, free n

�W ⇡ ↵

2⇡
(�0.25)



Turn “inner” correction inside-out?
𝛾W-box correction at zero energy
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FIG. 2: The contour in the complex ⌫ plane.

We apply Cauchy’s theorem to the definite isospin amplitudes T (I)
3 (⌫, Q2) (I = 0, 3)accounting for their singularities

in the complex ⌫ plane. These lie on the real axis: poles due to a single nucleon intermediate state in the s� and

u-channels at ⌫ = ±⌫B = ±
Q2

2M , respectively, and unitarity cuts at ⌫ � ⌫⇡ and ⌫  �⌫⇡ where ⌫⇡ = (2Mm⇡ +m2
⇡ +

Q2)/(2M), m⇡ being the pion mass. The contour is constructed such as to go around all these singularities, and is
closed at infinity, see Fig. 2. The discontinuity of the forward amplitude in the physical region (i.e. ⌫ > 0) is given
by the generalization of the DIS structure functions to the �W -interference in the standard normalization,

DisT (I)
3 (⌫, Q2) = T (I)

3 (⌫ + i✏, Q2)� T (I)
3 (⌫ � i✏, Q2) = 4⇡iF (I)

3 (⌫, Q2) (13)

where
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and for the sake of a unified description, within F (I)
i we keep both the �-functions at the nucleon poles, and the

discontinuities along the multi-particle cuts. The full function T (I)
3 (⌫, Q2) is reconstructed from a fixed-Q2 dispersion

relation

T (I)
3 (⌫, Q2) =

1

2⇡i

Z 1
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⌫0 � ⌫ � i✏
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⌫0 + ⌫ + i✏
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4⇡iF (I)

3 (⌫0, Q2), (15)

modulo possible subtractions which are needed to make the dispersion integral convergent. The form of the dispersion
relation depends on the crossing behavior, the relative sign ⇠I between the contributions along the positive and
negative real ⌫ axis. It can be shown that the isoscalar amplitude is an odd function of ⌫, hence ⇠0 = �1, while the
isovector amplitude is even. Correspondingly, the isoscalar requires no subtractions, while the isovector one may have
to be subtracted one time.

Putting together Eqs. (10,15) and performing the loop integral via Wick rotation we arrive at
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dQ2M2
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W +Q2
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0
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(⌫ + 2q)

⌫(⌫ + q)2
F (0)
3 (⌫, Q2),

⇤V A (3)
�W = 0, (16)

where we introduced the virtual photon three-momentum q =
p

⌫2 +Q2. The vanishing of the isovector contribution
is the consequence of the crossing symmetry, as has already been noticed by Sirlin [5]. Thus from now onward we

shall represent ⇤V A,(0)
�W simply by ⇤V A

�W without causing any confusion.

𝛾W-box correction with linear E-dependece
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As a result, the �W -box will contain both even and odd powers of energy,
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The respective contributions to the imaginary parts read
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The precision goal of this work entails us to only account for the leading E-dependence in the E-even and E-odd

pieces. The part of the E-even piece that is due to the weak vector current (contribution of F (�)
1,2 ) cancels exactly

when the box is considered together with other 1-loop corrections [Sirlin] and we will omit it from now on. To reflect
this subtraction I use an overscored notation for the E-even correction ⇤even

�W . Changing the order of integration
and assuming that the energy released in the �-decay process is smaller than the nuclear excitations, we obtain the
dispersion representation for the leading E-behavior of the �W -box correction:
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where Emin = (⌫ +
p
⌫2 +Q2)/2, ⌫thr = ✏+Q2/(2M) and in terms of the invariants ⌫ = (W 2 �M2 +Q2)/2M , W

being the invairant mass of the excited nuclear intermediate state.

II. SIMPLISTIC DIMENSION ANALYSIS

To assess the size of the correction I use the Baldin sum rule that expresses the sum of the dipole electric and
magnetic polarizabilities as
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M

Z
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2 = 0) = 2↵em

Z
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. (14)

The equality between the representations with F1 and F2 is a reflection of gauge invariance. Assuming the dominance
of very low Q2 under the integral (hence Emin ! !) and assuming further that the Q2 dependence of the dipole
polarizability follows the charge form factor ⇠ Exp[�R2

ChQ
2/6] I obtain

Re⇤odd
�W ⇠ 2
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E
↵E + �M

R2
Ch

, (15)

where for simplicity the contribution of F3 was discarded for a moment.
Using the observed rough scaling of the nuclear radii with the atomic number RCh ⇠ R0A1/3 [data tables in de

Vries et al] with R0 ⇠ 1 fm, and ↵E + �M ⇠ (2.2⇥ 10�3)A5/3 [Berman Fultz],
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As a result, the �W -box will contain both even and odd powers of energy,
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The precision goal of this work entails us to only account for the leading E-dependence in the E-even and E-odd

pieces. The part of the E-even piece that is due to the weak vector current (contribution of F (�)
1,2 ) cancels exactly

when the box is considered together with other 1-loop corrections [Sirlin] and we will omit it from now on. To reflect
this subtraction I use an overscored notation for the E-even correction ⇤even

�W . Changing the order of integration
and assuming that the energy released in the �-decay process is smaller than the nuclear excitations, we obtain the
dispersion representation for the leading E-behavior of the �W -box correction:
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where Emin = (⌫ +
p
⌫2 +Q2)/2, ⌫thr = ✏+Q2/(2M) and in terms of the invariants ⌫ = (W 2 �M2 +Q2)/2M , W

being the invairant mass of the excited nuclear intermediate state.

II. SIMPLISTIC DIMENSION ANALYSIS

To assess the size of the correction I use the Baldin sum rule that expresses the sum of the dipole electric and
magnetic polarizabilities as
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The equality between the representations with F1 and F2 is a reflection of gauge invariance. Assuming the dominance
of very low Q2 under the integral (hence Emin ! !) and assuming further that the Q2 dependence of the dipole
polarizability follows the charge form factor ⇠ Exp[�R2
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2/6] I obtain
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where for simplicity the contribution of F3 was discarded for a moment.
Using the observed rough scaling of the nuclear radii with the atomic number RCh ⇠ R0A1/3 [data tables in de

Vries et al] with R0 ⇠ 1 fm, and ↵E + �M ⇠ (2.2⇥ 10�3)A5/3 [Berman Fultz],
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Common wisdom: E-dep. negligible because should come as (α/2π) E/mπ < 10-5

But nuclear excitations live at few MeV —> large nuclear polarizabilities
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The precision goal of this work entails us to only account for the leading E-dependence in the E-even and E-odd

pieces. The part of the E-even piece that is due to the weak vector current (contribution of F (�)
1,2 ) cancels exactly

when the box is considered together with other 1-loop corrections [Sirlin] and we will omit it from now on. To reflect
this subtraction I use an overscored notation for the E-even correction ⇤even

�W . Changing the order of integration
and assuming that the energy released in the �-decay process is smaller than the nuclear excitations, we obtain the
dispersion representation for the leading E-behavior of the �W -box correction:
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where Emin = (⌫ +
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⌫2 +Q2)/2, ⌫thr = ✏+Q2/(2M) and in terms of the invariants ⌫ = (W 2 �M2 +Q2)/2M , W

being the invairant mass of the excited nuclear intermediate state.
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To assess the size of the correction I use the Baldin sum rule that expresses the sum of the dipole electric and
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The equality between the representations with F1 and F2 is a reflection of gauge invariance. Assuming the dominance
of very low Q2 under the integral (hence Emin ! !) and assuming further that the Q2 dependence of the dipole
polarizability follows the charge form factor ⇠ Exp[�R2
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2/6] I obtain
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where for simplicity the contribution of F3 was discarded for a moment.
Using the observed rough scaling of the nuclear radii with the atomic number RCh ⇠ R0A1/3 [data tables in de
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The precision goal of this work entails us to only account for the leading E-dependence in the E-even and E-odd

pieces. The part of the E-even piece that is due to the weak vector current (contribution of F (�)
1,2 ) cancels exactly

when the box is considered together with other 1-loop corrections [Sirlin] and we will omit it from now on. To reflect
this subtraction I use an overscored notation for the E-even correction ⇤even

�W . Changing the order of integration
and assuming that the energy released in the �-decay process is smaller than the nuclear excitations, we obtain the
dispersion representation for the leading E-behavior of the �W -box correction:
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where Emin = (⌫ +
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⌫2 +Q2)/2, ⌫thr = ✏+Q2/(2M) and in terms of the invariants ⌫ = (W 2 �M2 +Q2)/2M , W

being the invairant mass of the excited nuclear intermediate state.
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The equality between the representations with F1 and F2 is a reflection of gauge invariance. Assuming the dominance
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where for simplicity the contribution of F3 was discarded for a moment.
Using the observed rough scaling of the nuclear radii with the atomic number RCh ⇠ R0A1/3 [data tables in de
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The precision goal of this work entails us to only account for the leading E-dependence in the E-even and E-odd

pieces. The part of the E-even piece that is due to the weak vector current (contribution of F (�)
1,2 ) cancels exactly

when the box is considered together with other 1-loop corrections [Sirlin] and we will omit it from now on. To reflect
this subtraction I use an overscored notation for the E-even correction ⇤even

�W . Changing the order of integration
and assuming that the energy released in the �-decay process is smaller than the nuclear excitations, we obtain the
dispersion representation for the leading E-behavior of the �W -box correction:

Re⇤even
�W =

↵em

⇡
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dQ2 F
(0)
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,

Re⇤odd
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↵em
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E
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"
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6ME3
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+

 p
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min⌫Q

2
� 1

12E3
min⌫

!
F (0)
2 +

F (�)
3

2M⌫

✓
1

2E2
min

� ⌫

6E3
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◆#
,(13)

where Emin = (⌫ +
p
⌫2 +Q2)/2, ⌫thr = ✏+Q2/(2M) and in terms of the invariants ⌫ = (W 2 �M2 +Q2)/2M , W

being the invairant mass of the excited nuclear intermediate state.

II. SIMPLISTIC DIMENSION ANALYSIS

To assess the size of the correction I use the Baldin sum rule that expresses the sum of the dipole electric and
magnetic polarizabilities as

↵E + �M =
2↵em

M

Z
d!

!3
F1(!, Q

2 = 0) = 2↵em

Z
d!

!2

F2(!, Q2)

Q2

����
Q2=0

. (14)

The equality between the representations with F1 and F2 is a reflection of gauge invariance. Assuming the dominance
of very low Q2 under the integral (hence Emin ! !) and assuming further that the Q2 dependence of the dipole
polarizability follows the charge form factor ⇠ Exp[�R2

ChQ
2/6] I obtain

Re⇤odd
�W ⇠ 2

⇡
E
↵E + �M

R2
Ch

, (15)

where for simplicity the contribution of F3 was discarded for a moment.
Using the observed rough scaling of the nuclear radii with the atomic number RCh ⇠ R0A1/3 [data tables in de

Vries et al] with R0 ⇠ 1 fm, and ↵E + �M ⇠ (2.2⇥ 10�3)A5/3 [Berman Fultz],

Re⇤odd
�W ⇠ 1⇥ 10�3

✓
E

5MeV

◆✓
A

30

◆
. (16)Expect



Connecting boxes: γW - γZ - WW
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The only piece that depends on physics at hadronic scale is the V*A term in the Wγ−box 
diagram:

Its contribution to Rec (“m.d”: model-dependent) is:

where the forward Compton amplitude is defined as:

q q

Radiative Corrections: Modern Treatment
𝛾W-box: beta decays𝛾Z-box: PV in atoms and e-scattering 

MESA: P2 and C12 expo.

WW-box: neutrinoless double-beta decay

2W

2Q

( )2πmM +2M

Bo
rn

Parton + pQCD

Nπ Res.
+B.G

Regge
+VMD

2GeV2~

2GeV5~

External particles, probes and kinematics  
may be different 

The input information is very much the same!
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