

Deutsche Forschungsgemeinschaft

Reduced hadronic uncertainty in V_{ud} and CKM unitarity

Misha Gorshteyn

Universität Mainz

C-Y Seng, MG, H Patel, M J Ramsey-Musolf, arXiv: 1807.10197

Collaborators:

Chien-Yeah Seng (U. Shanghai -> U. Bonn) Hiren Patel (U. Mass. -> UC Santa Cruz) Michael Ramsey-Musolf (U. Mass.)

standard Model recision measurements of Vud

W coupling to leptons and hadrons very close but not exactly the same: quark mixing - Cabbibo-Kabayashi-Maskawa matrix

CKM - Determines the relative strength of the weak CC interaction of quarks vs. that of leptons

CKM unitarity - measure of completeness of the SM: $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$

Current status of Vud and CKM unitarity

3

Current status of Vud and CKM unitarity

Superallowed 0+-0+ nuclear decays - only conserved vector current; many decays $\mathcal{F}t = ft(1 + \delta_R')[1 - (\delta_C - \delta_{NS})]$

Experiment: f - phase space (Q_{EC}) t - partial half-life (t_{1/2}, BR) Theory: $\delta_R^{'}$ - Bremsstrahlung, IR-sensitive $\delta_C^{'}$ - Isospin breaking (Coulomb, ...) δ_{NS} - Nuclear structure

Current status of Vud and CKM unitarity

If using bottle τ_n + latest λ : consistent but 7 times less precise

 $|V_{ud}^n| = 0.9743(15)$

Same universal correction Δ_{R^V} - main limitation for V_{ud} extraction from superallowed decays

Radiative corrections - Inner & Outer

Outer (depend on e-energy) retain only IR divergent pieces

Inner (energy-independent)

W,Z-exchange: UV-sensitive, pQCD; model-independent

When γ involved: sensitive to long range physics; model, dependent!

 $h_{n,d} = 8\pi^{2} \operatorname{Re} \int_{2\pi}^{d^{4}q} m_{W}^{2} v^{2} - q^{2} T_{3}(v, -q^{2})$ Until recently: best determination Marciano & Sirlin 2006 $i\varepsilon^{\mu\nu\alpha\beta} p_{\alpha} q_{\beta} T_{3}(v, Q^{2})$

$$\Delta_R^V = 0.02361(38)$$
6

γ W-box

Box at zero energy and momentum transfer Corrections - ($\alpha/2\pi$) (M_n-M_p)/m_{π} ~ 10⁻⁵

$$T_{\gamma W} = \sqrt{2}e^{2}G_{F}V_{ud} \int \frac{d^{4}q}{(2\pi)^{4}} \frac{\bar{u}_{e}\gamma^{\mu}(\not{k}-\not{q}+m_{e})\gamma^{\nu}(\not{k}-\not{q})_{met} - g_{5}^{2}}{q^{2}} \frac{g_{V}}{p} \int_{(2\pi)^{4}}^{d^{4}q} M_{W}^{\frac{n^{2}}{2}} \frac{v^{2}-q^{2}}{q^{2}} T_{\mu\nu}^{\gamma,W_{N}\nu}}{q^{2}-M_{W}^{2}} \int_{(2\pi)^{4}}^{d^{4}q} \frac{M_{W}^{\frac{n^{2}}{2}}}{q^{2}-M_{W}^{2}} \int_{(2\pi)^{4}}^{d^{4}q} \frac{M_{W}^{\frac{n^{2}}{2}}}{q^{2}-M_{W}^{2}}} \int_{(2\pi)^{4}}^{d^{4}q} \frac{M_{W}^{\frac{n^{2}}{2}}}{q^{2}-M_{W}^{2}} \int_{(2\pi)^{4}}^{d^{4}q} \frac{M_{W}^{\frac{n^{2}}{2}}}{q^{2}-M_{W}^{2}} \int_{(2\pi)^{4}}^{d^{4}q} \frac{M_{W}^{\frac{n^{2}}{2}}}{q^{2}-M_{W}^{2}} \int_{(2\pi)^{4}}^{d^{4}q} \frac{M_{W}^{\frac{n^{2}}{2}}}{q^{2}-M_{W}^{2}}} \int_{(2\pi)^{4}}^{d^{4}q} \frac{M_{W}^{\frac{n^{2}}{2}}}{q^{2}-M_{W}^$$

General gauge-invariant decomposition (spin-independent)

$$T_{\gamma W}^{\mu\nu} = \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right)T_1 + \frac{1}{(p \cdot q)}\left(p - \frac{(p \cdot q)}{q^2}q\right)^{\mu}\left(p - \frac{(p \cdot q)}{q^2}q\right)^{\nu}T_2 + \frac{i\epsilon^{\mu\nu\alpha\beta}p_{\alpha}q_{\beta}}{2(p \cdot q)}T_3$$

γ W-box in the pre-2018 era

$$\Box_{\gamma W}^{VA} = 4\pi\alpha \text{Re} \int \frac{d^4q}{(2\pi)^4} \frac{M_W^2}{M_W^2 + Q^2} \frac{Q^2 + \nu^2}{Q^4} \frac{T_3(\nu, Q^2)}{M\nu}$$

 $Q^{2} = -q^{2}$ $V = V \cdot \# (pq)/M$

Marciano & Sirlin used loop techniques:

$$(\operatorname{Re} c)_{m^{d}A} = 8\pi^{2} \operatorname{Re} \underbrace{\int}_{\gamma W} \frac{d^{4}q}{2\pi} \int_{0}^{\infty} \underbrace{m_{W}^{2}}_{M_{W}} \frac{d^{2}}{dQ} \underbrace{\int}_{Q}^{\gamma 2} \underbrace{M_{W}^{2}}_{M_{W}} \frac{d^{2}}{M_{W}} \frac{d^{2}}{M_{W}} \underbrace{M_{W}^{2}}_{M_{W}} \underbrace{M_{W}^{2}}_{M_{W}} \frac{d^{2}}{M_{W}} \frac$$

Short distance Q²>> $F^{\text{DIS}}(Q^2) = \frac{1}{Q^2}$ $\Box_{\gamma W}^{d^*q} = \frac{q^{iq \cdot x}}{8\pi} \int_{-\infty}^{\alpha} \frac{p T\{J^{\mu}_{W}(x)(J^{\nu}_{W}(0))\}}{M_{W}^2} n = \frac{i\varepsilon^{\mu\nu\alpha\rho}p_{\alpha}q_{\beta}}{2m_N\nu} T_3(\nu,Q^2) \\ = \frac{1}{M_{W}} \int_{-\infty}^{\infty} \frac{dQ^2 M_W^2}{M_{W}^2} F^{\text{DIS}}(Q^2) = \frac{\alpha}{4\pi} \ln \frac{M_W}{\Lambda}$

Finite Q² pQCD corrections: $F^{\text{DIS}} = \frac{1}{Q^2} \rightarrow \frac{1}{Q^2} \left[1 - \frac{\alpha_s^{\overline{MS}}}{\pi} \right]$

Long distance Q²<< - elastic box

MS 1987: asymptotic + pQCD + Born

$$\left[\Delta_R^V\right]^{\gamma W} = \frac{\alpha}{2\pi} \left[\ln \frac{M_W}{\Lambda} + A_g + 2C_B \right]$$

~4 -0.24 1.85

Problem: connecting short and long distances

γ W-box in the pre-2018 era

MS 2006 update: a more sophisticated analysis to improve precision

Short distance:
$$F^{\text{DIS}} = \frac{1}{Q^2} \rightarrow \frac{1}{Q^2} \left[1 - \frac{\alpha_s^{\overline{MS}}}{\pi} - C_2 \left(\frac{\alpha_s^{\overline{MS}}}{\pi} \right)^2 - C_3 \left(\frac{\alpha_s^{\overline{MS}}}{\pi} \right)^3 \right]$$
 GLS and Bjorken SR to N3LO Larin, Vermaseren 1997
 $Q^2 > Q_2^2$
Vector Dominance Model $F^{\text{INT}}(Q^2) = -\frac{1.490}{Q^2 + m_\rho^2} + \frac{6.855}{Q^2 + m_A^2} - \frac{4.414}{Q^2 + m_{\rho'}^2}$
 $F^{Int}(0) = 0$
Matching conditions: $\int_{Q_2^2}^{\infty} \frac{dQ^2 M_W^2}{Q^2 (M_W^2 + Q^2)} F^{Int}(Q^2) = \int_{Q_2^2}^{\infty} \frac{dQ^2 M_W^2}{Q^2 (M_W^2 + Q^2)} F^{DIS}(Q^2)$
 $Q^2 < Q_1^2$
Long distance: Born $F(Q^2) = F^B(Q^2)$
 $\left[\Delta_R^V \right]^{\gamma W} = \frac{\alpha}{2\pi} \left[\ln \frac{M_W}{\Lambda} + A_g + 2C_B \right]$
 $\sim 3.86 \quad 1.78$
Uncertainty reduced by a factor ~ 2
 9

yW-box from Dispersion Relations

Seng, MG, Patel, Ramsey-Musolf, arXiv: 1807.10197

Check MS result + uncertainty independently

$$\Box_{\gamma W}^{VA} = 4\pi\alpha \text{Re} \int \frac{d^4q}{(2\pi)^4} \frac{M_W^2}{M_W^2 + Q^2} \frac{Q^2 + \nu^2}{Q^4} \frac{T_3(\nu, Q^2)}{M\nu}$$

$$\overline{V}$$

$$e$$

$$W \stackrel{q}{\searrow} q \stackrel{q}{\swarrow} \gamma$$

$$V = (pq)/p q$$

$$n \stackrel{p}{\longrightarrow} p$$

$$m_N$$

Forward amplitude T₃ - unknown;

Its absorptive part can be related to

$$T_{3} - \underset{q}{\text{panalytic function isside the contour } Q} \begin{bmatrix} \operatorname{Re} c \\ m_{M} \\ m_{W} \\ m_{W}$$

 $\text{Dis}T^{(0)}(\nu Q^2) = 4\pi E^{(0)}(\nu Q^2)$

production of on-shell intermediate states a γ W-analog of the $SFF_3^{(0)}(\nu, Q^2) = 4\pi F_3^{(0)}(\nu, Q^2)$ $\frac{1}{4\pi} \sum_X (2\pi)^4 \delta^4(p+q-p_X) p J_{EM,0}^{\mu} X X (J_W^{\nu})_A n = \frac{i\varepsilon^{\mu\nu\alpha\beta}p_{\alpha}q_{\beta}}{2m_N\nu} F_3^{(0)}(\nu \mathbf{I}\mathbf{Q}^2) T_3^{\gamma W}(\nu, Q^2) = 2\pi F_3^{\gamma W}(\nu, Q^2)$

γ W-box from Dispersion Relations

Crossing behavior: photon is isoscalar or isovector

Different isospin channels behave differently

$$T_3^{\gamma W} = T_3^{(0)} + T_3^{(3)}$$

$$\begin{array}{c|c}
 & Im \nu' \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

$$T_3^{(0)}(-\nu,Q^2) = -T_3^{(0)}(\nu,Q^2), \quad T_3^{(3)}(-\nu,Q^2) = +T_3^{(3)}(\nu,Q^2)$$

Dispersion representation of the γ W-box correction at zero energy

$$\Box_{\gamma W}^{VA\,(0)} = \frac{3\alpha}{2\pi} \int_0^\infty \frac{dQ^2 M_W^2}{Q^2 (M_W^2 + Q^2)} M_3^{(0)}(1, Q^2)$$
$$\Box_{\gamma W}^{VA\,(3)} = 0$$

First Nachtmann moment of F₃⁽⁰⁾

$$M_3^{(0)}(1,Q^2) = \frac{4}{3} \int_0^1 dx \frac{1+2r}{(1+r)^2} F_3^{(0)}(x,Q^2)$$
$$r = \sqrt{1+4M^2 x^2/Q^2}$$
11

MS's loop function F in terms of $M_{\rm 3}$

$$F_{\text{M.S.}}(Q^2) = \frac{12}{Q^2} M_3^{(0)}(1,Q^2)$$

Input into dispersion integral

Dispersion in energy: scanning hadronic intermediate states

Dispersion in Q²: scanning dominant physics pictures

Parton + pQCD $\sim 2 \text{GeV}^2$ Born Res. Regge Nπ +B.G+VMD W^2 $M^{2} (M + m_{\pi})^{2}$ $\sim 5 \text{GeV}^2$

Boundaries between regions - approximate

Input in DR related (directly or indirectly) to experimentally accessible data

$$\operatorname{Im} \left[W^{+*} + n \to \gamma^* + p \right] \leftrightarrow \begin{cases} \sigma(\gamma^* + p \to X) \\ \sigma(W^{+*} + n \to X) \end{cases}$$

Input into dispersion integral

Born:

elastic FF from most recent electron and neutrino scattering data πN :

relativistic ChPT calculation plus nucleon FF

Resonances:

axial excitation from PCAC (Lalakulich et al 2006) - neutrino scattering isoscalar photo-excitation from MAID and PDG - electron and γ inelastic scattering Above resonance region:

multiparticle continuum economically described by Regge exchanges

The plan: validate the model for CC process; apply an isospin rotation to obtain γW

$$F_{3,\,\text{low}-Q^2}^{\nu p + \bar{\nu}p} = F_{3,\,el.}^{\nu p + \bar{\nu}p} + F_{3,\,\pi N}^{\nu p + \bar{\nu}p} + F_{3,\,R}^{\nu p + \bar{\nu}p} + F_{3,\,\text{Regge}}^{\nu p + \bar{\nu}p}$$

The same ingredients but in a different isospin channel

Low-W part of spectrum: neutrino data from MiniBooNE, Minerva, ...

- fix (to some extent) the axial FF, resonance contributions, pi-N continuum
- High energies (low x): Regge behavior $F_3 \sim q^{v} \sim x^{-\alpha}$, $\alpha \sim 0.5$ -0.7

Inelastic states - low Q², high W

Scattering at high energy can be very effectively described by Regge exchanges

$$F_3^{(0),\text{Regge}}(\nu,Q^2) = C_R(Q^2) \left(\frac{\nu}{\nu_0}\right)^{\alpha_\rho}$$

Content of the model (and parameters) - depend on the quantum numbers Consider vector - axial vector interference relevant for F_3

Regge behavior in EW processes: hadron-like behavior of HE electroweak probes -Vector/Axial Vector Dominance is the proper language

γW-box: conversion of W[±] (charged, I=1, axial) to γ (neutral, vector, I=0) requires charged vector exchange w. I=1 - ρ[±] effective a₁ - ρ - ω vertex

Inclusive v scattering: conversion of W[±] (charged, I=1, axial) to W[±] (charged, I=1, axial) requires neutral vector exchange w. I=0 - ω effective a₁ - ω - ρ vertex

Minimal model for both reactions - check with data.

Parameters of the Regge model from neutrino scattering

$$F_3^{WW, \operatorname{Regge}}(\nu, Q^2) = C_R^{WW}(Q^2) \left(\frac{\nu}{\nu_0}\right)^{\alpha}$$

Vector/axial vector dominance:

 ω

$$C_R^{WW}(Q^2) = C_R^{WW}(0) \frac{m_\rho^2}{m_\rho^2 + Q^2} \frac{m_{a_1}^2}{m_{a_1}^2 + Q^2} \times h^{WW}(Q^2)$$

Pure VDM may not work at $Q^2 = 2 \text{ GeV}^2$

 $h^{WW}(Q^2) = 1 + aQ^2$

C_R^{WW}, h^{WW} and uncertainties - from neutrino data;

$$C_R^{WW} = 5.2 \pm 1.5$$
 $a^{WW} = 1.08^{+0.48}_{-0.28} \text{ GeV}^2$

Uncertainties anti correlated

Low Q² < 0.1 GeV²: Born + Δ (1232) dominate Not fitted: modern data more precise but cover only limited energy range Fit driven by 4 data points between 0.2 and 2 Ge

 $F_3^{W\gamma(0), \operatorname{Regge}}(\nu, Q^2) = C_R^{\gamma W}(Q^2) \left(\frac{\nu}{\nu_0}\right)^{\alpha_{\rho}}$

Stodolsky, Piketty '70

 $C_R^{\gamma W}(Q^2) = C_R^{\gamma W}(0) \frac{m_\omega^2}{m_\omega^2 + Q^2} \frac{m_{a_1}^2}{m_{a_2}^2 + Q^2} \times h^{\gamma W}(Q^2)$

Parameters of the Regge model from neutrino scattering

 $C_{R^{\gamma W}}(0)$ - matching in Regge + VDM

$$C_{R}^{WW}(0) \sim \frac{e}{g_{\rho}} \times g_{\omega NN} \times 2 \times 2_{(\bar{\nu}p + \nu p)} \qquad C_{R}^{\gamma W}(0) \sim \frac{e}{g_{\omega}} \cdot g_{\rho NN} = \frac{1}{36} C_{R}^{WW}(0)$$

$$h^{\gamma W} - \text{ match at } Q^{2} = 2 \text{ GeV}^{2} \text{ (pQCD)}$$

$$C_{R}^{WW}(Q^{2})h^{WW}(Q^{2})|_{2 \text{ GeV}^{2}} \propto \int_{0}^{1} dx (F_{3}^{\nu p + \bar{\nu}p}) = 3 \qquad C_{R}^{\gamma W}(Q^{2})h^{\gamma W}(Q^{2})|_{2 \text{ GeV}^{2}} \propto \int_{0}^{1} dx F_{3}^{\gamma W}(0) = \frac{1}{12}$$

At both matching points the same relation holds, $C_R^{\gamma W} h^{\gamma W} = (1/36) C_R^{WW} h^{WW}$ Only overall normalization C_R is changed! In the isospin-symmetry limit $h^{\gamma W}(Q^2) = h^{WW}(Q^2)$ No additional uncertainty due to isospin rotation!

Input into dispersion integral

Universal γW-box

Shifts the emphasis on V_{us} and on the nuclear corrections entering Ft

Before $|V_{ud}|^2 + |V_{ud}|^2 + |V_{ud}|^2 = 0.9994 \pm 0.0005$

After
$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9983(4)$$

- This work

0.08

How to further test the model?

Neutrino data at low Q^2 are not precise: upcoming DUNE experiment @ Fermilab may provide better data for the first Nachtmann moment of F_3

Isospin rotation needs to be tested separately!

Use the connection between the CC V-A interference and a similar V-A term in the PVES!

Assuming the axial Z-N coupling to be a pure isovector, build an isovector combination to isolate the isoscalar part of the photon

$$4F_3^{(0)} \approx F_{3,\gamma Z}^p - F_{3,\gamma Z}^n \approx 2F_{3,\gamma Z}^p - F_{3,\gamma Z}^d$$

Need to measure F_3 in PVES at high energy (above resonance region) and low Q^2 - MOLLER (the background measurement on proton) - can use deuteron target?

Summary & Outlook

- New dispersive representation of the γ W-box:
 - data-driven uncertainties;
 - hadronic uncertainty almost halved;
 - raises tension with CKM unitarity
- Further data to better constrain the model: DUNE, MOLLER, ... ?
- Nuclear effects? A shift in Ft value may partly cancel the shift in Δ_R^V
- Electroweak boxes interconnected: how large is the shift for γ Z-box?
- Stay tuned!

Nuclear β-decay

General structure of RC for nuclear decay

Nuclear Green fn: only with 2 active N

QE contribution to yW-box

Bulk nuclear properties: Fermi momentum and break-up threshold 20 decays: ¹⁰C -> ¹⁰B through ⁷⁴Rb -> ⁷⁴Kr (Towner&Hardy '14 review)

Effective removal energies – all in a small range $\overline{\epsilon} = 7.68 \pm 1.32 \text{ MeV}$

Fermi momentum also not too different for all A $k_F(A = 10) = 228 \text{ MeV}, \quad k_F(A = 74) = 245 \text{ MeV}$

Can define a universal correction that correctly represents bulk nuclear effect!

Further ingredients: Free Fermi gas model (or superscaling) + Pauli blocking

$\overline{\epsilon} =$	$\sqrt{\epsilon_1\epsilon_2}$

Decay	$\epsilon_2 ({\rm MeV})$	$\epsilon_1 \ ({\rm MeV})$	$\overline{\epsilon} \ ({\rm MeV})$
${}^{10}C \rightarrow {}^{10}B$	8.44	4.79	6.36
$^{14}O \rightarrow^{14} N$	10.55	5.41	7.55
$^{18}Ne \rightarrow ^{18}F$	9.15	4.71	6.56
$^{22}Mg \rightarrow^{22} Na$	11.07	6.28	8.34
$^{26}Si \rightarrow^{26}Al$	11.36	6.30	8.46
$^{30}S \rightarrow^{30} P$	11.32	5.18	7.66
$^{34}Ar \rightarrow ^{34}Cl$	11.51	5.44	7.91
$^{38}Ca \rightarrow ^{38}K$	12.07	5.33	8.02
$^{42}Ti \rightarrow ^{42}Sc$	11.55	4.55	7.25
$^{26m}Al \rightarrow ^{26}Mg$	11.09	6.86	8.72
$^{34}Cl \rightarrow ^{34}S$	11.42	5.92	8.22
$^{38m}K \rightarrow^{38}Ar$	11.84	5.79	8.28
$^{42}Sc \rightarrow ^{42}Ca$	11.48	5.05	7.61
${}^{46}Va \rightarrow {}^{46}Ti$	13.19	6.14	9.00
$^{50}Mn \rightarrow ^{50}Cr$	13.00	5.37	8.35
$^{54}Co \rightarrow ^{54}Fe$	13.38	5.13	8.28
$^{62}Ga \rightarrow ^{62}Zn$	12.90	3.72	6.94
$^{66}As \rightarrow ^{66}Ge$	13.29	3.16	6.48
$^{70}Br \rightarrow ^{70}Se$	13.82	3.20	6.65
$^{74}Rb \rightarrow^{74}Kr$	13.85	3.44	6.90

QE contribution to yW-box

Elastic γ W-box for bound neutron: $\Box_{\gamma W}^{\text{free n}} = \frac{\alpha}{2\pi} 0.91(5) \rightarrow \Box_{\gamma W}^{\text{QE}} = \frac{\alpha}{2\pi} 0.44(4)$

Reduction due to finite breakup threshold and Fermi motion

Towner & Hardy 2014: quenching of spin operators in nuclei: about half the effect we observe. Indicates that Ft values may shift down and compensate part of the shift in the universal correction

$$\Box_{\gamma W}^{B,\,Quenched} - \Box_{\gamma W}^{B,\,free\,n} \approx \frac{\alpha}{2\pi} (-0.25)$$

Turn "inner" correction inside-out?

 γ W-box correction at zero energy

$$\Box_{\gamma W}^{VA\,(0)} = \frac{\alpha}{\pi M} \int_0^\infty \frac{dQ^2 M_W^2}{M_W^2 + Q^2} \int_0^\infty d\nu \frac{(\nu + 2q)}{\nu(\nu + q)^2} F_3^{(0)}(\nu, Q^2),$$

$$\Box_{\gamma W}^{VA\,(3)} = 0,$$

 $E = -(\nu + \sqrt{\nu^2 + O^2})/2$

 γ W-box correction with linear E-dependece

$$\operatorname{Re}\overline{\Box_{\gamma W}^{even}} = \frac{\alpha_{em}}{\pi} \int_{\nu_{thr}}^{\infty} d\nu \int_{0}^{\infty} dQ^{2} \frac{F_{3}^{(0)}}{2M\nu} \left(\frac{1}{E_{min}} - \frac{\nu}{4E_{min}^{2}} \right),$$

$$\operatorname{Re}\overline{\Box_{\gamma W}^{odd}} = \frac{\alpha_{em}}{\pi} E \int_{\nu_{thr}}^{\infty} d\nu \int_{0}^{\infty} dQ^{2} \left[\frac{F_{1}^{(0)}}{6ME_{min}^{3}} + \left(\frac{\sqrt{\nu^{2} + Q^{2}}}{2E_{min}^{2}\nu Q^{2}} - \frac{1}{12E_{min}^{3}} \nu \right) F_{2}^{(0)} + \frac{F_{3}^{(-)}}{2M\nu} \left(\frac{1}{2E_{min}^{2}} - \frac{\nu}{6E_{min}^{3}} \right) \right]$$

Common wisdom: E-dep. negligible because should come as $(\alpha/2\pi)$ E/m_{π} < 10⁻⁵ But nuclear excitations live at few MeV —> large nuclear polarizabilities

$$\alpha_E + \beta_M = \left. \frac{2\alpha_{em}}{M} \int \frac{d\omega}{\omega^3} F_1(\omega, Q^2 = 0) = 2\alpha_{em} \int \frac{d\omega}{\omega^2} \left. \frac{F_2(\omega, Q^2)}{Q^2} \right|_{Q^2 = 0}$$

New energy scale: polarizability/radius² Re $\Box_{\gamma W}^{odd} \sim \frac{2}{\pi} E \frac{\alpha_E + \beta_M}{R_{Ch}^2}$ $R_{Ch} \sim 1.2 \text{fm} A^{1/3}$ $\alpha_E \sim (2.2 \times 10^{-3} \text{ fm}) A^{5/3}$ Expect Re $\Box_{\gamma W}^{odd} \sim 1 \times 10^{-3} \left(\frac{E}{5 \text{ MeV}}\right) \left(\frac{A}{30}\right)$

Connecting boxes: yW - yZ - WW

 $M^{2} (M + m_{\pi})^{2}$

 $\sim 5 GeV^2$