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Polarization Studies for the

eRHIC electron Storage Ring

Outline

- Setting the frame: experiment requirements.

- Radiative polarization essentials.

- Radiative polarization and the eRHIC storage ring.

- Simulations of polarization in the eRHIC storage ring.

- Summary and Outlook.
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Experiment polarization requirements

Experiments require

• Large proton and electron polarization (& 70%)

• Longitudinal polarization at the IP with

both helicities within the same store

• Energy

– protons: between 41 and 275 GeV

– electrons: between 5 and 18 GeV

e p

High proton polarization is already routinely achieved in RHIC.

Studies are needed instead for the electron beam.

http://www.mechanik.tu-darmstadt.de
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eRHIC layout

�� �
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Radiative polarization

Sokolov-Ternov effect in a homogeneous constant

magnetic field: a small amount of the radiation emit-

ted by a e± moving in the field is accompanied by

spin flip.

Slightly different probabilities→ self polarization!

• Equilibrium polarization

~PST = ŷPST |PST| =
|n+ − n−|
n+ + n−

=
8

5
√
3

= 92.4%

e− polarization is anti-parallel to ~B, while e+ polarization is parallel to ~B.

• Build-up rate
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for an ideal storage ring

In eRHIC electrons (clock-wise rotating) self-polarization is upwards.

http://www.mechanik.tu-darmstadt.de
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A perfectly planar machine (w/o solenoids) is always spin transparent.

This property is lost in presence of

• spin-rotators

– spin transparency partially restored by optical spin-matching

• mis-alignments

Derbenev-Kondratenko expressions for non-homogeneous constant magnetic field involve

averaging across the phase space and along the ring

~PDK = n̂0
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b̂ ≡ ~v × ~̇v/|~v × ~̇v|����↗
periodic solution
to T-BMT eq. on c.o.

��
��

↖randomization of particle spin
directions due to photon emission

(δ ≡ δE/E)

Polarization rate
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Perfectly planar machine (w/o solenoids): ∂n̂/∂δ=0.

In general ∂n̂/∂δ 6=0 and large when

νspin ±mQx ± nQy ± pQs = integer νspin ' aγ

• Polarization time may be greatly reduced.

• PDK < PST.

http://www.mechanik.tu-darmstadt.de
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Tools

Accurate simulations are necessary for evaluating the polarization level

to be expected in presence of misalignments. Evaluation of D-K expressions is difficult.

• MAD-X used for simulating quadrupole misalignments and orbit correction

• SITROS (by J. Kewisch) used for computing the resulting polarization.

– Tracking code with 2nd order orbit description and non-linear spin motion.

– Used for HERA-e in the version improved by M. Böge and M. Berglund.

– It contains SITF (fully 6D) for analytical polarization computation with linearized

spin motion.

∗ Useful tool for preliminary checks before embarking in time consuming track-

ing.

∗ Computation of polarization related to the 3 degree of freedom separately:

useful for disentangling problems!

http://www.mechanik.tu-darmstadt.de
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Radiative polarization and the eRHIC storage ring

Because the experimenters call for storage of electron bunches with both spin helicities

Sokolov-Ternov effect is not an option but rather a nuisance!

• A full energy polarized electron injector is needed: electron bunches are injected

into the storage ring with high vertical polarization (≈ 85%) and the desired spin

direction (up/down).

• In the storage ring the polarization is brought into the longitudinal direction at the

IP by a couple of solenoidal spin rotators left and right of the IP.

In the eRHIC energy range the minimum

polarization time nominally is τp ' 30’

at 18 GeV. At first sight a large time

before Sokolov-Ternov effect reverses the

polarization of the down-polarized electron

bunches...

However the machine imperfections may quickly depolarize the whole beam.

http://www.mechanik.tu-darmstadt.de
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Polarization builds-up exponentially

P (t) = P∞(1− e−t/τp) + P (0)e−t/τp

In the presence of depolarizing effects it is

P∞ '
τp

τBKS

PBKS and
1

τp
'

1

τBKS

+
1

τd

PBKS and τBKS are the Baier-Katkov-Strakhovenko generalization of the Sokolov-

Ternov quantities when n̂0 is not everywhere perpendicular to the velocity.

They may be computed “analytically”; for eRHIC storage ring at 18 GeV it is

• PBKS=90%

• τBKS=30 minutes.

http://www.mechanik.tu-darmstadt.de
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P for bunches polarized parallel or anti-parallel to the bending field
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For instance, with P∞=30%, after 5

minutes P decays from 85% to

• 60% for up polarized bunches

→< P >=73%

• –39% for down polarized bunches

→< P >= –61%!
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→ No much gain pushing P∞ above ≈50%.

http://www.mechanik.tu-darmstadt.de
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Simulations for the eRHIC storage ring

• Energy: 18 GeV, the most challenging.

• Simulations shown here are for the “ATS” optics with

– 900 FODO for both planes;

– β∗x=0.7 m and β∗y= 8 cm.

• Working point for luminosity: Qx=60.12, Qy=56.10, Qs=0.046

http://www.mechanik.tu-darmstadt.de
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Ideal machine

Ideal machine (with solenoidal rotators), polarization in linear approximation
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scan with constant solenoid strengths
δn̂0 small

• The strong solenoids shift the spin tune by ∆νspin ' 0.124.

http://www.mechanik.tu-darmstadt.de
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Linear
SITROS

Beam size at IP

σx σy σ`

[mm] [µm] [mm]

SITF 0.121 0.588 6.967

SITROS 0.135 1.776 7.046

Large difference between linearized calculation and tracking: SITROS artifact? Zhe

Duan agreed to cross check results with his code using PTC by E. Forest.

http://www.mechanik.tu-darmstadt.de
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Machine with misalignments

• 494 BPMs (h+v) added close to each quadrupole.

• 2x494 correctors (h+v) added close to each quadrupole.

• Magnet misalignments and orbit correction simulated by MAD-X.

• Optics with errors and corrections dumped into a SITROS readable file.

Assumed quadrupole RMS misalignments

horizontal offset δxQ 200 µm

vertical offset δyQ 200 µm

roll angle δψQ 200 µrad

Strategy

• switch off sextupoles;

• move tunes to 0.2/0.3;

• introduce errors;

• correct orbit (MICADO/SVD);

• turn on sextupoles;

• tunes back to luminosity values.

http://www.mechanik.tu-darmstadt.de
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MAD-X fails correcting the orbit!

Example with only δyQ 6= 0 and sexts off.

Large discrepancy between what the correc-

tion module promises...

�� ��

...and the actual result!
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Effect on horizontal plane

with sextupoles off

Separate horizontal and vertical orbit correction inadequate in the rotator sections

→ “external” program used for correcting horizontal and vertical orbits simultaneously.

http://www.mechanik.tu-darmstadt.de
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Coupling and vertical dispersion correction with skew quads

Vertical dispersion due to a skew quad

∆Dy(s) =
1

2π sinπQy

Dskq
x

√
βskqy βy(s) cos (πQy − |µy − µskqy |)(K`)skq

Coupling functions
w±(s) ∝

√
βskqx βskqy (s)

Introduced 46 independently powered skew quadrupoles in arc locations where

Dskq
x

√
βskqy and

√
βskqx βskqy (s) are large.

http://www.mechanik.tu-darmstadt.de
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One error realization

• after orbit correction

• with Qx=60.10, Qy=56.20 (HERA-e tunes).

 0

 20

 40

 60

 80

 100

 40.2  40.4  40.6  40.8  41  41.2  41.4

P
ol

ar
iz

at
io

n 
[%

]

a*γ

SITF - .1/.2/.046

P
Px
Py
Ps  0

 5

 10

 15

 20

 25

 30

 35

 40

 40.2  40.4  40.6  40.8  41  41.2  41.4
|δ

n|
rm

s 
(m

ra
d)

a*γ

SITF - .1/.2/.046

http://www.mechanik.tu-darmstadt.de


18/25 P�i?�	�≫≪><

Same error realization, betatron tunes moved to Qx=60.12, Qy=56.10

w/o skew quads, |C−| ≈0.01.
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Same error realization, betatron tunes moved to Qx=60.12, Qy=56.10

with skew quads, |C−| ≈0.002.
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Adding n̂0 correction by harmonic bumps
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The level of polarizations is the same as for

the unperturbed optics.
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Summary and Outlook

Polarization studies for the eRHIC storage ring have started.

• With conservative errors P∞ ≈ 50% seems within reach:

– for upwards polarized bunches (anti-parallel to the guiding field),

<P>≈ 80%., over 5 minutes if P (0)=85%;

– for bunches polarized downwards the average polarization drops to 67%.

• BPMs errors need to be included!

• Luminosity working point requires linear coupling correction. Here the benefits of a

local correction using 46 skew quadrupoles have been shown.

– the use of correctors for dispersion and of (fewer?) skew quads for betatron

coupling correction is an alternative to be tried.

• Comparisons with different codes (Bmad, PTC).

• Beam-beam effects need to be addressed.

http://www.mechanik.tu-darmstadt.de
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Back-up slides

http://www.mechanik.tu-darmstadt.de
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Polarization evolution formulas

The exponential grow

P (t) = P∞(1− e−t/τp) + P (0)e−t/τp 1/τp = w∓ + w±

follows from the fact that

dn+

dt
= n−w∓ − n+w± and

dn−

dt
= n+w± − n−w∓

The Derbenev-Kondratenko polarization rate
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Similarly for P∞

~PDK = n̂0

8

5
√
3

∮
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|ρ|3 b̂ · (n̂−
∂n̂
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) >∮
ds < 1
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b̂ ≡ ~v × ~̇v/|~v × ~̇v|

P∞ = PDK ' PBKS

τd

τBKS + τd
= PBKS

τp

τBKS

Approximations done

• n̂ · v̂ is evaluated on the closed orbit,

• b̂ · ∂n̂
∂δ

has been neglected. In general it is small.

http://www.mechanik.tu-darmstadt.de

