Polarization Studies for the eRHIC electron Storage Ring

Outline

- Setting the frame: experiment requirements.
- Radiative polarization essentials.
- Radiative polarization and the eRHIC storage ring.
- Simulations of polarization in the eRHIC storage ring.
- Summary and Outlook.

Eliana GIANFELICE (Fermilab) SPIN2018, Ferrara, September 13, 2018

Experiment polarization requirements

Experiments require

- Large proton and electron polarization ($\gtrsim 70\%$)
- Longitudinal polarization at the IP with both helicities within the same store

- Energy
 - protons: between 41 and 275 GeV
 - electrons: between 5 and 18 GeV

High proton polarization is already routinely achieved in RHIC.

Studies are needed instead for the electron beam.

eRHIC layout

Radiative polarization

Sokolov-Ternov effect in a homogeneous constant magnetic field: a small amount of the radiation emitted by a e^\pm moving in the field is accompanied by spin flip.

Slightly different probabilities \rightarrow self polarization!

Equilibrium polarization

$$ec{P}_{
m ST} = \hat{y} P_{
m ST} \qquad |P_{
m ST}| = rac{|n^+ - n^-|}{n^+ + n^-} = rac{8}{5\sqrt{3}} = 92.4\%$$

 e^- polarization is anti-parallel to $ec{B}$, while e^+ polarization is parallel to $ec{B}$.

Build-up rate

$$au_{
m ST}^{-1} = rac{5\sqrt{3}}{8}rac{r_e\hbar}{m_0}rac{\gamma^5}{|
ho|^3} \quad o \quad au_p^{-1} = rac{5\sqrt{3}}{8}rac{r_e\hbar}{m_0C}\ointrac{ds}{|
ho|^3} \quad ext{for an } \emph{ideal} \; ext{storage ring}$$

In eRHIC electrons (clock-wise rotating) self-polarization is *upwards*.

A perfectly planar machine (w/o solenoids) is always *spin transparent*.

This property is lost in presence of

- spin-rotators
 - spin transparency partially restored by optical spin-matching
- mis-alignments

Derbenev-Kondratenko expressions for non-homogeneous constant magnetic field involve averaging across the phase space and along the ring

$$\vec{P}_{\rm DK} = \hat{n}_0 \frac{8}{5\sqrt{3}} \frac{\oint ds < \frac{1}{|\rho|^3} \hat{b} \cdot (\hat{n} - \frac{\partial \hat{n}}{\partial \delta}) >}{\oint ds < \frac{1}{|\rho|^3} \Big[1 - \frac{2}{9} (\hat{n} \cdot \hat{v})^2 + \frac{11}{18} (\frac{\partial \hat{n}}{\partial \delta})^2 \Big] >} \qquad \hat{b} \equiv \vec{v} \times \dot{\vec{v}}/|\vec{v} \times \dot{\vec{v}}|$$
 periodic solution to T-BMT eq. on c.o.
$$(\delta \equiv \delta E/E)$$

Polarization rate

$$au_{
m DK}^{-1} = rac{5\sqrt{3}}{8} rac{r_e \gamma^5 \hbar}{m_0 C} \oint ds < rac{1}{|
ho|^3} \Big[1 - rac{2}{9} (\hat{n} \cdot \hat{v})^2 + rac{11}{18} \Big(rac{\partial \hat{n}}{\partial \delta}\Big)^2 \Big] >$$

Perfectly planar machine (w/o solenoids): $\partial \hat{n}/\partial \delta = 0$.

In general $\partial \hat{n}/\partial \delta \neq 0$ and large when

$$u_{spin} \pm mQ_x \pm nQ_y \pm pQ_s = ext{integer} \qquad
u_{spin} \simeq a\gamma$$

- Polarization time may be greatly reduced.
- $P_{\mathrm{DK}} < P_{\mathrm{ST}}$.

Tools

Accurate simulations are necessary for evaluating the polarization level to be expected in presence of misalignments. Evaluation of D-K expressions is difficult.

- MAD-X used for simulating quadrupole misalignments and orbit correction
- SITROS (by J. Kewisch) used for computing the resulting polarization.
 - Tracking code with 2nd order orbit description and non-linear spin motion.
 - Used for HERA-e in the version improved by M. Böge and M. Berglund.
 - It contains SITF (fully 6D) for analytical polarization computation with *linearized* spin motion.
 - * Useful tool for preliminary checks before embarking in time consuming tracking.
 - * Computation of polarization related to the 3 degree of freedom separately: useful for disentangling problems!

Radiative polarization and the eRHIC storage ring

Because the experimenters call for storage of electron bunches with both spin helicities Sokolov-Ternov effect is not an option but rather a *nuisance*!

- A full energy polarized electron injector is needed: electron bunches are injected into the storage ring with high *vertical* polarization ($\approx 85\%$) and the desired spin direction (up/down).
- In the storage ring the polarization is brought into the longitudinal direction at the IP by a couple of solenoidal spin rotators left and right of the IP.

In the eRHIC energy range the minimum polarization time nominally is $\tau_p \simeq 30^{\circ}$ at 18 GeV. At first sight a large time before Sokolov-Ternov effect reverses the polarization of the down-polarized electron bunches...

However the machine imperfections may quickly depolarize the whole beam.

Polarization builds-up exponentially

$$P(t) = P_{\infty}(1 - e^{-t/\tau_p}) + P(0)e^{-t/\tau_p}$$

In the presence of depolarizing effects it is

$$P_{\infty} \simeq rac{ au_p}{ au_{
m BKS}} P_{
m BKS} \qquad ext{and} \qquad rac{1}{ au_p} \simeq rac{1}{ au_{
m BKS}} + rac{1}{ au_{
m d}}$$

 $P_{
m BKS}$ and $au_{
m BKS}$ are the Baier-Katkov-Strakhovenko generalization of the Sokolov-Ternov quantities when \hat{n}_0 is not everywhere perpendicular to the velocity.

They may be computed "analytically"; for eRHIC storage ring at 18 GeV it is

- $P_{BKS} = 90\%$
- τ_{BKS} =30 minutes.

$oldsymbol{P}$ for bunches polarized parallel or anti-parallel to the bending field

For instance, with P_{∞} =30%, after 5 minutes P decays from 85% to

- 60% for *up* polarized bunches $\rightarrow < P > = 73\%$
- -39% for *down* polarized bunches $\rightarrow < P > = -61\%!$

 \rightarrow No much gain pushing P_{∞} above $\approx 50\%$.

Simulations for the eRHIC storage ring

- Energy: 18 GeV, the most challenging.
- Simulations shown here are for the "ATS" optics with
 - -90^{0} FODO for both planes;
 - $-\beta_x^*=0.7$ m and $\beta_y^*=8$ cm.
- ullet Working point for luminosity: Q_x =60.12, Q_y =56.10, Q_s =0.046

Ideal machine

Ideal machine (with solenoidal rotators), polarization in linear approximation

ullet The strong solenoids shift the spin tune by $\Delta
u_{spin} \simeq 0.124$.

Beam size at IP σ_x σ_y σ_ℓ [mm] $[\mu \mathsf{m}]$ [mm] SITF 0.121 0.588 6.967 **SITROS** 0.135 1.776 7.046

Large difference between linearized calculation and tracking: SITROS artifact? Zhe Duan agreed to cross check results with his code using PTC by E. Forest.

Machine with misalignments

- 494 BPMs (h+v) added close to each quadrupole.
- 2x494 correctors (h+v) added close to each quadrupole.
- Magnet misalignments and orbit correction simulated by MAD-X.
- Optics with errors and corrections dumped into a SITROS readable file.

Assumed quadrupole RMS misalignments

horizontal offset	δx^Q	200 μ m
vertical offset	δy^Q	200 μ m
roll angle	$\delta\psi^Q$	200 $oldsymbol{\mu}$ rad

Strategy

- switch off sextupoles;
- move tunes to 0.2/0.3;
- introduce errors;
- correct orbit (MICADO/SVD);
- turn on sextupoles;
- tunes back to luminosity values.

MAD-X fails correcting the orbit!

Example with only $\delta y^Q \neq 0$ and sexts off. Large discrepancy between what the correction module promises...

...and the actual result!

with sextupoles off

Separate horizontal and vertical orbit correction inadequate in the rotator sections

→ "external" program used for correcting horizontal and vertical orbits simultaneously.

Coupling and vertical dispersion correction with skew quads

Vertical dispersion due to a skew quad

$$\Delta D_y(s) = rac{1}{2\pi\sin\pi Q_y} D_x^{skq} \sqrt{eta_y^{skq}eta_y(s)}\cos{(\pi Q_y - |\mu_y - \mu_y^{skq}|)}(K\ell)_{skq}$$

Coupling functions

$$w_{\pm}(s) \propto \sqrt{eta_x^{skq}eta_y^{skq}(s)}$$

Introduced 46 independently powered skew quadrupoles in arc locations where $D_x^{skq}\sqrt{\beta_y^{skq}}$ and $\sqrt{\beta_x^{skq}\beta_y^{skq}(s)}$ are large.

One error realization

- after orbit correction
- with Q_x =60.10, Q_y =56.20 (HERA-e tunes).

Same error realization, betatron tunes moved to Q_x =60.12, Q_y =56.10 w/o skew quads, $|C^-|\approx$ 0.01.

Same error realization, betatron tunes moved to Q_x =60.12, Q_y =56.10 with skew quads, $|C^-| \approx$ 0.002.

Beam size at IP

	$oldsymbol{\sigma_x}$	$oldsymbol{\sigma_y}$	$\boldsymbol{\sigma_\ell}$
	[mm]	$[\mu$ m $]$	[mm]
SITF	0.121	1.718	6.984
SITROS	0.138	3.126	6.969

Adding \hat{n}_0 correction by harmonic bumps

Effect on vertical orbit

Beam size at IP

	σ_x	σ_y	σ_ℓ
	[mm]	$[\mu$ m $]$	[mm]
SITF	0.121	3.151	6.985
SITROS	0.139	4.402	7.004

The level of polarizations is the same as for the *unperturbed* optics.

Summary and Outlook

Polarization studies for the eRHIC storage ring have started.

- With conservative errors $P_{\infty} \approx 50\%$ seems within reach:
 - for *upwards* polarized bunches (anti-parallel to the guiding field), $<\!\!P\!\!>\approx 80\%$, over 5 minutes if $P(0)\!=\!85\%$;
 - for bunches polarized downwards the average polarization drops to 67%.
- BPMs errors need to be included!
- Luminosity working point requires linear coupling correction. Here the benefits of a *local correction* using 46 skew quadrupoles have been shown.
 - the use of correctors for dispersion and of (fewer?) skew quads for betatron coupling correction is an alternative to be tried.
- Comparisons with different codes (Bmad, PTC).
- Beam-beam effects need to be addressed.

Back-up slides

Polarization evolution formulas

The exponential grow

$$P(t) = P_{\infty}(1 - e^{-t/\tau_p}) + P(0)e^{-t/\tau_p}$$
 $1/\tau_p = w_{\mp} + w_{\pm}$

follows from the fact that

$$rac{dn^+}{dt}=n^-w_\mp-n^+w_\pm$$
 and $rac{dn^-}{dt}=n^+w_\pm-n^-w_\mp$

The Derbenev-Kondratenko polarization rate

$$au_{
m DK}^{-1} = rac{5\sqrt{3}}{8} rac{r_e \gamma^5 \hbar}{m_0 C} \oint < rac{1}{|
ho|^3} \Big[1 - rac{2}{9} (\hat{n} \cdot \hat{v})^2 + rac{11}{18} \Big(rac{\partial \hat{n}}{\partial \delta}\Big)^2 \Big] >$$

may be written as

$$au_{
m DK}^{-1} = au_p^{-1} \simeq au_{
m BKS}^{-1} + au_d^{-1}$$

with

$$au_{
m BKS}^{-1} = rac{5\sqrt{3}}{8} rac{r_e \gamma^5 \hbar}{m_0 C} \oint ds rac{1}{|
ho|^3} \Big[1 - rac{2}{9} (\hat{n}_0 \cdot \hat{v}_0)^2 \Big]$$

and

$$au_d^{-1} = rac{5\sqrt{3}}{8} rac{r_e \gamma^5 \hbar}{m_0 C} \oint ds < rac{1}{|
ho|^3} \Big[rac{11}{18} \Big(rac{\partial \hat{n}}{\partial \delta}\Big)^2\Big] >$$

Similarly for P_{∞}

$$ec{P}_{
m DK} = \hat{n}_0 rac{8}{5\sqrt{3}} rac{\oint ds < rac{1}{|
ho|^3} \hat{b} \cdot (\hat{n} - rac{\partial \hat{n}}{\partial \delta}) >}{\oint ds < rac{1}{|
ho|^3} \Big[1 - rac{2}{9} (\hat{n} \cdot \hat{v})^2 + rac{11}{18} (rac{\partial \hat{n}}{\partial \delta})^2\Big] >} \qquad \hat{b} \equiv ec{v} imes \dot{ec{v}}/|ec{v} imes \dot{ec{v}}|$$
 $P_{\infty} = P_{
m DK} \simeq P_{
m BKS} rac{ au_d}{ au_{
m BKS} + au_d} = P_{
m BKS} rac{ au_p}{ au_{
m BKS}}$

Approximations done

- $\hat{n} \cdot \hat{v}$ is evaluated on the closed orbit,
- $\hat{b} \cdot \frac{\partial \hat{n}}{\partial \delta}$ has been neglected. In general it is small.

