

exploiting self-polarization in storage rings at HERA

Gunar.Schnell @ desy.de

my (rather) personal review of hermes

my (rather) personal review of hermes special thanks to R. Milner & K. Rith

Gunar.Schnell @ desy.de

HERA measurement of spin

[C. Papanicolas (1989)]

spin can be tricky

"You think you understand something? Now add spin ..." [Jaffe]

spin can be tricky

"You think you understand something? Now add spin ..." [Jaffe]

• it could have been so simple:

$$p^{\uparrow} = \sqrt{\frac{2}{3}} (u^{\uparrow} u^{\uparrow}) d^{\downarrow} + \sqrt{\frac{1}{3}} (u^{\uparrow} u^{\downarrow}) d^{\uparrow}$$

spin can be tricky

"You think you understand something? Now add spin ..." [Jaffe]

• it could have been so simple:

$$p^{\uparrow} = \sqrt{\frac{2}{3}} (u^{\uparrow} u^{\uparrow}) d^{\downarrow} + \sqrt{\frac{1}{3}} (u^{\uparrow} u^{\downarrow}) d^{\uparrow}$$

• constituent quark model ($\Delta q = q^{\uparrow} - q^{\downarrow}$... helicity contribution): $\Delta u = 4/3$

all the proton spin coming from up and down quarks

the (original) quest: proton spin

our understanding of the proton changed dramatically with the finding of EMC that the proton spin hardly comes from spin of quarks

[Jaffe & Manohar (1990)] SPIN 2018 - Ferrara - Sept. 12th, 2018

Deep-Inelastic Scattering

probing the structure of the nucleon

spin asymmetries

- exploit spin correlations (e.g., virtual photon couples only to spin-1/2 quarks with opposite spin)
- Cross-section difference provides access to quark polarization

• in praxis form asymmetries to cancel systematics: $\frac{\sigma_{\frac{3}{2}} - \sigma_{\frac{1}{2}}}{\sigma_{\frac{3}{2}} + \sigma_{\frac{1}{2}}}$

7

gunar.schnell @ desy.de

q

u

u

(E', p')

- polarized targets
- Iarge-acceptance spectrometer

(**E**, **p**)

e

gunar.schnell @ desy.de

q

u

U

(E', p')

- polarized targets
- Iarge-acceptance spectrometer
- good particle identification (PID)

(E, p)

e

gunar.schnell @ desy.de

π

experimental situation in the 1980s

- polarized beams
 - polarized electron beam at SLAC
 - polarized at source; high intensity
 - tertiary polarized muon beam at NA of SPS at CERN
 - highly polarized (weak meson decays); low intensity

experimental situation in the 1980s

- polarized beams
 - polarized electron beam at SLAC
 - polarized at source; high intensity
 - tertiary polarized muon beam at NA of SPS at CERN
 - highly polarized (weak meson decays); low intensity
- polarized targets
 - solid (e.g. NH₃) targets -> high density, but large dilution

experimental situation in the 1980s

- polarized beams
 - polarized electron beam at SLAC
 - polarized at source; high intensity
 - tertiary polarized muon beam at NA of SPS at CERN
 - highly polarized (weak meson decays); low intensity
- polarized targets
 - solid (e.g. NH₃) targets -> high density, but large dilution

statistical precision: ~ $\frac{1}{fP_BP_T}\frac{1}{\sqrt{N}}$

(f... dilution factor)

solid targets $f \approx 0.2 \rightarrow$ directly scales uncertainties (as do P_B & P_T)

new developments

self-polarized leptons in storage rings -> HERA

highly polarized gas targets

• why not combine for double-polarization experiment with excellent figure of merit?

new developments

self-polarized leptons in storage rings -> HERA highly polarized gas targets

- why not combine for double-polarization experiment with excellent figure of merit?
- 1987: two groups with similar ideas (North America ... R. Milner & Europe ... K. Rith)
 - heades to DESY to measure spin asymmetries at HERA
 - two separate LOIs beginning of 1988

new developments

self-polarized leptons in storage rings -> HERA highly polarized gas targets

- why not combine for double-polarization experiment with excellent figure of merit?
- 1987: two groups with similar ideas (North America ... R. Milner & Europe ... K. Rith)
 - heades to DESY to measure spin asymmetries at HERA
 - two separate LOIs beginning of 1988
- DESY management sympathetic, but ...
 - common effort -> 12/1988 common collaboration 1990 proposal) and ...

gunar.schnell @ desy.de

- demonstration of high longitudinal electron beam polarization
 - demonstration of transverse self-polarization of HERA e[±]
 - successful spin rotation to obtain longitudinal polarization

 demonstration of high flux with high polarization from polarized sources ...

- ... and demonstration of storage-cell technique
- no compromises for HERA flagship colliders H1 and Zeus

beam polarization

- tiny asymmetry in spin-flip by emission of synchrotron radiation -> build-up of self polarization
 - degree of transverse polarization depends critically on machine energy and magnet alignment
 - Iongitudinal polarization through (movable) spin rotators in front / behind experiment (installed winter 1993/94) -> both helicities

beam polarization

- tiny asymmetry in spin-flip by emission of synchrotron radiation -> build-up of self polarization
 - degree of transverse polarization depends critically on machine energy and magnet alignment
 - Iongitudinal polarization through (movable) spin rotators in front / behind experiment (installed winter 1993/94) -> both helicities
- HERA polarization
 - 11/1991: 8% ... first demonstration of self-polarization at HERA
 - 9/1992: 60% ... polarization sufficient for HERMES
 - 5/1994: 60% longitudinal polarization

beam polarization

- tiny asymmetry in spin-flip by emission of synchrotron radiation -> build-up of self polarization
 - degree of transverse polarization depends critically on machine energy and magnet alignment
 - longitudinal polarization through (movable) spin rotators in front / behind experiment (installed winter 1993/94) -> both helicities
- HERA polarization
 - 11/1991: 8% ... first demonstration of self-polarization at HERA
 - 9/1992: 60% ... polarization sufficient for HERMES
 - 5/1994: 60% longitudinal polarization
- two independent Compton polarimeters at East and West Hall

gunar.schnell @ desy.de

HERMES gas targets

- novel pure gas target:
- internal to HERA lepton ring
- Iongitudinally polarized: ¹H, ²H, ³He
- transversely polarized: ¹H
- rapid spin reversal every 60...180s
- unpolarized (¹H ... Xe)

- demonstration of high longitudinal electron beam polarization
 - demonstration of transverse self polarization of HERA e[±]
 - successful spin rotation to obtain longitudinal polarization

 demonstration of high flux with high polarization from polarized sources ...

- ... and demonstration of storage-cell technique
- no compromises for HERA flagship colliders H1 and Zeus

- demonstration of high longitudinal electron beam polarization
 - demonstration of transverse self polarization
 - successful spin rotation to obtain to it is polarization

demonstration of high fl
 polarized sources

... and demoved in of storage-cell technique

no componises for HERA flagship colliders H1 and Zeus

- demonstration of high longitudinal electron beam polarization
 - demonstration of transverse self polarization of HERA e[±]
 - successful spin rotation to obtain to polarization

demonstration of high ft
 polarized sources

... and demonstration of storage-cell technique

no compromises for HERA flagship colliders H1 and Zeus

HERMES (1998-2005) schematically

two (mirror-symmetric) halves

gunar.schnell @ desy.de

SPIN 2018 - Ferrara - Sept. 12th, 2018

HERMES (1998-2005) schematically

two (mirror-symmetric) halves

Particle ID detectors allow for

- lepton/hadron separation
- RICH: pion/kaon/proton
- discrimination 2GeV<p<15GeV

gunar.schnell @ desy.de

SPIN 2018 - Ferrara - Sept. 12th, 2018

Particle identification

excellent lepton/hadron separation

Dual-Radiator RICH hadron ID for momenta 2-15 GeV

gunar.schnell @ desy.de

20

bread & butter physics

inclusive DIS (one-photon exchange)

gunar schuell desy.de

inclusive DIS (one-photon exchange)

gunar schuel desy.de

inclusive DIS (one-photon exchange)

SPIN 2018 - Ferrara - Sept. 12th, 2018

polarized structure function $g_1(x)$

10 July 1997

PHYSICS LETTERS B

Physics Letters B 404 (1997) 383-389

Measurement of the neutron spin structure function g_1^n with a polarized ³He internal target

HERMES Collaboration

Top row: Bruce Bray, Kalen Martens, Richard Milner, Marc Beckmann, Mike Vetterli, Wolfgang Lorenzon, Eric Belz Bottom row: Ralf Kaiser, Johan Blouw, Greg Rakness, Michael Spengos, Armand Simon, Gunnar Schnell, Erhard Steffens

х

HERMES vs. SLAC E154: 3 - 2

gunar.schnell @ aesy.de

(Caltech, May 1996)

5PIN 2018 - Ferrara - Sept. 12th, 2018

Years	Target	DIS (Milion)	Polarization
1996-1997	H _{II}	3.5	0.851 ± 0.033
1998-2000	D _{II}	10.2	0.845 ± 0.028
2001-2005	$H_{\scriptscriptstyle \perp}$	~6	0.74 ± 0.06

polarized structure function $g_1(x)$

polarized structure function $g_1(x)$

- unfolded for radiative and detector smearing
- unknown systematic
 correlations transformed into known statistical correlations
- uncertainties plotted only reflect diagonal elements of covariance -> "underestimates" statistical precision

Γ_1 ... integral of $g_1(x)$

Γ_1 ... integral of $g_1(x)$

Γ_1 ... integral of $g_1(x)$

 \Box unpolarized DIS: F₂ & σ^{d}/σ^{p}

 \Box unpolarized DIS: F₂ & σ^{d}/σ^{p}

 \mathbf{V} tensor structure function b_1

 \Box unpolarized DIS: F₂ & σ^{d}/σ^{p}

 \mathbf{V} tensor structure function b_1

Transverse: g2

- \Box unpolarized DIS: F₂ & σ^{d}/σ^{p}
- \mathbf{V} tensor structure function b_1
- Transverse: g2
- 2-photon exchange in incl. DIS

\Box unpolarized DIS: F₂ & σ^{d}/σ^{p}

- \mathbf{V} tensor structure function b_1
- Transverse: g2
- 2-photon exchange in incl. DIS

semi-inclusive DIS

semi-inclusive DIS asymmetries

semi-inclusive DIS asymmetries

helicity density - flavor separation

no hint for sea quark pol's
 -> in contrast to incl. DIS

Χ

helicity density - flavor separation $\mathbf{x} \cdot \Delta \mathbf{u} A_{1,p}, A_{1,p}^{\pi^{\pm}}, A_{1,d}, A_{1,d}^{\pi^{\pm}}, A_{1,d}^{K^{\pm}}, A_{1,d}^{K^{\pm}}$ 0.2 first 5-flavor extraction of Δq Λ $A_{1,p}, A_{1,p}^{\pi^{\pm}}, A_{1,d}, A_{1,d}^{\pi^{\pm}}, A_{1,d}^{K^{\pm}}$ x·∆d no hint for sea quark pol's 0 -> in contrast to incl. DIS -0.2 0.2 no flavor asymmetry of sea $Q^2 = 2.5 \text{ GeV}_{x}^2$ GRG 72802 0.2 LO std $x(\Delta \bar{u} - \Delta \bar{d})$ 0.1 x·∆u RB01 LO -0. $Q^2 = 2.5 \text{ GeV}^2$ 0.1 x·∆d 0 0 -0.1 γ'QSM -0.1 **B. Dressle** γQSM -0.1 EPJ C14 (20 B. Dressler et al., EPJ C14 (2000) 147. x·∆s -0.2 -0.2 -0.1 00 0.03 0.1 0.6 0.03 0.1 0.6 Χ 29

helicity density - valence quarks

$$A_1^{h^+-h^-} = \frac{(d\sigma_{h^+}^{\stackrel{\rightarrow}{\leftarrow}} - d\sigma_{h^-}^{\stackrel{\rightarrow}{\leftarrow}}) - (d\sigma_{h^+}^{\stackrel{\rightarrow}{\Rightarrow}} - d\sigma_{h^-}^{\stackrel{\rightarrow}{\Rightarrow}})}{(d\sigma_{h^+}^{\stackrel{\leftarrow}{\leftarrow}} - d\sigma_{h^-}^{\stackrel{\leftarrow}{\leftarrow}}) + (d\sigma_{h^+}^{\stackrel{\rightarrow}{\Rightarrow}} - d\sigma_{h^-}^{\stackrel{\rightarrow}{\Rightarrow}})}$$

charge-difference double-spin asymmetries

gunar.schnell @ desy.de

SPIN 2018 - Ferrara - Sept. 12th, 2018

helicity density - valence quarks

$$A_1^{h^+-h^-} = \frac{(d\sigma_{h^+}^{\stackrel{\rightarrow}{\leftarrow}} - d\sigma_{h^-}^{\stackrel{\rightarrow}{\leftarrow}}) - (d\sigma_{h^+}^{\stackrel{\rightarrow}{\Rightarrow}} - d\sigma_{h^-}^{\stackrel{\rightarrow}{\Rightarrow}})}{(d\sigma_{h^+}^{\stackrel{\leftarrow}{\leftarrow}} - d\sigma_{h^-}^{\stackrel{\leftarrow}{\leftarrow}}) + (d\sigma_{h^+}^{\stackrel{\rightarrow}{\Rightarrow}} - d\sigma_{h^-}^{\stackrel{\rightarrow}{\Rightarrow}})}$$

charge-difference double-spin asymmetries

use charge-conjugation symmetry to extract, at LO(!), valence distributions $A_{1p}^{h^+-h^-} = \frac{4\Delta u_v - \Delta d_v}{4\Delta u_v - \Delta d_v}$ $A_{1p}^{h^+-h^-} \cong \frac{4\Delta u_v - \Delta d_v}{4u_v - d_v}$ $A_{1d}^{h^+-h^-} \cong \frac{\Delta u_v + \Delta d_v}{u_v + d_v}$ $a_{1d} = \frac{u_v + d_v}{u_v + d_v}$

helicity density - valence quarks

$$A_1^{h^+-h^-} = \frac{(d\sigma_{h^+}^{\stackrel{\rightarrow}{\leftarrow}} - d\sigma_{h^-}^{\stackrel{\rightarrow}{\leftarrow}}) - (d\sigma_{h^+}^{\stackrel{\rightarrow}{\Rightarrow}} - d\sigma_{h^-}^{\stackrel{\rightarrow}{\Rightarrow}})}{(d\sigma_{h^+}^{\stackrel{\leftarrow}{\leftarrow}} - d\sigma_{h^-}^{\stackrel{\leftarrow}{\leftarrow}}) + (d\sigma_{h^+}^{\stackrel{\rightarrow}{\Rightarrow}} - d\sigma_{h^-}^{\stackrel{\rightarrow}{\Rightarrow}})}$$

charge-difference double-spin asymmetries

use charge-conjugation symmetry to extract, at LO(!), valence distributions $A_{1p}^{h^+-h^-} = \frac{4\Delta u_v - \Delta d_v}{4\Delta u_v - \Delta d_v}$ $A_{1p}^{h^+-h^-} \cong \frac{4\Delta u_v - \Delta d_v}{4u_v - d_v}$ $A_{1d}^{h^+-h^-} \cong \frac{\Delta u_v + \Delta d_v}{u_v + d_v}$ $= \frac{u_v + d_v}{u_v + d_v}$

SPIN 2018 - Ferrara - Sept. 12th, 2018

... going 3D

Evidence for a Single-Spin Azimuthal Asymmetry in Semi-inclusive Pion Electroproduction

Evidence for a Single-Spin Azimuthal Asymmetry in Semi-inclusive Pion Electroproduction

Evidence for a Single-Spin Azimuthal Asymmetry in Semi-inclusive Pion Electroproduction

... remembering puzzling asymmetries

... remembering puzzling asymmetries

- Only two models consistently describing the data:
 * TMDs (Transverse Momentum Dependent) distributions
 * high-twist correlations
- Interpretation not yet completely satisfactor
- All available models predict A_N goes to zero at high a values.
- BU p type DATA p such kinematic region
- all available data coming from pap scattering

large left-right asymmetries that persist even to RHIC energies

gunar.schnell @ desy.de

SPIN 2018 - Ferrara - Sept. 12th, 2018

what's the origin of these SSA?

fragmentation effect?

[J.C. Collins, NPB 396 (1993) 161]

π

correlating transverse quark spin with transverse momentum gunar.schnell @ desy.de

what's the origin of these SSA?

fragmentation effect?

[J.C. Collins, NPB 396 (1993) 161]

Correlating transverse quark spin with transverse momentum gunar.schnell @ desy.de

• quark-distribution effect?

[D.W. Sivers, PRD 41 (1990) 83]

 correlating transverse quark momentum with transverse spin of nucleon SPIN 2018 - Ferrara - Sept. 12th, 2018

a short history of naive time reversal

- I978: Kane, Pumplin & Repko: transverse-spin asymmetries suppressed in pQCD
- 1990: Sivers introduces transverse spin-momentum correlation for quark distributions
- 1993: Collins dislikes (& disproves) idea, introduces similar correlation in fragmentation
- 1996: Mulders&Tangerman: compendium of azimuthal asymmetries
- 1998: Boer&Mulders: naive T-odd observables -> BM distrib.
- 2002: Brodsky, Hwang & Schmidt: resurrection of Sivers idea

Spin-momentum structure of the nucleon

$$\frac{1}{2} \operatorname{Tr} \left[(\gamma^{+} + \lambda \gamma^{+} \gamma_{5}) \Phi \right] = \frac{1}{2} \left[f_{1} + S^{i} \epsilon^{ij} k^{j} \frac{1}{m} f_{1T}^{\perp} + \lambda \Lambda g_{1} + \lambda S^{i} k^{i} \frac{1}{m} g_{1T} \right]$$

$$\frac{1}{2} \operatorname{Tr} \left[(\gamma^{+} - s^{j} i \sigma^{+j} \gamma_{5}) \Phi \right] = \frac{1}{2} \left[f_{1} + S^{i} \epsilon^{ij} k^{j} \frac{1}{m} f_{1T}^{\perp} + s^{i} \epsilon^{ij} k^{j} \frac{1}{m} h_{1}^{\perp} + s^{i} S^{i} h_{1} \right]$$

$$+ s^{i} (2k^{i}k^{j} - \mathbf{k}^{2}\delta^{ij})S^{j} \frac{1}{2m^{2}} h_{1T}^{\perp} + \Lambda s^{i}k^{i} \frac{1}{m} h_{1L}^{\perp}$$

quark pol.

		U	L	Т
pol.	U	f_1		h_1^\perp
nucleon	L		g_{1L}	h_{1L}^{\perp}
nucl	Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

- each TMD describes a particular spin-momentum correlation
- functions in black survive integration over transverse momentum
- functions in green box are chiral-odd
- functions in red are naive T-odd

Spin-momentum structure of the nucleon

$$\frac{1}{2} \operatorname{Tr} \left[(\gamma^{+} + \lambda \gamma^{+} \gamma_{5}) \Phi \right] = \frac{1}{2} \left[f_{1} + S^{i} \epsilon^{ij} k^{j} \frac{1}{m} f_{1T}^{\perp} + \lambda \Lambda g_{1} + \lambda S^{i} k^{i} \frac{1}{m} g_{1T} \right]$$

$$\frac{1}{2} \operatorname{Tr} \left[(\gamma^{+} - s^{j} i \sigma^{+j} \gamma_{5}) \Phi \right] = \frac{1}{2} \left[f_{1} + S^{i} \epsilon^{ij} k^{j} \frac{1}{m} f_{1T}^{\perp} + s^{i} \epsilon^{ij} k^{j} \frac{1}{m} h_{1}^{\perp} + s^{i} S^{i} h_{1} \right]$$

$$+ s^{i} (2k^{i}k^{j} - \mathbf{k}^{2}\delta^{ij})S^{j} \frac{1}{2m^{2}} h_{1T}^{\perp} + \Lambda s^{i}k^{i} \frac{1}{m} h_{1L}^{\perp}$$

- each TMD describes a particular
 Boer-Mulders Im correlation
- functions in black survive integration over transverse momentum
- functions in green box are chiral-odd pretzelosity red are naive T-odd

 $\begin{array}{|c|c|c|c|c|c|c|c|c|} \hline U & U & U & U & T \\ \hline U & f_1 & h_1^{\perp} & h_1^{\perp} \\ \hline U & f_1 & g_{1L} & h_{1L}^{\perp} \\ \hline L & g_{1L} & h_{1L}^{\perp} \\ \hline T & f_{1T}^{\perp} & g_{1T} & h_1, h_{1T}^{\perp} \end{array}$

quark pol.

transversity

Sivers

helicity

the "trouble" with transversity chiral-odd transversity involves quark helicity flip $g_1^q = \bigcirc - \bigcirc h_1^q = \bigcirc - \bigcirc$ $f_1^q = \bigcirc$

the "trouble" with transversity chiral-odd transversity involves quark helicity flip $h_{1}^{q} =$ $g_{1}^{q} =$ $f_{1}^{q} =$ **STOP** + + + /

need to couple to chiral-odd fragmentation function:

- transverse spin transfer (polarized final-state hadron)
- 2-hadron fragmentation
- Collins fragmentation

		U	L	Т
nucleon pol.	U	f_1		h_1^\perp
	L		g_{1L}	h_{1L}^{\perp}
nuc]	Т	f_{1T}^{\perp}	g_{1T}	$h_1, {h_{1T}^\perp}$

quark pol.

in SIDIS*) couple PDFs to:

*) semi-inclusive DIS with unpolarized final state SPIN 2018 - Ferrara - Sept. 12th, 2018

*) semi-inclusive DIS with unpolarized final state

*) semi-inclusive DIS with unpolarized final state

*) semi-inclusive DIS with unpolarized final state

HERMES: let's go transverse!

- transversely polarized protons
- P_T ≈ 74%
- data taking: 2002-2005
- smaller beam polarization during HERA II
 -> impact on double-spin asymmetries

transverse target magnet

HERMES: let's go transverse!

- transversely polarized protons
- P_T ≈ 74%
- data taking: 2002-2005
- smaller beam polarization during HERA II
 -> impact on double-spin asymmetries

transverse target magnet

disclaimer: originally planned mainly to measure g_2

gunar.schnell @ desy.de

transverse polarization of quarks leads to large effects!

- transverse polarization of quarks leads to large effects!
- opposite in sign for charged pions

Non-zero Collins function

- transverse polarization of quarks leads to large effects!
- opposite in sign for charged pions
- disfavored Collins FF large and opposite in sign to favored one

leads to various cancellations in SSA observables

Non-zero transversity Non-zero Collins function

only relative transverse momentum needed -> DGLAP

transversity (2-hadron FF)

 $A_{UT} \sim \sin(\phi_{R\perp} + \phi_S) \sin\theta h_1 H_1^{\triangleleft}$

 P_h

no! -> first evidence of naive-T-odd Sivers function

no! -> first evidence of naive-T-odd Sivers function

however, Sivers predicted wrong sign

- no! -> first evidence of naive-T-odd Sivers function
- however, Sivers predicted wrong sign
- better: chromodynamic-lensing picture [M. Burkardt]

$$L_{z}^{u} > 0 - f_{1T}^{\perp q} \sim \kappa^{q}$$

$$\kappa^{u}$$

$$\kappa^{u}$$

$$\kappa^{d}$$

 $\kappa^u = 1.67$

 $\kappa^d = -2.03$

[M. Burkardt, PRD66 (2002) 014005]

[M. Burkardt, PRD66 (2002) 014005]

gunar.schnell @ desy.de

... and what about the original A_{UL} ?

... and what about the original A_{UL} ?

a contraction of the second se

gunar.schnell @ desy.de

... yet another sine modulations

Iongitudinally polarized beam & unpolarized target => subleading-twist

$$\left\{ \sin \phi \right\}_{LU} \propto \lambda_e \frac{M}{Q} \mathcal{I} \left[xe(x) H_1^{\perp}(z) - \frac{M_h}{zM} h_1^{\perp}(x) E(z) + \frac{M_h}{zM} f_1(x) G^{\perp}(z) - xg^{\perp}(x) D_1(z) + \frac{m_q}{M} h_1^{\perp}(x) D_1(z) - \frac{m_q}{M} f_1(x) H_1^{\perp}(z) \right]$$

... yet another sine modulations

Iongitudinally polarized beam & unpolarized target => subleading-twist

$$\left\langle \sin \phi \right\rangle_{LU} \propto \lambda_e \frac{M}{Q} \mathcal{I} \left[xe(x) H_1^{\perp}(z) - \frac{M_h}{zM} h_1^{\perp}(x) E(z) + \frac{M_h}{zM} f_1(x) G^{\perp}(z) - xg^{\perp}(x) D_1(z) \right]$$

many terms contributing - difficult to separate

... yet another sine modulations

longitudinally polarized beam & unpolarized target \Rightarrow subleading-twist

exclusive reactions

a complementary 3D picture of t

gunar.schnell @ desy.de

-0.6 -0.4 -0.2

0

0

x: average longitudinal momentum fraction of active quark (usually not observed & $x \neq x_B$)

 ξ : half the longitudinal momentum change $\approx x_B/(2-x_B)$

gunar.schnell @ desy.de

(+ 4 more chiral-odd functions)

GPDs can be accessed through measurements of hard exclusive lepton-nucleon scattering processes.

GPDs can be accessed through measurements of hard exclusive lepton-nucleon scattering processes.

- beam polarization P_B
- beam charge C_B
- here: unpolarized target

Fourier expansion for ϕ :

$$|\mathcal{T}_{\mathsf{BH}}|^{2} = \frac{K_{\mathsf{BH}}}{\mathcal{P}_{1}(\phi)\mathcal{P}_{2}(\phi)} \sum_{n=0}^{2} c_{n}^{\mathsf{BH}} \cos(n\phi)$$

calculable in QED
 (using FF measurements)

 \dot{k}

- beam charge C_B
- here: unpolarized target

Fourier expansion for ϕ :

$$|\mathcal{T}_{\mathsf{BH}}|^{2} = \frac{\mathcal{K}_{\mathsf{BH}}}{\mathcal{P}_{1}(\phi)\mathcal{P}_{2}(\phi)} \sum_{n=0}^{2} c_{n}^{\mathsf{BH}} \cos(n\phi)$$
$$\mathcal{T}_{\mathsf{DVCS}}|^{2} = \mathcal{K}_{\mathsf{DVCS}} \left[\sum_{n=0}^{2} c_{n}^{\mathsf{DVCS}} \cos(n\phi) + \mathcal{P}_{B} \sum_{n=1}^{1} s_{n}^{\mathsf{DVCS}} \sin(n\phi) \right]$$

 \dot{k}

- beam charge C_B
- here: unpolarized target

Fourier expansion for ϕ :

$$\begin{aligned} |\mathcal{T}_{\mathsf{BH}}|^2 &= \frac{\kappa_{\mathsf{BH}}}{\mathcal{P}_1(\phi)\mathcal{P}_2(\phi)} \sum_{n=0}^2 c_n^{\mathsf{BH}} \cos(n\phi) \\ |\mathcal{T}_{\mathsf{DVCS}}|^2 &= \kappa_{\mathsf{DVCS}} \left[\sum_{n=0}^2 c_n^{\mathsf{DVCS}} \cos(n\phi) + P_B \sum_{n=1}^1 s_n^{\mathsf{DVCS}} \sin(n\phi) \right] \\ \mathcal{I} &= \frac{c_B \kappa_{\mathcal{I}}}{\mathcal{P}_1(\phi)\mathcal{P}_2(\phi)} \left[\sum_{n=0}^3 c_n^{\mathcal{I}} \cos(n\phi) + P_B \sum_{n=1}^2 s_n^{\mathcal{I}} \sin(n\phi) \right] \end{aligned}$$

 \dot{k}

- beam charge C_B
- here: unpolarized target

Fourier expansion for ϕ :

$$\begin{aligned} |\mathcal{T}_{\mathsf{BH}}|^2 &= \frac{\mathcal{K}_{\mathsf{BH}}}{\mathcal{P}_1(\phi)\mathcal{P}_2(\phi)} \sum_{n=0}^2 c_n^{\mathsf{BH}} \cos(n\phi) \\ |\mathcal{T}_{\mathsf{DVCS}}|^2 &= \mathcal{K}_{\mathsf{DVCS}} \left[\sum_{n=0}^2 c_n^{\mathsf{DVCS}} \cos(n\phi) + \mathcal{P}_{\mathsf{B}} \sum_{n=1}^1 s_n^{\mathsf{DVCS}} \sin(n\phi) \right] \\ \mathcal{I} &= \frac{C_{\mathsf{B}}\mathcal{K}_{\mathcal{I}}}{\mathcal{P}_1(\phi)\mathcal{P}_2(\phi)} \left[\sum_{n=0}^3 c_n^{\mathcal{I}} \cos(n\phi) + \mathcal{P}_{\mathsf{B}} \sum_{n=1}^2 s_n^{\mathcal{I}} \sin(n\phi) \right] \end{aligned}$$

bilinear ("DVCS") or linear in GPDs

again a sine modulation ...

- exploit HERA beam-helicity reversal for beam-spin asymmetry
- Bethe Heitler has no beam-spin asymmetry -> DVCS!!!

$$A_{LU}(\phi) = \frac{1}{\langle |P_l| \rangle} \frac{N^+(\phi) - N^-(\phi)}{N^+(\phi) + N^-(\phi)}$$

again a sine modulation ...

- exploit HERA beam-helicity reversal for beam-spin asymmetry
- Bethe Heitler has no beam-spin asymmetry -> DVCS!!!

CLAS, PRL 87 (2001) 182002

still keeping "first" in the title on arXiv :-)

SPIN 2018 - Ferrara - Sept. 12th, 2018

gunar.schnell @ desy.de

... beam-charge asymmetry ...

ullet sensitive to the real part of the Compton form factor ${\cal H}$

... a wealth of azimuthal amplitudes

Beam-charge asymmetry: GPD H Beam-helicity asymmetry: GPD H PRD 75 (2007) 011103 NPB 829 (2010) 1 JHEP 11 (2009) 083 PRC 81 (2010) 035202 PRL 87 (2001) 182001 JHEP 07 (2012) 032

Transverse target spin asymmetries: GPD E from proton target JHEP 06 (2008

JHEP 06 (2008) 066 PLB 704 (2011) 15

Longitudinal target spin asymmetry: GPD H Double-spin asymmetry: GPD H

exclusivity: missing-mass technique

exclusivity: missing-mass technique

exclusivity: missing-mass technique

59

gunar.schnell @ desy.de

SPIN 2018 - Ferrara - Sept. 12th, 2018

DVCS with recoil detector

KM10 - K. Kumericki and D. Müller, Nucl. Phys. B 841 (2010) 1 VGG - M. Vanderhaeghen et al., Phys. Rev. D 60 (1999) 094017 gunar.schnell @ desy.de 60

SPIN 2018 - Ferrara - Sept. 12th, 2018

DVCS at HERMES

recoil detector: basically no contamination -> clean interpretation

indication of larger amplitudes for pure sample

(-> assoc. DVCS in "traditional" analysis mainly dilution, supported by HERMES [JHEP 01 (2014) 077])

GPDs - a nice success story!

last but not least

unpolarized semi-inclusive DIS

- HERMES collected large data sets on hadron multiplicities
- no FOM boost because of dilution factor
- still benefit from large range of pure nuclear gas targets
- success story: dedicated high-density end-of-fill running

nuclei: a hadronization laboratory

- partons in nuclear medium:
 - PDFs modified
 (e.g, EMC effect)
 - gluon radiation and re-scattering effects
- (pre)hadron in nuclear medium:
 - re-scattering
 - absorption
- observable: multiplicity ratios

$$\mathbf{R_A^h}\equiv rac{\mathcal{M}_A^h}{\mathcal{M}_d^h}$$

gunar.schnell @ desy.de

nuclear attenuation

strong mass dependence: attenuation mainly increases with A

Invaluable data set for hadronization models and nFFs fits
gunar.schnell @ desy.de
66
SPIN 2018 - Ferrara - Sept. 12th, 2018

June 30th, 2007 (around midnight)

June 30th, 2007 (around midnight)

• data taking finished in 2007, but work continued ...

- data taking finished in 2007, but work continued ...
 - final surveys, calibrations, data production

- data taking finished in 2007, but work continued ...
 - final surveys, calibrations, data production
 - joined "Data Preservation in HEP" (DPHEP) initiative in 2009
 -> "finished" work on HERMES (& HERA) archive in 2016
 --> lesson learnt: it's never too early to start preservation!!!

- data taking finished in 2007, but work continued ...
 - final surveys, calibrations, data production
 - joined "Data Preservation in HEP" (DPHEP) initiative in 2009
 -> "finished" work on HERMES (& HERA) archive in 2016
 --> lesson learnt: it's never too early to start preservation!!!
 - still many analysis and publications:

gunar.schnell @ desy.de

SPIN 2018 - Ferrara - Sept. 12th, 2018

HERMES summary

- it took quite some effort to convince a HEP lab to host a bunch of nuclear physicists ... it was quite worth it!
- employed many novel techniques, e.g.
 - self-polarized lepton beam + spin rotators
 - polarized gas target with storage cell internal to lepton ring
 -> high polarization without dilution
 - dual-radiator RICH; recoil detector ...
- plenty surprises and pioneering measurements
 - too many to cover them all here
- 80 papers / some 8700 citations / 3rd most cited HERA paper

• numerous PhDs that went on to other experiments (and elsewhere)

gunar.schnell @ desy.de

HERMES summary

- it took quite some effort to convince a HEP lab to host a bunch of nuclear physicists ... it was quite worth it!
- employed many
 - self-polarize
 - polarized gas -> high polari
 - dual-radiator
- plenty surprise
 - too many to
- 80 papers / sor
- numerous PhDs

epton ring

RA paper

ind elsewhere)

backup slides

HERMES detector (2006/07)

- All particles in final state detected \rightarrow 4 constraints from energy-momentum conservation

- Selection of pure BH/DVCS ($ep \rightarrow ep \gamma$) with high efficiency (~83%)
- Allows to suppress background from associated and semi-inclusive processes to a negligible level (<0.2%) gunar.schnell @ desy.de SPIN 2018 - Ferrara - Sept. 12th, 2018

Results on A2 and xg2

consistent with (sparse) world data

Results on A₂ and xg₂

gunar.schnell @ desy.de

1-hadron production ($ep \rightarrow ehX$)

$$d\sigma = d\sigma_{UU}^{0} + \cos 2\phi \, d\sigma_{UU}^{1} + \frac{1}{Q} \cos \phi \, d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q} \sin \phi \, d\sigma_{LU}^{3}$$

$$+ S_{L} \left\{ \sin 2\phi \, d\sigma_{UL}^{4} + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^{5} + \lambda_{e} \left[d\sigma_{LL}^{6} + \frac{1}{Q} \cos \phi \, d\sigma_{LL}^{7} \right] \right\}$$

$$+ S_{T} \left\{ \sin(\phi - \phi_{S}) \, d\sigma_{UT}^{8} + \sin(\phi + \phi_{S}) \, d\sigma_{UT}^{9} + \sin(3\phi - \phi_{S}) \, d\sigma_{UT}^{10} \right.$$

$$+ \frac{1}{Q} \left(\sin(2\phi - \phi_{S}) \, d\sigma_{UT}^{11} + \sin \phi_{S} \, d\sigma_{UT}^{12} \right)$$
Seam Target
$$+ \lambda_{e} \left[\cos(\phi - \phi_{S}) \, d\sigma_{LT}^{13} + \frac{1}{Q} \left(\cos \phi_{S} \, d\sigma_{LT}^{14} + \cos(2\phi - \phi_{S}) \, d\sigma_{LT}^{15} \right) \right]$$

gunar.schnell @ de.

Beam

Mulders and Tangermann, Nucl. Phys. B 461 (1996) 197 Boer and Mulders, Phys. Rev. D 57 (1998) 5780 Bacchetta et al., Phys. Lett. B 595 (2004) 309 Bacchetta et al., JHEP 0702 (2007) 093 "Trento Conventions", Phys. Rev. D 70 (2004) 117504 SPIN 2018 - Ferrara - Sept. 12th, 2018 75

1-hadron production ($ep \rightarrow ehX$)

$$d\sigma = \left(d\sigma_{UU}^{0} + \cos 2\phi \ d\sigma_{UU}^{1} + \frac{1}{Q} \cos \phi \ d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q} \sin \phi \ d\sigma_{LU}^{3} \right)$$

$$+S_{L} \left\{ \sin 2\phi \ d\sigma_{UL}^{4} + \frac{1}{Q} \sin \phi \ d\sigma_{UL}^{5} + \lambda_{e} \left[d\sigma_{LL}^{6} + \frac{1}{Q} \cos \phi \ d\sigma_{LL}^{7} \right] \right\}$$

$$+S_{T} \left\{ \sin(\phi - \phi_{S}) \ d\sigma_{UT}^{8} + \sin(\phi + \phi_{S}) \ d\sigma_{UT}^{9} + \sin(3\phi - \phi_{S}) \ d\sigma_{UT}^{10} \right\}$$

$$+ \frac{1}{Q} \left(\sin(2\phi - \phi_{S}) \ d\sigma_{UT}^{11} + \sin \phi_{S} \ d\sigma_{UT}^{12} \right)$$

$$+ \lambda_{e} \left[\cos(\phi - \phi_{S}) \ d\sigma_{LT}^{13} \right] + \frac{1}{Q} \left(\cos \phi_{S} \ d\sigma_{LT}^{14} + \cos(2\phi - \phi_{S}) \ d\sigma_{LT}^{15} \right) \right] \right]$$
Mulders and Tangermann, Nucl. Phys. B 461 (1996) 197
Boer and Mulders, Phys. Rev. D 57 (1998) 5780
Bacchetta et al., Phys. Lett. B 595 (2004) 309
Bacchetta et al., JHEP 0702 (2007) 093
"Trento Conventions", Phys. Rev. D 70 (2004) 117504
Terms 25 (2004) 117504

gunar.schnell @ desy.de

SPIN 2018 - Ferrara - Sept. 12th, 2018

the kaon Sivers amplitudes

[A. Airapetian et al., arXiv:0906.3918]

SPIN 2018 - Ferrara - Sept. 12th, 2018

Semi-inclusive hadrons

[Airapetian et al., Phys. Lett. B 728, 183-190 (2014)]

Semi-inclusive hadrons

[Airapetian et al., Phys. Lett. B 728, 183-190 (2014)]

Inclusive hadron electro-production

 \vec{S}_{N}

 $\rightarrow ehX$

 ϕ_h

 $ec{p_{ ext{h}}}$

 $ep^{\uparrow} \ \phi_S$

 \vec{S}_{N}

lepton beam going into the page

gunar.schnell @ desy.de

"Sivers angle"

SPIN 2018 - Ferrara - Sept. 12th, 2018

 $ec{p_{ ext{h}}}$

Inclusive hadron electro-production

- scattered lepton undetected
 lepton kinematics unknown
- dominated by quasi-real photo-production (low Q²)
 hadronic component of photon relevant?
- cross section proportional to $S_N (k \times p_h) \sim \frac{\sin\psi}{2}$

$$A_{\rm UT}(P_T, x_F, \psi) = \sum_{\substack{A_{\rm UT}^{\sin \psi}(P_T, x_F) \sin \psi}} A_{\rm UT}^{\sin \psi}(P_T, x_F) \sin \psi$$

$$ep^{\uparrow} \to hX$$

$$\frac{\int_{\pi}^{2\pi} \mathrm{d}\psi \,\sigma_{\mathrm{UT}} \sin\psi - \int_{0}^{\pi} \mathrm{d}\psi \,\sigma_{\mathrm{UT}} \sin\psi}{\int_{0}^{2\pi} \mathrm{d}\psi \,\sigma_{\mathrm{UU}}}$$
$$-\frac{2}{-A_{\mathrm{UT}}^{\sin\psi}}$$

 $A_{\rm N}$

1D dependences of A_{UT} sinv amplitude

gunar.schnell @ desy.de

1D dependences of A_{UT} siny amplitude

- clear left-right asymmetries for pions and positive kaons
- increasing with x_F (as in pp)

- initially increasing with P_T with a fall-off at larger P_T
- XF and PT correlated Iook at 2D dependences

gunar.schnell @ desy.de

Inclusive hadrons: 2D dependences

82

Asymmetries of subprocesses

multiplicities @ HERMES

- extensive data set on pure proton and deuteron targets for identified charged mesons <u>http://www-hermes.desy.de/</u> <u>multiplicities</u>
- extracted in a multidimensional unfolding procedure
- fair agreement between DSS and positive mesons
- poor description of negative mesons
- p/d differences due to flavor dependence of fragmentation

transverse momentum dependence

- multi-dimensional analysis allows going beyond collinear factorization
- flavor information on transverse momenta via target variation and hadron ID

