

30 years of hermes

exploiting self-polarization in storage rings at HERA
Gunar.Schnell @ desy.de

my (rather) personal review of hermes

Gunar.Schnell @ desy.de

my (rather) personal review of hermes

 special thanks to R. Milner \& K. RithGunar.Schnell @ desy.de

HERA measurement of spin
[C. Papanicolas (1989)]

spin can be tricky

"You think you understand something? Now add spin ..." [Jaffe]

spin can be tricky

"You think you understand something? Now add spin ..." [Jaffe]

- it could have been so simple:

$$
p^{\uparrow}=\sqrt{\frac{2}{3}}\left(u^{\uparrow} u^{\uparrow}\right) d^{\downarrow}+\sqrt{\frac{1}{3}}\left(u^{\uparrow} u^{\downarrow}\right) d^{\uparrow}
$$

spin can be tricky

"You think you understand something? Now add spin ..." [Jaffe]

- it could have been so simple:

$$
p^{\uparrow}=\sqrt{\frac{2}{3}}\left(u^{\uparrow} u^{\uparrow}\right) d^{\downarrow}+\sqrt{\frac{1}{3}}\left(u^{\uparrow} u^{\downarrow}\right) d^{\uparrow}
$$

- constituent quark model ($\Delta q=q^{\dagger}-q^{\downarrow}$... helicity contribution):

$$
\begin{aligned}
\Delta u & =4 / 3 \\
\Delta d & =-1 / 3
\end{aligned}
$$

\Rightarrow all the proton spin coming from up and down quarks

the (original) quest: proton spin

 our understanding of the proton changed dramatically with the finding of EMC that the proton spin hardly comes from spin of quarks

$$
\begin{aligned}
\frac{1}{2}= & \frac{1}{2} \Delta \Sigma \\
& +\Delta G \quad \text { quark spin } \\
& +L_{q}+L_{g} \Leftarrow \begin{array}{c}
\text { gluon spin } \\
\text { orbital angular } \\
\text { momentum }
\end{array}
\end{aligned}
$$

[Jaffe \& Manohar (1990)]

Deep-Inelastic Scattering probing the structure of the nucleon

spin asymmetries

- exploit spin correlations (e.g., virtual photon couples only to spin-1/2 quarks with opposite spin)
- cross-section difference provides access to quark polarization
- in praxis form asymmetries to cancel systematics: $\frac{\sigma_{\frac{3}{2}}-\sigma_{\frac{1}{2}}}{\sigma_{\frac{3}{2}}+\sigma_{\frac{1}{2}}}$

experimental prerequisites

- polarized lepton beams

experimental prerequisites

- polarized lepton beams
- polarized targets

experimental prerequisites

- polarized lepton beams
- polarized targets
- large-acceptance spectrometer

experimental prerequisites

- polarized lepton beams
- polarized targets
- large-acceptance spectrometer
- good particle identification (PID)

experimental situation in the 1980s

- polarized beams
- polarized electron beam at SLAC
- polarized at source; high intensity
- tertiary polarized muon beam at NA of SPS at CERN
- highly polarized (weak meson decays); low intensity

experimental situation in the 1980s

- polarized beams
- polarized electron beam at SLAC
- polarized at source; high intensity
- tertiary polarized muon beam at NA of SPS at CERN
- highly polarized (weak meson decays); low intensity
- polarized targets
- solid (e.g. NH_{3}) targets -> high density, but large dilution

experimental situation in the 1980s

- polarized beams
- polarized electron beam at SLAC
- polarized at source; high intensity
- tertiary polarized muon beam at NA of SPS at CERN
- highly polarized (weak meson decays); low intensity
- polarized targets
- solid (e.g. NH_{3}) targets -> high density, but large dilution
- statistical precision: $\sim \frac{1}{f P_{B} P_{T}} \frac{1}{\sqrt{N}} \quad$ (f... dilution factor)
- solid targets $f \approx 0.2$-> directly scales uncertainties (as do $P_{B} \& P_{T}$)

new developments

self-polarized leptons in storage rings -> HERA

highly polarized gas targets

- why not combine for double-polarization experiment with excellent figure of merit?

new developments

self-polarized leptons in storage rings -> HERA
highly polarized gas targets

- why not combine for double-polarization experiment with excellent figure of merit?
- 1987: two groups with similar ideas
(North America ... R. Milner \& Europe ... K. Rith)
- heades to DESY to measure spin asymmetries at HERA
- two separate LOIs beginning of 1988

new developments

self-polarized leptons in storage rings -> HERA
highly polarized gas targets

- why not combine for double-polarization experiment with excellent figure of merit?
- 1987: two groups with similar ideas
(North America ... R. Milner \& Europe ... K. Rith)
- heades to DESY to measure spin asymmetries at HERA
- two separate LOIs beginning of 1988
- DESY management sympathetic, but ...
- common effort -> 12/1988 common collaboration 1990 proposal) and ...

... conditions for approval

- demonstration of high longitudinal electron beam polarization
- demonstration of transverse self-polarization of HERA $e^{ \pm}$
- successful spin rotation to obtain longitudinal polarization
- demonstration of high flux with high polarization from polarized sources ...
- ... and demonstration of storage-cell technique
- no compromises for HERA flagship colliders H1 and Zeus

beam polarization

- tiny asymmetry in spin-flip by emission of synchrotron radiation
-> build-up of self polarization
- degree of transverse polarization depends critically on machine energy and magnet alignment
- longitudinal polarization through (movable) spin rotators in front / behind experiment (installed winter 1993/94) -> both helicities

beam polarization

- tiny asymmetry in spin-flip by emission of synchrotron radiation
-> build-up of self polarization
- degree of transverse polarization depends critically on machine energy and magnet alignment
- longitudinal polarization through (movable) spin rotators in front / behind experiment (installed winter 1993/94) -> both helicities
- HERA polarization
- 11/1991: 8%... first demonstration of self-polarization at HERA
- 9/1992: 60\% ... polarization sufficient for HERMES
- 5/1994: 60\% longitudinal polarization

beam polarization

- tiny asymmetry in spin-flip by emission of synchrotron radiation
-> build-up of self polarization
- degree of transverse polarization depends critically on machine energy and magnet alignment
- longitudinal polarization through (movable) spin rotators in front / behind experiment (installed winter 1993/94) -> both helicities
- HERA polarization
- 11/1991: 8%... first demonstration of self-polarization at HERA
- 9/1992: 60\% ... polarization sufficient for HERMES
- 5/1994: 60\% longitudinal polarization
- two independent Compton polarimeters at East and West Hall

Polarimeter

Erste Messung von Polarisation der Elektronen

 in HERALetzte Woche wurde in HERA zum ersten Mal die Polarisation von Elektronen, di Ausrichtung ihrer "Spins", beobachtet. Im Bereich des geraden Abschnitts HERA West wurde dazu ein Laserstrahl auf die umlaufenden Elektronen gerichtet, und es wurden die an den Elektronen zurückgestreuten Photonen nachgewiesen. Der Bei einerStrahlenergie von $26,67 \mathrm{GeV}$ wurd aufdiese We und rechts polarisiert. der Elektronen von etwa 8\% gemessen. Durch die Veränd nigungsspannung in HERA konnte ihre Polarisation gezilund de Beschleuvariert werden Eine in 10 M V anit werden. Eine in 10MeV-Energieschritten durchgeführte Messung zeig Strukturen, die von Depolarisationsresonanzen herrühren

Elektronen besitzen die Eigenschaft kleiner Kreisel, sie haben einen "Eigendrehimpuls" oder"Spin". In der Teilchenphysikgibtes einige Fragestellungen, die nur mit solchen "polarisierten" Elektronen untersucht werden können.

Spin Rotator
(11) 13

HERMES gas targets

 novel pure gas target:- internal to HERA lepton ring
- longitudinally polarized: ${ }^{1} \mathrm{H},{ }^{2} \mathrm{H},{ }^{3} \mathrm{He}$
- transversely polarized: ${ }^{1} \mathrm{H}$
- rapid spin reversal every 60...180s To Spectromeler

- unpolarized $\left({ }^{1} \mathrm{H} . . . \mathrm{Xe}\right)$

... conditions for approval

- demonstration of high longitudinal electron beam polarization
- demonstration of transverse self polarization of HERA $e^{ \pm}$
- successful spin rotation to obtain longitudinal polarization
- demonstration of high flux with high polarization from polarized sources ...
- ... and demonstration of storage-cell technique
- no compromises for HERA flagship colliders H 1 and Zeus

... conditions for approval

- demonstration of high longitudinal electron beano
- demonstration of transverse self polari ~R RA e - successful spin rotation to obtain \& polarization
- demonstration of high polarized sources

... conditions for approval

- demonstration of high longitudinal electron beang
- demonstration of transverse self polary ing KA e $e^{ \pm}$ - successful spin rotation to obtain pollarization
- demonstration of
polarized sources

HERMES (1998-2005) schematically

HERMES (1998-2005) schematically

two (mirror-symmetric) halves Particle ID detectors allow for

- lepton/hadron separation
- RICH: pion/kaon/proton discrimination $2 \mathrm{GeV}<\mathrm{p}<15 \mathrm{GeV}$

Particle identification

bread \& butter physics

inclusive DIS (one-photon exchange)

Spin Plane

$$
\frac{\mathrm{d}^{2} \sigma(s, S)}{\mathrm{d} x \mathrm{~d} Q^{2}}=\frac{2 \pi \alpha^{2} y^{2}}{Q^{6}} \mathbf{L}_{\mu \nu}(s) \mathbf{W}^{\mu \nu}(S)
$$

inclusive DIS (one-photon exchange)

Spin Plane
$\frac{\mathrm{d}^{2} \sigma(s, S)}{\mathrm{d} x \mathrm{~d} Q^{2}}=\frac{2 \pi \alpha^{2}}{Q^{6}}$
Lepton Tensor
Hadron Tensor parametrized in terms of
 Structure Functions

inclusive DIS (one-photon exchange)

Spin Plane

Hadron Tensor parametrized in terms of

Scattering Plane Structure Functions
$\frac{d^{3} \sigma}{d x d y d \phi}$

polarized structure function $g_{1}(x)$

Measurement of the neutron spin structure function g_{1}^{n} with a polarized ${ }^{3} \mathrm{He}$ internal target

HERMES Collaboration
polarized structure function $g_{1}(x)$

Physics Letters B 404 (1997) 383-389
PHYSICS LETTERS B

The hermes Soccer Team

Top row: Bruce Bray, Kalen Martens, Richard Milner, Marc Beckmann, Mike Vetterli, Wolfgang Lorenzon, Eric Belz Bottom row: Ralf Kaiser, Johan Blouw, Greg Rakness. Michael Spengos, Armand Simon, Gunnar Schnell, Erhard Steffens

HERMES vs. SLAC E154: 3-2
gunar.schnell @arsy.ue
(Caltech, May 1996)

atomic-beam source: polarized p \& d
 BRP

atomic-beam source: polarized p \& d

Years	Target	DIS (Milion)	Polarization	
$1996-1997$	$H_{I I}$	3.5	0.851 ± 0.033	
$1998-2000$	$D_{\\|}$	10.2	0.845 ± 0.028	
$2001-2005$	H_{\perp}	~ 6	0.74 ± 0.06	

polarized structure function $g_{1}(x)$

polarized structure function $g_{1}(x)$

- unfolded for radiative and detector smearing
- unknown systematic correlations transformed into known statistical correlations
- uncertainties plotted only reflect diagonal elements of covariance -> "underestimates" statistical precision

$\Gamma_{1} \ldots$ integral of $g_{1}(x)$

$\Gamma_{1} \ldots$ integral of $g_{1}(x)$

Saturation

I"IN close to full integral?

$\Gamma_{1} \ldots$ integral of $g_{1}(x)$

Saturation

"IIm close to full integral?

* n

$$
\because d
$$

$$
\Delta \Sigma \stackrel{\overline{\mathrm{MS}}}{=} 0.330 \pm 0.011_{\text {theory }} \pm 0.025_{\exp }
$$

most precise single-exp. result: only $1 / 3$ of nucleon spin from quarks

Can we do more than "just" inclusive g1?

Can we do more than

"just" inclusive g1?

Can we do more than

 "just" inclusive g??(V) unpolarized DIS: F2 \& $\sigma^{\mathrm{d}} / \sigma^{\text {p }}$
(I) tensor structure function b_{1}

Can we do more than "just" inclusive g1?

(V) unpolarized DIS: F2 \& σ^{d} / σ^{p}
(]) tensor structure function b_{1}
[] transverse: 92

Can we do more than

 "just" inclusive g??- unpolarized DIS: F2 \& $\sigma^{\mathrm{d}} / \sigma^{p}$
(I) tensor structure function b_{1}
(V) transverse: 92
[-] 2-photon exchange in incl. DIS

Can we do more than "just" inclusive g1?

(V) unpolarized DIS: F2 \& $\sigma^{\mathrm{d}} / \sigma^{\text {p }}$
(I) tensor structure function b_{1}
(I) transverse: 92
[] 2-photon exchange in incl. DIS
回…

semi-inclusive DIS

semi-inclusive DIS asymmetries

semi-inclusive DIS asymmetries

helicity density - flavor separation

- first 5-flavor extraction of Δq
- no hint for sea quark pol's -> in contrast to incl. DIS

helicity density - flavor separation

- first 5-flavor extraction of Δq
- no hint for sea quark pol's -> in contrast to incl. DIS
- no flavor asymmetry of sea

helicity density - valence quarks

- charge-difference double-spin asymmetries

helicity density - valence quarks

- charge-difference double-spin asymmetries
- use charge-conjugation symmetry to extract, at LO(!), valence distributions

$$
\begin{aligned}
& A_{1 p}^{h^{+}-h^{-}} \cong \frac{4 \Delta u_{v}-\Delta d_{v}}{4 u_{v}-d_{v}} \\
& A_{1 d}^{h^{+}-h^{-}} \cong \frac{\Delta u_{v}+\Delta d_{v}}{u_{v}+d_{v}}
\end{aligned}
$$

helicity density - valence quarks

$$
\left.A_{1}^{h^{+}-h^{-}}=\frac{\left(d \sigma_{h^{+}}^{\stackrel{\rightharpoonup}{\rightleftarrows}}-d \sigma_{h^{-}}^{\stackrel{\rightharpoonup}{\rightleftarrows}}\right)-\left(d \sigma_{h^{+}}^{\stackrel{\rightharpoonup}{\rightleftarrows}}-d \sigma_{h^{-}}^{\stackrel{\rightharpoonup}{\rightleftarrows}}\right)}{\left(d \sigma_{h^{+}}^{\stackrel{\rightharpoonup}{\rightleftarrows}}-d \sigma_{h^{-}}^{\stackrel{\rightharpoonup}{\rightleftarrows}}\right)+\left(d \sigma_{h^{+}}^{\stackrel{\rightharpoonup}{\rightleftarrows}}-d \sigma_{h^{-}}^{\Rightarrow}\right.}\right)
$$

... going 3D

Evidence for a Single-Spin Azimuthal Asymmetry in Semi-inclusive Pion Electroproduction

Evidence for a Single-Spin Azimuthal Asymmetry in Semi-inclusive Pion Electroproduction

Evidence for a Single-Spin Azimuthal Asymmetry in Semi-inclusive Pion Electroproduction

... remembering puzzling asymmetries

... remembering puzzling asymmetries

large left-right asymmetries that persist even to RHIC energies

what's the origin of these SSA?

- fragmentation effect?

[J.C. Collins, NPB 396 (1993) 161]
- correlating transverse quark spin with transverse momentum

what's the origin of these SSA?

- fragmentation effect?

[J.C. Collins, NPB 396 (1993) 161]
- correlating transverse quark spin with transverse momentum
- quark-distribution effect?

[D.W. Sivers, PRD 41 (1990) 83]
- correlating transverse quark momentum with transverse spin of nucleon

SPIN 2018 - Ferrara - Sept. 12 th, 2018

a short history of naive time reversal

- 1978: Kane, Pumplin \& Repko: transverse-spin asymmetries suppressed in PQCD
- 1990: Sivers introduces transverse spin-momentum correlation for quark distributions
- 1993: Collins dislikes (\& disproves) idea, introduces similar correlation in fragmentation
- 1996: Mulders\&Tangerman: compendium of azimuthal asymmetries
- 1998: Boer\&Mulders: naive T-odd observables \rightarrow BM distrib.
- 2002: Brodsky, Hwang \& Schmidt: resurrection of Sivers idea

Spin-momentum structure of the nucleon

$$
\begin{aligned}
\frac{1}{2} \operatorname{Tr}\left[\left(\gamma^{+}+\lambda \gamma^{+} \gamma_{5}\right) \Phi\right]= & \frac{1}{2}\left[f_{1}+S^{i} \epsilon^{i j} k^{j} \frac{1}{m} f_{1 T}^{\perp}+\lambda \Lambda g_{1}+\lambda S^{i} k^{i} \frac{1}{m} g_{1 T}\right] \\
\frac{1}{2} \operatorname{Tr}\left[\left(\gamma^{+}-s^{j} i \sigma^{+j} \gamma_{5}\right) \Phi\right]= & \frac{1}{2}\left[f_{1}+S^{i} \epsilon^{i j} k^{j} \frac{1}{m} f_{1 T}^{\perp}+s^{i} \epsilon^{i j} k^{j} \frac{1}{m} h_{1}^{\perp}+s^{i} S^{i} h_{1}\right. \\
& \left.+s^{i}\left(2 k^{i} k^{j}-\boldsymbol{k}^{2} \delta^{i j}\right) S^{j} \frac{1}{2 m^{2}} h_{1 T}^{\perp}+\Lambda s^{i} k^{i} \frac{1}{m} h_{1 L}^{\perp}\right]
\end{aligned}
$$

- each TMD describes a particular spin-momentum correlation
- functions in black survive integration over transverse momentum
- functions in green box are chiral-odd
- functions in red are naive T-odd

Spin-momentum structure of the nucleon

$$
\begin{aligned}
\frac{1}{2} \operatorname{Tr}\left[\left(\gamma^{+}+\lambda \gamma^{+} \gamma_{5}\right) \Phi\right]= & \frac{1}{2}\left[f_{1}+S^{i} \epsilon^{i j} k^{j} \frac{1}{m} f_{1 T}^{\perp}+\lambda \Lambda g_{1}+\lambda S^{i} k^{i} \frac{1}{m} g_{1 T}\right] \\
\frac{1}{2} \operatorname{Tr}\left[\left(\gamma^{+}-s^{j} i \sigma^{+j} \gamma_{5}\right) \Phi\right]= & \frac{1}{2}\left[f_{1}+S^{i} \epsilon^{i j} k^{j} \frac{1}{m} f_{1 T}^{\perp}+s^{i} \epsilon^{i j} k^{j} \frac{1}{m} h_{1}^{\perp}+s^{i} S^{i} h_{1}\right. \\
& \left.+s^{i}\left(2 k^{i} k^{j}-\boldsymbol{k}^{2} \delta^{i j}\right) S^{j} \frac{1}{2 m^{2}} h_{1 T}^{\perp}+\Lambda s^{i} k^{i} \frac{1}{m} h_{1 L}^{\perp}\right]
\end{aligned}
$$

Sivers

transversity

- each TMD describes a particular

Boer-Mulders im correlation

- functions in black survive integration over transverse momentum
- fiunntinna in green box are chiral-odd pretzelosity red are naive T-odd

the "trouble" with transversity

chiral-odd transversity involves quark helicity flip

$$
f_{1}^{\mathrm{q}}=\circlearrowleft g_{1}^{\mathrm{q}}=\circlearrowleft \rightarrow-\leftrightarrow \rightarrow h_{1}^{\mathrm{q}}=\hat{\varrho}-\hat{\uparrow}
$$

the "trouble" with transversity

 chiral-odd transversity involves quark helicity flip$$
f_{1}^{\mathrm{q}}=\Theta g_{1}^{\mathrm{q}}=\Theta \rightarrow-\circlearrowleft \rightarrow h_{1}^{\mathrm{q}}=\hat{\varrho}-\varrho
$$

the "trouble" with transversity

 chiral-odd transversity involves quark helicity flip

the "trouble" with transversity

 chiral-odd transversity involves quark helicity flip
need to couple to chiral-odd fragmentation function:

- transverse spin transfer (polarized final-state hadron)
- 2-hadron fragmentation
- Collins fragmentation

probing TMDs in semi-inclusive DIS

quark pol.

in SIDIS*) couple PDFs to:

*) semi-inclusive DIS with unpolarized final state

probing TMDs in semi-inclusive DIS

*) semi-inclusive DIS with unpolarized final state

probing TMDs in semi-inclusive DIS

*) semi-inclusive DIS with unpolarized final state

probing TMDs in semi-inclusive DIS

gives rise to characteristic azimuthal dependences
*) semi-inclusive DIS with unpolarized final state

HERMES: let's go transverse!

- transversely polarized protons
- $\mathrm{P}_{\mathrm{T}} \approx 74 \%$
- data taking: 2002-2005
- smaller beam polarization during HERA II
-> impact on double-spin asymmetries
transverse target magnet

HERMES: let's go transverse!

- transversely polarized protons
- $P_{T} \approx 74 \%$
- data taking: 2002-2005
- smaller beam polarization during HERA II
-> impact on double-spin asymmetries
transverse target magnet

disclaimer: originally planned mainly to measure g_{2}

transversely polarized quarks?

transversely polarized quarks?

2005: First evidence from HERMES SIDIS on proton

Non-zero transversity
Non-zero Collins function

transversely polarized quarks?

- transverse polarization of quarks leads to large effects!

2005: First evidence from HERMES SIDIS on proton

Non-zero transversity
Non-zero Collins function

transversely polarized quarks?

- transverse polarization of quarks leads to large effects!
- opposite in sign for charged pions

2005: First evidence from HERMES SIDIS on proton

Non-zero transversity
Non-zero Collins function

transversely polarized quarks?

- transverse polarization of quarks leads to large effects!
- opposite in sign for charged pions
- disfavored Collins FF large and opposite in sign to favored one

- leads to various cancellations in SSA observables

transversely polarized quarks?

- transverse polarization of quarks leads to large effects!
- opposite in sign for charged pions
- disfavored Collins FF large and opposite in sign to favored one

- leads to various cancellations in SSA observables

```
transversity
```



``` (2-hadron FF)
\[
A_{U T} \sim \sin \left(\phi_{R \perp}+\phi_{S}\right) \sin \theta h_{1} H_{1}^{\varangle}
\]
```


only relative transverse momentum needed -> DGLAP
 (2-hadron FF)
[A. Airapetian et al., JHEP 06 (2008) 017]

Was Collins then right about Sivers?

Was Collins then right about Sivers?

[Phys. Rev. Lett. 94 (2005) 012002]

- no! -> first evidence of naive-T-odd Sivers function

Was Collins then right about Sivers?

- no! -> first evidence of naive-T-odd Sivers function
- however, Sivers predicted wrong sign

Was Collins then right about Sivers?

- no! -> first evidence of naive-T-odd Sivers function
- however, Sivers predicted wrong sign
- better: chromodynamic-lensing picture [M. Burkardt]

[M. Burkardt, PRD66 (2002) 014005]

Was Collins then right about Sivers?

[M. Burkardt, PRD66 (2002) 014005]
and what about the original Aul?

Collins

and what about the original Aul?

and what about the original Aus?

I Aus significantly positive for π^{+} ■ clear evidence of twist-3 effect

... yet another sine modulations

- longitudinally polarized beam \& unpolarized target \Rightarrow subleading-†wis \dagger
[Bacchetta et al., Phys. Lett. B 595 (2004) 309]

$$
\begin{array}{r}
\langle\sin \phi\rangle_{L U} \propto \lambda_{e} \frac{M}{Q} \mathcal{I}\left[x e(x) H_{1}^{\perp}(z)-\frac{M_{h}}{z M} h_{1}^{\perp}(x) E(z)\right. \\
\\
+\frac{M_{h}}{z M} f_{1}(x) G^{\perp}(z)-x g^{\perp}(x) D_{1}(z)
\end{array}
$$

quark-mass suppressed $\left.+\frac{m_{q}}{M} h_{1}^{\perp}(x) D_{1}(z)-\frac{m_{q}}{M} f_{1}(x) H_{1}^{\perp}(z)\right]$

... yet another sine modulations

- longitudinally polarized beam \& unpolarized target \Rightarrow subleading-†wis \dagger
[Bacchetta et al., Phys. Lett. B 595 (2004) 309]

$$
\begin{array}{r}
\langle\sin \phi\rangle_{L U} \propto \lambda_{e} \frac{M}{Q} \mathcal{I}\left[x e(x) H_{1}^{\perp}(z)-\frac{M_{h}}{z M} h_{1}^{\perp}(x) E(z)\right. \\
\left.+\frac{M_{h}}{z M} f_{1}(x) G^{\perp}(z)-x g^{\perp}(x) D_{1}(z)\right]
\end{array}
$$

many terms contributing - difficult to separate

... yet another sine modulations

- longitudinally polarized beam \& unpolarized target \Rightarrow subleading-†wist

- opposite behavior at HERMES/CLAS of negative pions in z projection due to different x-range probed

exclusive reactions

a complementary 3D picture of the nucleon

form factors:
transverse distribution of partons

nucleon tomography
correlated info on transverse position and longitudinal momentum

GPDs in exclusive reactions

x : average longitudinal momentum fraction of active quark (usually not observed \& $x \neq x_{B}$)
ξ : half the longitudinal momentum change $\approx x_{B} /\left(2-x_{B}\right)$

GPDs in exclusive reactions

	no quark helicity flip	quark helicity flip
no nucleon helicity flip	H	$\widetilde{(}$
nucleon helicity flip	E	\widetilde{E}

(+ 4 more chiral-odd functions)

GPDs in exclusive reactions

\square

$$
\begin{array}{ll}
\int \mathrm{d} x H^{q}(x, \xi, t)=F_{1}^{q}(t) & H^{q}(x, \xi=0, t=0)=q(x) \\
\int \mathrm{d} \times E^{q}(x, \xi, t)=F_{2}^{q}(t) & \widetilde{H}^{q}(x, \xi=0, t=0)=\Delta q(x)
\end{array}
$$

	no quark helicity flip	quark helicity flip
no nucleon helicity flip	H	\widetilde{H}
nucleon helicity flip	E	\widetilde{E}

GPDs in exclusive reactions

$\sqrt{\square}$

$$
\begin{array}{ll}
\int \mathrm{d} x H^{q}(x, \xi, t)=F_{1}^{q}(t) & H^{q}(x, \xi=0, t=0)=q(x) \\
\int \mathrm{d} x E^{q}(x, \xi, t)=F_{2}^{q}(t) & \widetilde{H}^{q}(x, \xi=0, t=0)=\Delta q(x)
\end{array}
$$

	no quark helicity flip	quark helicity flip
no nucleon helicity flip	H	\widetilde{H}
nucleon helicity flip	E	\widetilde{E}

(+ 4 more chiral-odd functions)

GPDs in exclusive reactions

GPDs can be accessed through measurements of hard exclusive lepton-nucleon scattering processes.

deeply virtual Compton scattering

GPDs in exclusive reactions

GPDs can be accessed through measurements of hard exclusive lepton-nucleon scattering processes.

deeply virtual Compton scattering

azimuthal dependences in DVCS/BH

- beam polarization P_{B}
- beam charge C_{B}
- here: unpolarized target

Fourier expansion for ϕ :

$$
\left|\mathcal{T}_{\mathrm{BH}}\right|^{2}=\frac{K_{\mathrm{BH}}}{\mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)} \sum_{n=0}^{2} c_{n}^{\mathrm{BH}} \cos (n \phi)
$$

calculable in QED
(using FF measurements)

azimuthal dependences in DVCS/BH

- beam polarization P_{B}
- beam charge C_{B}
- here: unpolarized target

Fourier expansion for ϕ :

$$
\begin{aligned}
\left|\mathcal{T}_{\mathrm{BH}}\right|^{2} & =\frac{K_{\mathrm{BH}}}{\mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)} \sum_{n=0}^{2} c_{n}^{\mathrm{BH}} \cos (n \phi) \\
\left|\mathcal{T}_{\mathrm{DVCS}}\right|^{2} & =K_{\mathrm{DVCS}}\left[\sum_{n=0}^{2} c_{n}^{\mathrm{DVCS}} \cos (n \phi)+P_{\mathrm{B}} \sum_{n=1}^{1} s_{n}^{\mathrm{DVCS}} \sin (n \phi)\right]
\end{aligned}
$$

azimuthal dependences in DVCS/BH

- beam polarization P_{B}
- beam charge C_{B}
- here: unpolarized target

Fourier expansion for ϕ :

$$
\begin{aligned}
\left|\mathcal{T}_{\mathrm{BH}}\right|^{2} & =\frac{K_{\mathrm{BH}}}{\mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)} \sum_{n=0}^{2} c_{n}^{\mathrm{BH}} \cos (n \phi) \\
\left|\mathcal{T}_{\mathrm{DVCS}}\right|^{2} & =K_{\mathrm{DVCS}}\left[\sum_{n=0}^{2} c_{n}^{\mathrm{DVCS}} \cos (n \phi)+P_{B} \sum_{n=1}^{1} s_{n}^{\mathrm{DVCS}} \sin (n \phi)\right] \\
\mathcal{I} & =\frac{C_{B} K_{\mathcal{I}}}{\mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)}\left[\sum_{n=0}^{3} c_{n}^{\mathcal{I}} \cos (n \phi)+P_{B} \sum_{n=1}^{2} s_{n}^{\mathcal{I}} \sin (n \phi)\right]
\end{aligned}
$$

azimuthal dependences in DVCS/BH

- beam polarization P_{B}
- beam charge C_{B}
- here: unpolarized target

Fourier expansion for ϕ :

$$
\begin{aligned}
&\left|\mathcal{T}_{\mathrm{BH}}\right|^{2}= \frac{K_{\mathrm{BH}}}{\mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)} \sum_{n=0}^{2} c_{n}^{\mathrm{BH}} \cos (n \phi) \\
&\left|\mathcal{T}_{\mathrm{DVCS}}\right|^{2}= K_{\mathrm{DVCS}}\left[\sum_{n=0}^{2} c_{n}^{\mathrm{DVCS}} \cos (n \phi)+P_{B} \sum_{n=1}^{1} s_{n}^{\mathrm{DVCS}} \sin (n \phi)\right] \\
& \mathcal{I}= \frac{C_{B} K_{\mathcal{I}}}{\mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)}\left[\sum_{n=0}^{3} c_{n}^{\mathcal{I}} \cos (n \phi)+\beta_{B} \sum_{n=1}^{2} s_{n}^{\mathcal{I}} \sin (n \phi)\right] \\
& \quad \text { bilinear ("DVCS") or linear in GPDs }
\end{aligned}
$$

again a sine modulation

- exploit HERA beam-helicity reversal for beam-spin asymmetry
- Bethe Heitler has no beam-spin asymmetry -> DVCS!!!

$$
A_{L U}(\phi)=\frac{1}{\langle | P_{l}| \rangle} \frac{N^{+}(\phi)-N^{-}(\phi)}{N^{+}(\phi)+N^{-}(\phi)}
$$

HERMES, PRL 87 (2001) 182001

again a sine modulation

- exploit HERA beam-helicity reversal for beam-spin asymmetry
- Bethe Heitler has no beam-spin asymmetry -> DVCS!!!

HERMES, PRL 87 (2001) 182001

CLAS, PRL 87 (2001) 182002
still keeping "first" in the title on arXiv :-)

... beam-charge asymmetry ...

- unique to HERA: $\frac{\mathrm{d} \sigma\left(e^{+}\right)-\mathrm{d} \sigma\left(e^{-}\right)}{\mathrm{d} \sigma\left(e^{+}\right)+\mathrm{d} \sigma\left(e^{-}\right)}$

- sensitive to the real part of the Compton form factor \mathcal{H}
a wealth of azimuthal amplitudes

exclusivity: missing-mass technique

exclusivity: missing-mass technique

exclusivity: missing-mass technique

HERMES detector (2006/07)

detection of recoiling proton

DVCS with recoil detector

[A. Airapetian et al., JHEP 10 (2012) 042]

good agreement with models

> KM10 - K. Kumericki and D. Müller, Nucl. Phys. B 841 (2010) 1
> VGG - M. Vanderhaeghen et al., Phys. Rev. D 60 (1999) 094017

GPDs - a nice success story!

Goloskokov, Kroll (2007)

GPDs - a nice success story!

Goloskokov, Kroll (2007)

62

last but not least

unpolarized semi-inclusive DIS

- HERMES collected large data sets on hadron multiplicities
- no FOM boost because of dilution factor
- still benefit from large range of pure nuclear gas targets
- success story: dedicated high-density end-of-fill running

Fri Jul 14 12:00 2000
HERA
Sun Jul 16 12:00 2000
p: $103.6[\mathrm{~mA}]-1.0[\mathrm{~h}] 920$ [GeV/c] e+: $41.0[\mathrm{~mA}] 6.9[\mathrm{~h}] 27.6$ [GeV/c]

luminosity run
64
Time [h]

nuclei: a hadronization laboratory

- observable: multiplicity ratios

$$
\mathbf{R}_{\mathrm{A}}^{\mathrm{h}} \equiv \frac{\mathcal{M}_{\mathrm{A}}^{\mathrm{h}}}{\mathcal{M}_{\mathrm{d}}^{\mathrm{h}}}
$$

nuclear attenuation

- strong mass dependence: attenuation mainly increases with A
- invaluable data set for hadronization models and nFFs fits

June 30th, 2007 (around midnight)

June 30th, 2007 (around midnight)

... this was not the end

- data taking finished in 2007, but work continued ...

... this was not the end

- data taking finished in 2007, but work continued ...
- final surveys, calibrations, data production

... this was not the end

- data taking finished in 2007, but work continued ...
- final surveys, calibrations, data production
- joined "Data Preservation in HEP" (DPHEP) initiative in 2009 \rightarrow "finished" work on HERMES (\& HERA) archive in 2016
--> lesson learnt: it's never too early to start preservation!!!

this was not the end

- data taking finished in 2007, but work continued ...
- final surveys, calibrations, data production
- joined "Data Preservation in HEP" (DPHEP) initiative in 2009 -> "finished" work on HERMES (\& HERA) archive in 2016 --> lesson learnt: it's never too early to start preservation!!!
- still many analysis and publications:

HERMES summary

- it took quite some effort to convince a HEP lab to host a bunch of nuclear physicists ... it was quite worth it!
- employed many novel techniques, e.g.
- self-polarized lepton beam + spin rotators
- polarized gas target with storage cell internal to lepton ring -> high polarization without dilution
- dual-radiator RICH; recoil detector ...
- plenty surprises and pioneering measurements
- too many to cover them all here
- 80 papers / some 8700 citations / $3^{\text {rd }}$ most cited HERA paper
- numerous PhDs that went on to other experiments (and elsewhere)

HERMES summary

- it took quite some effort to convince a HEP lab to host a bunch of nuclear physicists ... it was quite worth it!
- employed many
- self-polarize
- polarized ga: -> high polar
- dual-radiato
- plenty surprise
- too many to
- 80 papers / sor
- numerous PhDs

epton ring

RA paper
and elsewhere)

backup slides

HERMES detector (2006/07)

kinematic fitting

- All particles in final state detected $\rightarrow 4$ constraints from energy-momentum conservation
- Selection of pure BH/DVCS (ep \rightarrow ep γ) with high efficiency ($\sim 83 \%$)
- Allows to suppress background from associated and semi-inclusive processes to a negligible level (0.2%)

Results on A_{2} and $x g_{2}$

- consistent with (sparse) world data
- low beam polarization during HERA II \Leftrightarrow small f.o.m.

Results on A_{2} and $x g_{2}$

1-hadron production (ep \rightarrow ehX)

$$
\begin{gathered}
d \sigma=d \sigma_{U U}^{0}+\cos 2 \phi d \sigma_{U U}^{1}+\frac{1}{Q} \cos \phi d \sigma_{U U}^{2}+\lambda_{e} \frac{1}{Q} \sin \phi d \sigma_{L U}^{3} \\
+S_{L}\left\{\sin 2 \phi d \sigma_{U L}^{4}+\frac{1}{Q} \sin \phi d \sigma_{U L}^{5}+\lambda_{e}\left[d \sigma_{L L}^{6}+\frac{1}{Q} \cos \phi d \sigma_{L L}^{7}\right]\right\} \\
+S_{T}\left\{\sin \left(\phi-\phi_{S}\right) d \sigma_{U T}^{8}+\sin \left(\phi+\phi_{S}\right) d \sigma_{U T}^{9}+\sin \left(3 \phi-\phi_{S}\right) d \sigma_{U T}^{10}\right.
\end{gathered}
$$

$$
\left.\begin{array}{cc}
\overbrace{\text { By }}^{\text {Beam Target }} \\
\text { Polarization }
\end{array}+\lambda_{e}\left[\cos \left(\phi-\phi_{S}\right) d \sigma_{L T}^{13}+\frac{1}{Q}\left(\operatorname{sos} \phi_{S} d \sigma_{L T}^{14}+\cos \left(2 \phi-\phi_{S}\right) d \sigma_{L T}^{15}\right)\right]\right\}
$$

Mulders and Tangermann, Nucl. Phys. B 461 (1996) 197
Boer and Mulders, Phys. Rev. D 57 (1998) 5780
Bacchetta et al., Phys. Lett. B 595 (2004) 309
Bacchetta et al., JHEP 0702 (2007) 093
"Trento Conventions", Phys. Rev. D 70 (2004) 117504

1-hadron production (ep \rightarrow ehX)

$$
\begin{gathered}
d \sigma=d \sigma_{U U}^{0}+\cos 2 \phi d \sigma_{U U}^{1}+\frac{1}{Q} \cos \phi d \sigma_{U U}^{2}+\lambda_{e} \frac{1}{Q} \sin \phi d \sigma_{L U}^{3} \\
+S_{L}\left\{\sin 2 \phi d \sigma_{U L}^{4}+\frac{1}{Q} \sin \phi d \sigma_{U L}^{5}+\lambda_{e}\left[\sigma_{L L}+\frac{1}{Q} \cos \phi d \sigma_{L L}^{7}\right]\right\} \\
+S_{T}\left\{\sin \left(\phi-\phi_{S}\right) d \sigma_{U T}^{8}+\sin \left(\phi+\phi_{S}\right) d \sigma_{U T}^{9}+\sin \left(3 \phi-\phi_{S}\right) d \sigma_{U T}^{10}\right.
\end{gathered}
$$

Mulders and Tangermann, Nucl. Phys. B 461 (1996) 197 Boer and Mulders, Phys. Rev. D 57 (1998) 5780 Bacchetta et al., Phys. Lett. B 595 (2004) 309
Bacchetta et al., JHEP 0702 (2007) 093
"Trento Conventions", Phys. Rev. D 70 (2004) 117504

the pion Sivers amplitudes

$$
2\left\langle\sin \left(\phi-\phi_{S}\right)\right\rangle_{\mathrm{UT}}=-\frac{\sum_{q} e_{q}^{2} f_{1 \mathrm{I}}^{\perp, q}\left(x, p_{T}^{2}\right) \otimes D_{1}^{q}\left(z, K_{T}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1}^{q}(z)}
$$

gunar.schnell @ desy.de
π^{+}dominated by u-quark scattering:
$\simeq-\frac{f_{1 \mathrm{~T}}^{\perp, u}\left(x, p_{T}^{2}\right) \otimes D_{1}^{u \rightarrow \pi^{+}}\left(z, K_{T}^{2}\right)}{f_{1}^{u}(x) D_{1}^{u \rightarrow \pi^{+}}(z)}$

- u-quark Sivers DF < 0

F d-quark Sivers DF > 0 (cancelation for π^{-})
[A. Airapetian et al., arXiv:0906.3918] 76

the kaon Sivers amplitudes

[A. Airapetian et al., arXiv:0906.3918]

Semi-inclusive hadrons

[Airapetian et al., Phys. Lett. B 728, 183-190 (2014)]

SXImi-inclusive hadrons

[Airapetian et al., Phys. Lett. B 728, 183-190 (2014)]

Inclusive hadron electro-production

$e p^{\uparrow} \rightarrow e h X$

virtual photon going
into the page
$e p^{\uparrow} \rightarrow h X$

lepton beam going into the page

Inclusive hadron electro-production

- scattered lepton undetected
- lepton kinematics unknown
- dominated by quasi-real photo-production (low Q^{2}) \Rightarrow hadronic component of photon relevant?
- cross section proportional to $S_{N}\left(k \times p_{h}\right) \sim \sin \psi$

$$
\begin{aligned}
& A_{\mathrm{UT}}\left(P_{T}, x_{F}, \psi\right)= \\
& A_{\mathrm{UT}}^{\sin \psi}\left(P_{T}, x_{F}\right) \sin \psi
\end{aligned}
$$

$$
A_{\mathrm{N}} \equiv \frac{\int_{\pi}^{2 \pi} \mathrm{~d} \psi \sigma_{\mathrm{UT}} \sin \psi-\int_{0}^{\pi} \mathrm{d} \psi \sigma_{\mathrm{UT}} \sin \psi}{\int_{0}^{2 \pi} \mathrm{~d} \psi \sigma_{\mathrm{UU}}}
$$

$$
=-\frac{2}{\pi} A_{\mathrm{UT}}^{\sin \psi}
$$

1D dependences of Aut $\sin \psi$ amplitude

[Airapetian et al., Phys. Lett. B 728, 183-190 (2014)]

1D dependences of Aut $\sin \psi$ amplitude

[Airapetian et al., Phys. Lett. B 728, 183-190 (2014)]

- clear left-right asymmetries for pions and positive kaons
- increasing with X_{F} (as in pp)
- initially increasing with P_{T} with a fall-off at larger P_{T}
- x_{F} and P_{T} correlated
\Rightarrow look at 2D dependences

Inclusive hadrons: 2D dependences

[Airapetian et al., Phys. Lett. B 728, 183-190 (2014)]

SPIN 2018 - Ferrara - Sept. 12 ${ }^{\text {th }}, 2018$

Asymmetries of subprocesses

[Airapetian et al., Phys. Lett. B 728, 183-190 (2014)]

- asymmetries increase with larger z
- large asymmetries also for π^{-} in case of $z>0.7$

multiplicities @ HERMES

- extensive data set on pure proton and deuteron targets for identified charged mesons http://www-hermes.desy.de/ multiplicities
- extracted in a multidimensional unfolding procedure
- fair agreement between DSS and positive mesons
- poor description of negative mesons
- p/d differences due to flavor
 dependence of fragmentation

transverse momentum dependence

- multi-dimensional analysis allows going beyond collinear factorization
- flavor information on transverse momenta via target variation and hadron ID
[Airapetian et al., PRD 87 (2013) 074029]

