Commissioning of the UCN Facility at TRIUMF – a first step towards a neutron electric dipole moment search

Beatrice Franke TRIUMF Research Scientist

> Brief introduction to Ultracold Neutrons (UCN) and nEDM The TUCAN Collaboration and Source Status update, first UCN results, other progress

 $E_{\rm UCN} \le 300 \, {\rm neV} \, \widehat{=} \, 3.5 \, {\rm mK}$ ("ultracold")

- Strong interaction results in pseudopotential
 - $\widehat{=}$ "optical" Fermi potential $V_{
 m F}$
 - UCN undergo total reflection under all angles of incidence
 - if $E_{\rm UCN} \leq V_{\rm F}({\rm material})$
 - \Rightarrow UCN are storable, like a gas
 - $V_{\rm F}({\rm BeO}) \approx 300 \, {\rm neV}, \\ V_{\rm F}({\rm SUS}) \approx 180 \, {\rm neV}, \\ V_{\rm F}({\rm Quartz}) \approx 90 \, {\rm neV}$
- Gravitational interaction: $E_{\rm UCN}(1\,{\rm m}) \approx 100\,{\rm neV}$
- ► Magnetic interaction depicts a spin-dependent potential: $E_{\rm UCN}(1\,{\rm T}) \approx \pm 60\,{\rm neV}$
- Weak interaction: $\tau_n \approx 900 \, s$

 $E_{\rm UCN} \le 300 \, {\rm neV} \, \widehat{=} \, 3.5 \, {\rm mK}$ ("ultracold")

- Strong interaction results in pseudopotential
 - $\widehat{=}$ "optical" Fermi potential $V_{
 m F}$
 - UCN undergo total reflection under all angles of incidence
 - if $E_{\rm UCN} \leq V_{\rm F}({\rm material})$
 - \Rightarrow UCN are storable, like a gas
 - $V_{\rm F}({\rm BeO}) \approx 300 \, {\rm neV}, \\ V_{\rm F}({\rm SUS}) \approx 180 \, {\rm neV}, \\ V_{\rm F}({\rm Quartz}) \approx 90 \, {\rm neV}$
- Gravitational interaction: $E_{\rm UCN}(1\,{\rm m}) \approx 100\,{\rm neV}$
- ► Magnetic interaction depicts a spin-dependent potential: $E_{\rm UCN}(1\,{\rm T}) \approx \pm 60\,{\rm neV}$
- Weak interaction: $\tau_{\rm n} \approx 900\,{\rm s}$

What to do with UCN?

- Search for the neutron electric dipole moment
- Measure the neutron lifetime
- Investigate beta decay correlations
- Sensitivity to energies of down to peV allows to search for exotic interactions, fifth forces, axions, dark matter, quantized states in gravitational potential, etc.

Does the spin of the neutron couple to an electric field? Hamiltonian of a neutron in a magnetic field and an electric field

$$\mathcal{H} = -\mu_{\rm n} \frac{\vec{\sigma}}{|\vec{\sigma}|} \vec{B} - d_{\rm n} \frac{\vec{\sigma}}{|\vec{\sigma}|} \vec{E}$$

Time reversal symmetry T is not conserved:

$$\mathbf{T}\mathcal{H} = -\mu_{\mathbf{n}} \frac{-\vec{\sigma}}{|\vec{\sigma}|} (-\vec{B}) - d_{\mathbf{n}} \frac{-\vec{\sigma}}{|\vec{\sigma}|} \vec{E} \neq \mathcal{H}$$

CPT theorem: T-violation \Leftrightarrow CP-violation.

 \Rightarrow CP-violating processes are needed to understand the Baryon Asymmetry of our Universe (BAU)

TRIUMF's UltraCold Advanced Neutron Source

KEK T. Adachi, S. Jeong, S. Kawasaki, Y. Makida, K. Mishima, T. Okamura, Y. Watanabe

U Nagoya M. Kitaguchi, H. Shimizu

RCNP Osaka K. Hatanaka, I. Tanihata, E. Pierre (E.P. also TRIUMF), J. Ong Hooi

UBC E. Altiere, D. Jones, K. Madison, E. Miller, T. Momose, T. Hayamizu

U Winnipeg C. Bidinosti, B. Jamieson, R. Mammei (also TRIUMF), J. Martin

- U Manitoba T. Andalib, J. Birchall, M. Gericke, M. Lang, J. Mammei, S. Page, L. Rebenitsch, S. Hansen-Romu, S. Ahmed
 - TRIUMF C. Davis, B. Franke, K. Katsika, T. Kikawa, A. Konaka (also UVic and Osaka U.), F. Kuchler, L. Lee, R. Matsumiya, R. Picker (also SFU), W. Ramsay, W. Schreyer, W. van Oers (also U. Manitoba), T. Lindner (also UW)

UNBC E. Korkmaz

SFU S. Sidhu, J. Sonier

The TUCAN collaboration

 Operate world's strongest intensity ultracold neutron (UCN) source at TRIUMF: combination of spallation neutron source and superfluid He converter

- Search for the neutron electric dipole moment (nEDM) to a precision of 10⁻²⁷ ecm
- Establish UCN user facility with a second port & and attract international scientific community

- Operate prototype ultracold neutron (UCN) source at TRIUMF (~1 month a year, 2017 – approximately2020)
- Design a next generation, high intensity UCN source (technical design stage)
- Design a next generation nEDM spectrometer (conceptual design stage)

TRIUMF (Vancouver, Canada)

- ► H- ions are accelerated, and p⁺ extracted through stripper foil at ~500 MeV
- Three beamlines can be fed with 120 µA at a time simultaneous operation of different facilities
- Nuclear Physics, Particle Physics, Life Sciences, Material and Molecular Science, Eye Cancer Treatment via Proton Therapy

Beamline 1U, Meson hall

Beam Structure and Kicker Magnet

- We need to share the beam with other BL1A users (Center for Materials and Molecular Science, CMMS)
- TRIUMF's beam structure has a 'notch' of zero beam between the 120 µA pulses

(pulse: 1 ms; notch: 50-100 μ s)

 Directing every third pulse to BL1U results in an average of 40 µA

Beam Structure and Kicker Magnet

- We need to share the beam with other BL1A users (Center for Materials and Molecular Science, CMMS)
- TRIUMF's beam structure has a 'notch' of zero beam between the 120 µA pulses

(pulse: 1 ms; notch: 50-100 μ s)

- Directing every third pulse to BL1U results in an average of 40 µA
- Kicker magnet has to ramp within notch!
- Timing of target irradiation:

find optimum between UCN density accumulation, and heat load on cryostat

difference between sD2 and He-II: UCN lifetime inside converter medium!

 ${\sim}200\,\text{ms}$ vs tens/hundreds of seconds

 \blacktriangleright We aim at an irradiation time of \sim one minute

UCN Target

- UCN target: tantalum-clad tungsten.
- Installed during Winter 2016.
- Water cooling; 14kW of heat to remove (at final power)
 - Need to deal with activated water. Finishing commissioning water package now.
- Have system for remotely removing UCN target

(RCNP prototype source at TRIUMF as example)

- Free n via spallation
- Moderation to thermal and cold neutron energies:

 $E_{\rm kin}\,\propto\,T_{\rm mod}\xrightarrow{\rm works\,down\,to}\sim10\,{\rm K}$

Superthermal UCN production

(RCNP prototype source at TRIUMF as example)

- Free n via spallation
- Moderation to thermal and cold neutron energies: $E_{\rm kin} \propto T_{\rm mod} \xrightarrow{\rm works \ down \ to} \sim 10 \ {\rm K}$
- 'Superthermal' conversion process in superfluid He: $E_{kin}(cold n) \rightarrow phonon/roton excitation$ $\underbrace{T_{He-II}}_{=0.8 \text{ K}} \neq \underbrace{T_{UCN}}_{<3.5 \text{ mK}}$

RCNP prototype source, cryogenics

How to get to superfluid helium (He-II) at 0.8 K?

- Four stages:
 - 4 K Liquid helium-4 bath
 - 1.4 K ⁴He pumping section
 - 0.8 K ³He pumping section
 - $0.8\,{\rm K}\,$ Heat exchanger for cooling isopure ${}^{4}{\rm He}$

RCNP prototype source, cryogenics

How to get to superfluid helium (He-II) at 0.8 K?

- Four stages:
 - 4 K Liquid helium-4 bath
 - 1.4 K ⁴He pumping section
 - 0.8 K ³He pumping section
 - 0.8 K Heat exchanger for cooling isopure ⁴He

UCN production:

- Spallation Neutrons 'precooled' in moderators
- Superthermal conversion process in superfluid He
- Due to their low kinetic energies, neutrons can't overcome the potential of the wall material anymore
- UCN accumulate within the He-II and in the vacuum above it
- Upon opening a valve, the accumulated density will diffuse towards the experiment

- Analyzing our first UCN data (from 2017) to understand source performance
- We are planning and preparing for another UCN data taking run for November 2018 (continue source characterization/simulation benchmarking, test equipment for new source)
- We are heavily working on a technical design for a new UCN source cryostat, after successfully passing a thorough conceptual design review by international cryo- and UCN experts
- Started working on a design report for the nEDM spectrometer

- During November 2017 we successfully produced the first UCN at TRIUMF!
- This major milestone (within TRIUMF and the neutron physics community) is a consequence of many earlier achievements coming together:
 - Beamline (installation work started in 2013)
 - Target (Commissioned in 2016)
 - Kicker Magnet which allows beam sharing between BL1A and BL1U
 - Vertical UCN source cryostat installed during 2017 shutdown
 - Experimental UCN infrastructure: guides, detectors, etc
- Are we ready for a neutron electric dipole moment measurement? Not quite yet...
- ► We need a higher density of UCN for competitiveness, and an nEDM spectrometer

First UCN: Some impressions

Beatrice Franke, SPIN2018, Ferrara, Italy September 10, 2018

First UCN: Some impressions

Normalization detector setup

First UCN: Some impressions

Transmission measurement of 100cm guide

Comparison of two detectors

How do we take data?

Beatrice Franke, SPIN2018, Ferrara, Italy September 10, 2018

- Prototype UCN source cryostat had been developed and operated in Japan [Masuda et al, PRL 108, 134801 (2012)]
- Best results in Japan:

 $\sim 10^5~{
m UCN}$ per 1 $\mu{
m A}$ shot, $au_{
m source} \sim 80\,{
m s}$

UCN data from 2017

 $\tau_{\rm source}$ at TRIUMF:

- Prototype UCN source cryostat had been developed and operated in Japan [Masuda et al, PRL 108, 134801 (2012)]
- ► Best results in Japan: $\sim 10^5$ UCN per 1µA shot, $\tau_{\rm source} \sim 80$ s Our first try: All numbers are PRELIMINARY
- $\blacktriangleright~\sim 5\cdot 10^4~{\rm UCN}$ per 1muA shot, $\tau_{\rm source} \leq 40\,{\rm s}$
- > $3 \cdot 10^5$ UCN per 10muA shot (~ 7-fold increase in UCN density)

Room to improve:

- Use UCN-optimized gate valve
- Improve detector vacuum properties and get rid of Al separation foil
- Repeated cleaning and baking of production volume

Preliminary result: Storage lifetime of UCN in the source on different days after irradiating the target with 1 μ A for 60 s. An exponential fit shows that it dropped by 2.1 %per day.

Preliminary result: Number of UCNs extracted from the source after irradiating the target for 60 s with different beam currents. The dashed line linearly extrapolates the data at beam currents below 1 μ A. The labels show the range of helium temperatures after the irradiation ended.

Preliminary result: Number of UCNs extracted from the source at different temperatures after irradiating the target with 1 μ A for 60 s. Consistent with $\frac{1}{THe} \sim 0.008 s^{-1} K^{-7} T^7$

Upcoming UCN measurements at TRIUMF (Nov 2018)

UCN 2018 fall run layout summary

This sheet lists all layouts for the Fall 2018 UCN run. The tentative sequence goes from top left to bottom right. All dimensions are in mm. Layouts with brackets might be skipped

Beatrice Franke, SPIN2018, Ferrara, Italy September 10, 2018

Upcoming UCN measurements at TRIUMF (Nov 2018)

TCN18-060, 061

%TRIUMF

2 VAT valves, baseline for SCM *Nov 12*

TCN18-065, 066

2 VAT valves, SCM Nov 11 (pumping and cooling beforehand...)

Planned improvements

- Beam current: $1 \ \mu A \rightarrow 40 \ \mu A$
- Production volume: 8 L \rightarrow 34 L
- Cold moderator: $sD_2O \rightarrow LD_2$
- Production rate: $20000/s \rightarrow 2.5 \times 10^7/s$
- Cooling power: $0.3 \text{ W} \rightarrow 10 \text{ W}$
- He-II temperature: 0.85 K → 1.10 K
- Separation foil

Crucial features

- Heat transport in He-II and heat exchanger
 - · Detailed calculations
 - Measurements at KEK
- LD₂ safety
- UCN production/heat load
 - · Heavily optimized with MCNP

New source design

TUCAN schedule

To be competitive we want to achieve statistical sensitivity $\sigma(d_n) = 10^{-27} e$ cm within 400 calendar days \Rightarrow increase UCN density by two orders of magnitude!

Thank you for your attention!

- Apply a magnetic field \vec{B} and an electric field $\vec{E}\uparrow\uparrow$ or $\uparrow\downarrow$

$$hf_{\rm n} = 2\mu_{\rm n}B \pm 2d_{\rm n}E$$

► Extract nEDM d_n from the difference of Larmor precession frequencies in ↑↑ or ↑↓ fields:

$$d_{\rm n} = \frac{h\left(f_{\rm n}^{\uparrow\uparrow} - f_{\rm n}^{\uparrow\downarrow}\right) - \mu_{\rm n}\left(B^{\uparrow\uparrow} - B^{\uparrow\downarrow}\right)}{2\left(E^{\uparrow\uparrow} + E^{\uparrow\downarrow}\right)}$$

- ▶ Ingredients: stable & homegeneous \vec{B} , large \vec{E} , many neutrons!
- ▶ Tool of choice are ultracold neutrons \rightarrow those allow observation times of $O(100 \, {
 m s})$

Experimental layout Phase 2

Experimental layout Phase 2

