Process dependence of the gluon Sivers function in inclusive pp collisions: theory

Cristian Pisano

In collaboration with: U. D’Alesio, C. Flore, F. Murgia, P. Taels
TMD factorization and process dependence
TMD factorization

Two scale processes \(Q^2 \gg p_T^2 \)

SIDIS \(lp \rightarrow l' h X \)

Drell-Yan \(pp \rightarrow l^+ l^- X \)

Factorization proven
Hard partonic interactions can be separated from nonperturbative correlators

Parton correlators Φ and Δ describe the soft hadron ↔ parton transitions

Parametrized in terms of distribution and fragmentation functions
Resummation of all gluon exchanges leads to \textit{gauge links} in the correlators Φ, Δ

\[
\mathcal{U}_{[0,\xi]}^C = \mathcal{P}\exp \left(-ig \int_{C[0,\xi]} ds^\mu A^\mu (s) \right)
\]

The path C depends on the color interactions, \textit{i.e.} on the specific process
Gauge invariant definition of Φ (not unique)

$$\Phi[\mathcal{U}] \propto \left\langle P, S \left| \overline{\psi}(0) \mathcal{U}_{[0,\xi]}^C \psi(\xi) \right| P, S \right\rangle$$

SIDIS

Belitsky, Ji, Yuan, NPB 656 (2003)
Boer, Mulders, Pijlman, NPB 667 (2003)

Possible effects in transverse momentum observables (ξ_T is conjugate to k_T)
TMD factorization
Process dependence of gauge links

SIDIS

Drell-Yan

\[\int d k_T \rightarrow \xi_T = 0 \rightarrow \text{the same in both cases} \]

Belitsky, Ji, Yuan, NPB 656 (2003)
Boer, Mulders, Pijlman, NPB 667 (2003)
Boer, talk at RBRC Synergies workshop (2017)
TMD factorization

The quark Sivers function

Fundamental test of TMD theory

\[f_{1T}^{[DY]}(x, k^2_\perp) = -f_{1T}^{[SIDIS]}(x, k^2_\perp) \]
\[h_{1T}^{[DY]}(x, k^2_\perp) = -h_{1T}^{[SIDIS]}(x, k^2_\perp) \]

Collins, PLB 536 (2002)

FSI in SIDIS

ISI in DY

ISI/FSI lead to process dependence of TMDs, could even break factorization

Collins, Qiu, PRD 75 (2007)
Collins, PRD 77 (2007)
Rogers, Mulders, PRD 81 (2010)
Process dependence of gluon TMDs
Gluon TMDs

The gluon correlator

\[\Gamma^{\alpha\beta}_{\mu\nu}(p;P,S) \]

Gauge invariant definition of \(\Gamma^{\mu\nu} \)

\[
\Gamma^{[U,U']}_{\mu\nu} \propto \langle P, S | \text{Tr}_c \left[F^{+\nu}(0) U^C_{[0,\xi]} F^{+\mu}(\xi) U'^C_{[\xi,0]} \right] | P, S \rangle
\]

Mulders, Rodrigues, PRD 63 (2001)
Buffing, Mukherjee, Mulders, PRD 88 (2013)
Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP 1610 (2016)

The gluon correlator depends on two path-dependent gauge links

\(ep \rightarrow e' Q\bar{Q}X \), \(ep \rightarrow e' \text{ jet jet} X \) probe gluon TMDs with \([+++]\) gauge links

\(pp \rightarrow \gamma\gamma X \) (and/or other CS final state) probes gluon TMDs with \([-[--]\) gauge links

\(pp \rightarrow \gamma \text{ jet} X \) probes an entirely independent gluon TMD: \([+-]\) links (dipole)
The gluon Sivers functions
Sign change test

Related Processes

\[e^p \uparrow \rightarrow e'Q\overline{Q}X, \quad e^p \uparrow \rightarrow e' \text{jet jet} \quad \text{X probe GSF with [++] gauge links (WW)} \]

\[p^\uparrow p \rightarrow \gamma\gamma\text{X (and/or other CS final state) probe GSF with [---] gauge links} \]

Analogue of the sign change of \(f_{1T}^{\perp q} \) between SIDIS and DY (true also for \(h_1^g \) and \(h_{1T}^{\perp g} \))

\[
f_{1T}^{\perp g} [e^p \uparrow \rightarrow e'Q\overline{Q}X] = -f_{1T}^{\perp g} [p^\uparrow p \rightarrow \gamma\gamma\text{X}] \]

Boer, Mulders, CP, Zhou (2016)

Motivation to study gluon Sivers effects at both RHIC and the EIC
The gluon Sivers functions
The dipole GSF

Complementary Processes

\(ep^\uparrow \rightarrow e' Q \bar{Q} X \) probes a GSF with \([+++]\) gauge links (WW)

\(p^\uparrow p \rightarrow \gamma \text{jet} X (gq \rightarrow \gamma q) \) probes a gluon TMD with : \([+-]\) links (DP)

\[
\begin{align*}
\xi_T & \quad \xi^- \\
\end{align*}
\]

At small-\(x\) the WW Sivers function appears to be suppressed by a factor of \(x\) compared to the unpolarized gluon function, unlike the dipole one

The DP gluon Sivers function at small-\(x\) is the spin dependent odderon (single spin asymmetries from a single Wilson loop matrix element)

Boer, Echevarria, Mulders, Zhou, PRL 116 (2016)
Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP 1610 (2016)
The Generalized Parton Model

The first transverse moments of the WW and DP gluon Sivers functions

\[f_{1T}^{(1)g} \left(\frac{f}{d} \right)(x) = \int d^2 k_T \frac{k_T^2}{2M_p^2} f_{1T}^{(1)g} \left(\frac{f}{d} \right)(x, k_T^2) \]

related to two different trigluon Qiu-Sterman functions \(T_G^{(f/d)} \), involving the antisymmetric \(f_{abc} \) and symmetric \(d_{abc} \) color structures, respectively

Bomhof, Mulders, JHEP 0702 (2007)
Buffing, Mukherjee, Mulders, PRD 88 (2013)

The two distributions have a different behavior under charge conjugation

The Burkardt sum rule constraints only the \(f \)-type gluon Sivers function

\[\sum_{a=q,\bar{q},g} \int dx f_{1T}^{(1)a} (x) = 0 \]

The TMD Generalized Parton Model
The Generalized Parton Model

Phenomenological extension of the TMD formalism to processes like

\[pp \rightarrow \pi X \]
\[(pp \rightarrow \text{jet } X, \ pp \rightarrow \gamma X) \]

Single scale processes

Transverse Momentum Dependent – Generalized Parton Model (GPM)

- Spin & \(k_\perp \)-dependent distribution and fragmentation functions as in TMD scheme
- \(k_\perp \)-dependence included in the hard scattering, unlike in the TMD formalism
- Universality and TMD factorization: assumption to be tested
The CGI-GPM takes into account the effects of initial and final state interactions

Gamberg, Kang, PLB 696 (2011)

One-gluon exchange approx.: LO term of of the α_s expansion of the gauge link

SIDIS

$q q' \rightarrow q q'$

$f_{1T}^{\perp q}$ [SIDIS] \times (CF \times Hard part)

$f_{1T}^{\perp q}$ [SIDIS] is universal, process dependence absorbed in modified hard functions
The CGI-GPM recovers the relation $f_{1T}^{\perp[DY]} = -f_{1T}^{\perp[SIDIS]}$

In the CGI-GPM TMDs are process dependent, different predictions w.r.t. GPM

Gamberg, Kang, PLB 696 (2011)
D’Alesio, Gamberg, Kang, Murgia, CP, PLB 704 (2011)

Extension of the CGI-GPM to the gluon Sivers function is now completed
D’Alesio, Murgia, CP, Taels, PRD 96 (2017)
D’Alesio, Flore, Murgia, CP, in preparation

Gluon Sivers function constrained from available data on $p^+p \rightarrow \pi^0 X$, $p^+p \rightarrow J/\psi X$, $p^+p \rightarrow DX$, predictions for $p^+p \rightarrow \gamma X$ at RHIC
Gluon Sivers function in $p^\uparrow p \to J/\psi X$

A_N in the GPM

In the Color Singlet Model, the dominant production channel is $gg \to J/\psi g$

\[A_N \equiv \frac{d\sigma^\uparrow - d\sigma^\downarrow}{d\sigma^\uparrow + d\sigma^\downarrow} \equiv \frac{d\Delta\sigma}{2d\sigma} \]

\[
\begin{align*}
d\Delta\sigma^{\text{GPM}} &= \frac{2\alpha_s^3}{s} \int \frac{dx_a}{x_a} \frac{dx_b}{x_b} \ d^2k_{\perp a} d^2k_{\perp b} \ \delta(\hat{s} + \hat{t} + \hat{u} - M^2) \\
&\times \left(-\frac{k_{\perp a}}{M_p} \right) f_{1T}^{\perp g}(x_a, k_{\perp a}) \cos \phi_a \ f_{g/p}(x_b, k_{\perp b}) \ H_{gg \to J/\psi g}^{U}(\hat{s}, \hat{t}, \hat{u})
\end{align*}
\]

$f_{1T}^{\perp g}$: Gluon Sivers function (one and process independent)
Gluon Sivers function in $p^\uparrow p \rightarrow J/\psi X$

A_N in the CGI-GPM

\[C_U \quad \rightarrow \quad C^{(f/d)}_I \quad \rightarrow \quad C^{(f/d)}_{F_c} \quad [\text{Color Factors}] \]

\[\text{[GPM]} \quad f_{1T} \, g \, H^U_{gg \rightarrow J/\psi g} \quad \rightarrow \quad f_{1T} \, g \, (f) \, H^{\text{Inc}}_{gg \rightarrow J/\psi g} + f_{1T} \, g \, (d) \, H^{\text{Inc}}_{gg \rightarrow J/\psi g} \quad [\text{CGI – GPM}] \]

Two independent, universal f_{1T}’s, process dependence shifted into new hard parts

\[H^{\text{Inc}}_{gg \rightarrow J/\psi g} \equiv \frac{C^{(f/d)}_I + C^{(f/d)}_{F_c}}{C_U} \, H^U_{gg \rightarrow J/\psi g} \]
Gluon Sivers function in $p^\uparrow p \rightarrow J/\psi X$

A_N in the CGI-GPM

$c\bar{c}$ pair in a color singlet state, no FSIs:

$$C_{F_c}^{(f)} = C_{F_d}^{(d)} = 0$$

F. Yuan, PRD 78 (2003)

Only $f_1^{\perp g}(f)$ contributes to A_N

$$
\frac{d\Delta \sigma^{\text{CGI}}}{s} = \frac{2\alpha_s^3}{s} \int \frac{dx_a}{x_a} \frac{dx_b}{x_b} d^2k_{\perp a} d^2k_{\perp b} \delta(\hat{s} + \hat{t} + \hat{u} - M^2) \\
\times \left(-\frac{k_{\perp a}}{M_p}\right) f_1^{\perp g}(f)(x_a, k_{\perp a}) \cos \phi_a f_g/p(x_b, k_{\perp b}) H_{gg \rightarrow J/\psi g}^{\text{Inc}}^{(f)}(\hat{s}, \hat{t}, \hat{u})
$$

$$H_{gg \rightarrow J/\psi g}^{\text{Inc}}(f) = -\frac{1}{2} H_{gg \rightarrow J/\psi g}^{U}$$
Gluon Sivers function in $p^+ p \to D X$

A_N in the CGI-GPM

LO channels are $gg \to c\bar{c}$ and $q\bar{q} \to c\bar{c}$. Color factors for $gg \to c\bar{c}$:

Agreement with *gluonic pole strenghts* calculated for $p^+ p \to h h X$

$$C_G^{(f/d)} \equiv \frac{C_I^{(f/d)} + C_{Fc}^{(f/d)} + C_{Fd}^{(f/d)}}{C_U}$$

Bomhof, Mulders, JHEP 0702 (2007)

Agreement with twist-three results for $p^+ p \to D X$

Kang, Qiu, Vogelsang, Yuan, PRD 78 (2008)

Both $f_1^{\perp g(f)}$ and $f_1^{\perp g(d)}$ contribute to $A_N(p^+ p \to D X)$
Gluon Sivers function in $p^+ p \to D X$

Color factors for $gg \to c\bar{c}$

$$C_I^{\text{Inc}}(f/d) \equiv C_I^{(f/d)} + C_{Fc}^{(f/d)}$$

$$D$	C_U	$C_I^{(f)}$	$C_{Fc}^{(f)}$	$C_{Fd}^{(f)}$	$C^{\text{Inc}}(f)$	$C_I^{(d)}$	$C_{Fc}^{(d)}$	$C_{Fd}^{(d)}$	$C^{\text{Inc}}(d)$
 | $\frac{1}{4N_c}$ | $-\frac{N_c}{8(N_c^2-1)}$ | $-\frac{1}{8N_c}$ | $-\frac{1}{8N_c(N_c^2-1)}$ | $\frac{N_c}{8(N_c^2-1)}$ | $\frac{1}{8N_c}$ | $\frac{1}{8N_c}$ | $\frac{1}{8N_c}$ | $\frac{2N_c^2-1}{8N_c(N_c^2-1)}$
 | $\frac{1}{4N_c}$ | $-\frac{N_c}{8(N_c^2-1)}$ | $-\frac{1}{8N_c}$ | $-\frac{1}{8N_c(N_c^2-1)}$ | $\frac{N_c^2+1}{8N_c(N_c^2-1)}$ | $\frac{-N_c}{8(N_c^2-1)}$ | $\frac{-1}{8N_c}$ | $\frac{-1}{8N_c}$ | $\frac{N_c^2+1}{8N_c(N_c^2-1)}$
 | $\frac{N_c}{2(N_c^2-1)}$ | $\frac{N_c}{8(N_c^2-1)}$ | $\frac{N_c}{8(N_c^2-1)}$ | $\frac{-N_c}{8(N_c^2-1)}$ | 0 | $\frac{N_c}{8(N_c^2-1)}$ | $\frac{-N_c}{8(N_c^2-1)}$ | $\frac{-N_c}{8(N_c^2-1)}$ | $\frac{N_c}{8(N_c^2-1)}$
 | $\frac{N_c}{4(N_c^2-1)}$ | $\frac{N_c}{8(N_c^2-1)}$ | $\frac{N_c}{8(N_c^2-1)}$ | 0 | 0 | $\frac{N_c}{8(N_c^2-1)}$ | $\frac{N_c}{8(N_c^2-1)}$ | 0 | $\frac{N_c}{4(N_c^2-1)}$
 | $\frac{-N_c}{4(N_c^2-1)}$ | $\frac{N_c}{8(N_c^2-1)}$ | 0 | $-\frac{N_c}{8(N_c^2-1)}$ | $\frac{N_c}{8(N_c^2-1)}$ | $\frac{-N_c}{8(N_c^2-1)}$ | 0 | $\frac{N_c}{8(N_c^2-1)}$ | $\frac{-N_c}{8(N_c^2-1)}$
 | $\frac{-N_c}{4(N_c^2-1)}$ | $\frac{N_c}{8(N_c^2-1)}$ | 0 | $-\frac{N_c}{8(N_c^2-1)}$ | $\frac{N_c}{8(N_c^2-1)}$ | $\frac{-N_c}{8(N_c^2-1)}$ | 0 | $\frac{N_c}{8(N_c^2-1)}$ | $\frac{-N_c}{8(N_c^2-1)}$
 | $\frac{-N_c}{4N_c(N_c^2-1)}$ | 0 | $-\frac{1}{8N_c}$ | $-\frac{1}{8N_c}$ | $-\frac{1}{8N_c}$ | 0 | $-\frac{1}{8N_c}$ | $-\frac{1}{8N_c}$ | $-\frac{1}{8N_c}$
 | $\frac{-N_c}{4N_c(N_c^2-1)}$ | 0 | $-\frac{1}{8N_c}$ | $-\frac{1}{8N_c}$ | $-\frac{1}{8N_c}$ | 0 | $-\frac{1}{8N_c}$ | $-\frac{1}{8N_c}$ | $-\frac{1}{8N_c}$

D’Alesio, Murgia, Pisano, Taels, PRD 96 (2017)

Modified hard functions $H^{\text{Inc}}(f/d)$ are not simply proportional to H_U

Similar tables and results for all the channels in $p^+ p \to \pi X$

D’Alesio, Flore, Murgia, Pisano, Taels, in preparation
Gluon Sivers function in $p^+ p \to \gamma X$
A_N in the CGI-GPM

LO channels are $qg \to \gamma q$, $q\bar{q} \to \gamma g$ and $gq \to \gamma q$.

Gamberg, Kang, PLB 696 (2011)
D’Alesio, Flore, Murgia, Pisano, Taels, in preparation

Color factors for $gq \to \gamma q$:

<table>
<thead>
<tr>
<th>D</th>
<th>C_U</th>
<th>$C^{(f)}_I$</th>
<th>$C^{(f)}_{F_d}$</th>
<th>$C^{\text{Inc}}(f)$</th>
<th>$C^{(d)}_I$</th>
<th>$C^{(d)}_{F_d}$</th>
<th>$C^{\text{Inc}}(d)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\frac{1}{2N_c}$</td>
<td>$-\frac{1}{4N_c}$</td>
<td>$\frac{1}{4N_c}$</td>
<td>$-\frac{1}{4N_c}$</td>
<td>$\frac{1}{4N_c}$</td>
<td>$\frac{1}{4N_c}$</td>
<td>$\frac{1}{4N_c}$</td>
</tr>
</tbody>
</table>

Simple color structure, both $f^\perp g(f)$ and $f^\perp g(d)$ contribute to $A_N(p^+ p \to \gamma X)$

$$H^{\text{Inc}}(f)_{gq\to \gamma q} = H^{\text{Inc}}(f)_{g\bar{q}\to \gamma \bar{q}} = -\frac{1}{2} H^U_{gq\to \gamma q} = -\frac{1}{2N_c} \left(\frac{\hat{u}}{\hat{s}} - \frac{\hat{s}}{\hat{u}} \right)$$

$$H^{\text{Inc}}(d)_{gq\to \gamma q} = -H^{\text{Inc}}(d)_{g\bar{q}\to \gamma \bar{q}} = \frac{1}{2} H^U_{gq\to \gamma q} = \frac{1}{2N_c} \left(-\frac{\hat{u}}{\hat{s}} - \frac{\hat{s}}{\hat{u}} \right)$$
Conclusions

▶ Single spin asymmetries A_N for $p^\uparrow p \rightarrow h(\gamma) X$ can be described within the GPM, which includes both spin and transverse momentum effects

▶ In the CGI-GPM, effects of ISI/FSI are taken into account in the one-gluon exchange approximation

▶ As a consequence, TMDs become process dependent

▶ In this framework, the gluon Sivers effect is given by the convolution of two independent gluon Sivers functions with modified hard functions

▶ These two distributions can be in principle singled out by looking at available data on A_N in $p^\uparrow p \rightarrow \pi^0 X$, $p^\uparrow p \rightarrow J/\psi X$, $p^\uparrow p \rightarrow DX$, $p^\uparrow p \rightarrow \gamma X$ at RHIC

Talk by U. D’Alesio