Symmetry test and BSM searches using hyperpolarized gases

Outline:

Features of ³He/¹²⁹Xe spin-clocks
 ³He/¹²⁹Xe clock-comparison experiments

 Test of LV
 Short range interactions mediated by axions
 Xe-EDM searches

 Conclusion and outlook

Spin 2018 – Ferrara, Italy

W. Heil

Hyperpolarized gases : ³He, ¹²⁹Xe, (¹⁹⁹Hg)

 $\mu_{\text{n}} = -1.913 \ \mu_{\text{K}}$

 $\mu_{\text{He}} = -2.1276 \ \mu_{\text{K}}$

 μ_{Xe} = -0.7779 μ_K

 $\frac{OP-techniques:}{MEOP} P \approx \mathfrak{O}(1)$ SEOP $P \approx \mathfrak{O}(1)$ $\frac{PAMP}{0.1 < B (Tesla) < 12}$ arXiv:1806.07624 (2018)

Schmidt-model (valence neutron): $\mu_{He} = \mu_{Xe} = \mu_n$

More refined models:

³He (Faddeev calculations): J. L. Friar et al., Phys. Rev.C 37, 2869 (1988)

 $\mu_{n} \approx 0.9 \cdot \mu_{He}$

¹²⁹Xe (core-polarization corrections applied to *ab initio* nuclear shell model calculations):
 PRA 80 (2009) 032120

 $\langle s_n \rangle \approx 0.76 \langle s_{Xe} \rangle$

$$\langle s_p \rangle \approx 0.24 \langle s_{Xe} \rangle$$

Spin-clocks

A. Schawlow : "Never measure anything but frequency!"

Maser oscillation Free spin precession

Relaxation:

T₁-longitudinal relaxation time :

T₂-transverse relaxation time :

3He : $T_1 > 100$ h in special glass vessels 129Xe: $T_1 \sim 10-20$ h

Repetto et al. JMR 252 (2015) 163

 $T_2 < T_1$

reference transition at $f \approx 10$ Hzaccuracy to tracewith $\delta f/f \approx 10^{-13}$ \rightarrow accuracy (absolute scale): \rightarrow $\delta f \approx 1$ pHz \rightarrow $\delta E \approx 4 \cdot 10^{-36}$ GeVmagnitude higher

Accuracy of frequency estimation:

\rightarrow long spin-coherence times (T₂*)

Comagnetometry to get rid of magnetic field drifts

Subtraction of deterministic phase shifts

Phase residuals after subtraction of deterministic phase shifts

 $\delta \Phi \approx 10 \,\mu \,rad @ \,day \implies \delta f = \frac{\delta \Phi}{2\pi \cdot 86400} \approx 18 \,pHz @ \,day$

Symmetry tests and BSM searches

³He/¹²⁹Xe : ultra-sensitive probe for

non-magnetic spin interactions of type:

$$V_{non-magn.} = \vec{a} \cdot \vec{\sigma} \equiv -\vec{\mu}_{PM} \cdot \vec{B}_{PM}$$

requency
$$V/\hbar = \langle \tilde{\mathbf{b}} \rangle \ \hat{\varepsilon} \cdot \vec{\sigma} / \hbar$$

$$V/\hbar = c \ \vec{\sigma} \cdot \hat{r} / \hbar$$

$$V/\hbar = c \ \vec{\sigma} \cdot \hat{r} / \hbar$$

$$V/\hbar = -|\mathbf{d}_{Xe}| \ \vec{\sigma} \cdot \vec{E} / \hbar$$

$$V/\hbar = -|\mathbf{d}_{Xe}| \ \vec{\sigma} \cdot \vec{E} / \hbar$$

$$\Delta \omega = \omega_{L,He} - \frac{\gamma_{He}}{\omega} \cdot \omega_{L,Xe} = (1 - \gamma_{He} / \gamma_{Xe}) \cdot V / \hbar$$

 γ_{Xe}

Planck scale: energy scale where gravity meets quantum physics

Unification theories:

Spontaneous Lorentz symmetry breaking in string theory

Background fields (tensor fields) give preferred direction e.g. rest frame of CMB

low-energy world : Lorentz& CPT Violation

SME Phys. Rev. D 55, 6760 (1997) Phys.Rev. D 58, 116002 (1998)

Standard-Model Extension - matter sector -

A. Kostelecky and C. Lane: **Phys. Rev. D 60, 116010 (1999)**

Modified Dirac equation for a free spin ½ particle (w=e,p,n)

Lorentz violating terms

Experimental access:

$$a^{w}_{\mu}, b^{w}_{\mu}, \dots \approx \left(\frac{m_{w}}{M_{Planck}}\right)^{k} \cdot m_{w}$$

Neutron:
$$b_{\mu}^{n} \approx \begin{cases} 10^{-19} GeV & k = 1 \\ 10^{-38} GeV & k = 2 \end{cases}$$

Cs- fountain Wolf et al., PRL 96, 060801 (2006) Torsion pendulum B.Heckel et al. PRD 78 (2008) 092006 Antihydrogen spectroscopy Astrophysics Hg/Cs comparison UCN/Hg comparison He/Xe maser K/He co-magnetometer **Coupling of spin** $\vec{\sigma}$ to background field: $V = -\vec{b} \cdot \vec{\sigma}$

$$H = -\vec{\mu} \cdot \vec{B} - \vec{\tilde{b}} \cdot \vec{\sigma}$$

$$\rightarrow v = \frac{2}{\underline{h}} \mu B + \frac{2}{\underline{h}} \langle \tilde{b} \rangle \cos(\hat{\varepsilon}, \hat{B})$$

$$v_{\text{Zeeman}} v_{LV}$$

 $\langle \tilde{b} \rangle \hat{\varepsilon} \cdot \hat{B} \sim \cos\left(\Omega_{sid} \cdot t + \varphi\right)$

	Electron (w=e)	Proton (w=p)	Neutron (w=n)	
$\widetilde{b}_{x}^{w}[GeV](1\sigma)$	(-0.7±1.3)·10 ⁻³¹			
$\widetilde{b}_{y}^{w}[GeV](1\sigma)$	(-0.2±1.3)·10 ⁻³¹			
$\widetilde{b}_{\perp}^{w}[GeV](1\sigma)$		< 6.0·10 ⁻³² < 7.6·10 ⁻³³	< 10 ⁻³¹ < 3.7·10 ⁻³³ < 8.4·10 ⁻³⁴	

Torsion pendulum

B.R.Heckel et al., PRD 78 (2008) 092006

•Spin maser experiments with ³He and ¹²⁹Xe

• K-³He co-magnetometer

J. M. Brown et al. PRL 105 (2010) 151604

• 3He/129Xe co-magnetometer

F.Allmendinger et al., PRL 112 (2014) 110801

Search for a new pseudoscalar boson (Axion-like particle)

<u>Gerardus 't Hooft</u>,: QCD has a non-trivial vacuum structure that in principle permits CP-violation

 $L_{\overline{\theta}} = \frac{\alpha_s \theta}{8 \pi} \vec{G}_{\mu\nu} \cdot \vec{\tilde{G}}^{\mu\nu} \quad \text{from neutron EDM we get:} \quad d_n \approx 10^{-16} \cdot \overline{\theta} < 3 \cdot 10^{-26} \ e \cdot cm$

Original proposal for Axion (R. Peccei, H.Quinn PRL 38(1977),1440) as possible solution to the "Strong CP Problem" that cancels the CP violating term in the QCD Lagrangian

$$L_{a} = \xi \frac{\alpha_{s}}{8\pi f_{a}} a(x) \vec{G}_{\mu\nu} \cdot \vec{\tilde{G}}^{\mu\nu} \qquad \left\langle \alpha \right\rangle = -f_{\alpha} \frac{\overline{\theta}}{\xi}$$

Modern interest: Dark Matter candidate. All couplings to matter are weak

Axions, if they exist, will be very light and will mediate a macroscopic GP- force

$$m_a \approx \frac{m_\pi \cdot f_\pi}{f_a} \approx 6 \mu e V \cdot \left(\frac{10^{12} \, GeV}{f_a}\right)$$

 f_a : energy scale P.Q.-symmetry is spontaneously broken

Axions generated in the sun

CAST : CERN AXION SOLAR TELESCOPE

Galactic axions

Tunable resonant cavity in magnetic field coupled to a ultra low noise microwave receiver

ADMX, CARRACK

AXION SEARCHES using the Primakoff Effect

Primakoff Effect Axion conversion into photon (or the inverse)

Laboratory axions

Polarised laser through vacuum in a strong magnetic field (PVLAS)

"Light shinning through wall" Photonregeneration

(BFRT, OSQAR, ALPS, LIPPS, GammeV)

Yukawa-type potential with monopole-dipole coupling:

 $\kappa = \frac{\hbar^2 g_s g_p}{8\pi m_n} , \quad \lambda = \frac{\hbar}{m_a c}$

$$V(r) = \kappa \hat{n} \cdot \vec{\sigma} \left(\frac{1}{\lambda r} + \frac{1}{r^2} \right) e^{-r/\lambda}$$

with:

(Moody and Wilczek PRD **30** 130 (1984))

$$\begin{pmatrix} 10^{-6} \, \text{eV} < m_a < 10^{-2} \, \text{eV} \\ 10^{-5} \, \text{m} < \lambda < 10^{-1} \, \text{m} \end{pmatrix}$$

Dewar housing the LT_c-SQUIDs

BGO crystal

³He/¹²⁹Xe cell

Exclusion Plot for new spin-dependent forces

Romalis et al. , arXiv:1801.02757

 λ (m)

ARIADNE axion experiment

Resonantly detecting axion-mediated forces PRL 113 (2014) 161801

Projected reach for monopole-dipole axion mediated interactions

Measurement of the ¹²⁹Xe EDM

Courtesy of B. Santra

Our world is composed of matter

... and not antimatter

SM prediction based on observed flavor-changing CP-violation (CKM-matrix)

$$\eta = \frac{n_b - n_{\overline{b}}}{n_{\gamma}} \approx 10^{-18}$$

SM CP-odd phases

$$\delta_{\scriptscriptstyle CKM} \sim O(1)$$

explains QP in K and B meson mixing and decays

$$\overline{\theta}_{QCD} < 10^{-10}$$

constrained experimentally (d_n, d_{Hg}) (strong CP problem)

Electric dipole moments (EDMs)
of elementary particles
(flavor-diagonal
$$\not(P)$$
)
 $\Delta E = -|d_{EDM}| \cdot \vec{\sigma} \cdot \vec{E}$ (CP-odd)
EDM measurement free of SM
background
 $d_n \sim 10^{-32} - 10^{-34} \ e \ cm$
 \vec{E}

Khriplovich, Zhitnitsky 86

fourth order electroweak

Atomic EDM

complete shielding:

$$E_{eff} = E_{ext} + E_{int} = \varepsilon \cdot E_{ext} = 0$$
$$\Rightarrow \Delta E_{EDM} = -\vec{d}_{EDM} \cdot \vec{E}_{eff} = -\vec{d}_{EDM} \cdot \varepsilon \cdot \vec{E}_{ext} = 0$$

L.I.Schiff (PR 132 2194,1963):

EDM of a system of non-relativistic charged point particles that interact electrostatically can not be measured : $\varepsilon = 0$

Diamagnetic EDMs – "Schiff suppression: ε "

For a finite nucleus, the charge and EDM have different spatial distributions

S-Schiff moment:
$$\vec{S} = S\frac{\vec{I}}{I} = \frac{1}{10} \left[\int e\rho(\vec{r})\vec{r}r^2d^3r - \frac{5}{3Z}\vec{d}\int\rho(\vec{r})r^2d^3r \right]$$

Schiff moment is dominant CP-odd N-N interaction for large atoms

$$d_{A} = k_{A} \cdot 10^{-17} \cdot \left[\frac{S}{e fm^{3}} \right] e cm \qquad (k_{Xe} \sim 0.38)$$

$$S = S \left(\overline{g}_{\pi NN}^{(i)}, d_{n}, d_{p}, ... \right) \qquad \text{(low energy parameters)}$$

•
$$d_A \sim 10 Z^2 (R_N / R_A)^2 d_{nuc} \sim O(10^{-3}) d_{nuc}$$
 $d_A = \varepsilon \cdot d_{nuc}$

EDM sensitivity:

$$\delta d \propto \left(\varepsilon \cdot E_{ext} \cdot SNR \cdot T^{3/2} \right)^{-1}$$

EDM precision experiments (upper limits)

Experimental Setup MIXed

→ for details : talk of St. Zimmer

Extracted Xe-EDM limits

Comparison: Hg-EDM vs Xe-EDM sensitivity

Hg-EDM:

$SNR \sim 30000 @ f_{BW} = 1 Hz$
$\langle E \rangle = 8 \ kV/cm$
$\delta d_{Hg} = 4.1 \ x \ 10^{-29} \ ecm/day$

SNR~ 10000 @
$$f_{BW} = 1 Hz$$

 $= 0.8 kV/cm$
 $T_{2,Xe}$ *~ 3 h
 $\delta d_{Xe} = 4 \times 10^{-28} ecm/day$
Improvements:

• <*E*>

• $SNR, T_2^* \rightarrow new magnetic shield$ $noise: 10 fT / \sqrt{Hz} \rightarrow \sim 1 fT / \sqrt{Hz}$ $|\nabla B|: 10 pT / cm \rightarrow \sim 3 pT / cm$

Parameter	Limit (this work)	Theory
$d_{ m Xe}$	$1.2\cdot 10^{-27}$ e cm	95% CL
d_e	$1.2\cdot 10^{-23}$ e cm	[35, 36]
$C_{T,n}$	$2.8 \cdot 10^{-7}$	[35]
$C_{P,\mathrm{n}}$	$1.0\cdot10^{-4}$	[35]
$C_{T,p}$	$9.0 \cdot 10^{-7}$	[35]
$C_{P,p}$	$3.2\cdot10^{-4}$	[35]
S	$3.2 \cdot 10^{-10} \text{ e fm}^3$	[35, 40, 41]
d_n	$1.0 \cdot 10^{-22} \ {\rm e \ cm}$	[42]
d_p	$5.4 \cdot 10^{-21}$ e cm	[42]
g_0	$2.9\cdot 10^{-9}$	[43]
g_1	$4.0 \cdot 10^{-9}$	[43]
g_2	$2.7\cdot 10^{-9}$	[43]

[35] V. A. Dzuba, V. V. Flambaum, and S. G. Porsev, Phys. Rev. A 80, (2009).

[36] V. V. Flambaum and I. B. Khriplovich, Zh. Eksp. Teor. Fiz. 89, 1505 (1985).

[42] N. Yoshinaga, K. Higashiyama, R. Arai, Prog. Theor. Phys. 124, (2010).

[43] V. F. Dmitriev, R. A. Sen'kov, and N. Auerbach, Phys. Rev. C 71, 035501 (2005).

Conclusion and Outlook

 \succ ^{3}He , ^{129}Xe clocks based on free spin precession \rightarrow long spin coherence times

 $T_{2,Xe}^* \approx 8 \text{ hours}$ (so far limited by $T_{1,Wall}$)

Eur. Phys. J. D 57, 303-320 (2010)

> ³He/¹²⁹Xe clock comparison experiments:

 $T_{2,He}^* \approx 100 hours$

- Search for neutron spin coupling to a Lorentz and CPT-violating background field $V(r)/\hbar = \left\langle \widetilde{\mathbf{b}} \right\rangle \hat{\varepsilon} \cdot \vec{\sigma} / \hbar \qquad \tilde{b}_{\perp}^{n} < 8.4 \times 10^{-34} \text{ GeV } (68\% \text{ C.L.}) \qquad \begin{array}{c} \text{tightest constrains} \\ \text{in the matter sector} \end{array}$
- Short range spin-dependent interaction (axion search):

$$V(r) = \frac{g_{s}g_{P}}{8\pi} \frac{(\hbar)^{2}}{m_{n}} (\sigma_{n} \cdot \hat{r}) \left[\frac{1}{r\lambda} + \frac{1}{r^{2}}\right] e^{-r/\lambda}$$

new upper limits for $g_s^N g_p^n$ in the range 10⁻³ m < λ < 10¹ m

ARIADNE: probing QCD axion parameter space

¹²⁹Xe electric dipole moment (MIXed-collaboration):

 $|d_{xe}| < 1.2 \times 10^{-27} ecm \ (95\% CL)$

room for improvements

Thank you for your attention

Limits on CP-violating observables from ¹⁹⁹Hg EDM limit

11g	iig/		
Quantity	Expression	Limit	Ref.
\mathbf{d}_n	$S_{Hg}/(1.9 \text{ fm}^2)$	$1.6 \times 10^{-26} \ e {\rm cm}$	[21]
\mathbf{d}_p	$1.3 \times S_{Hg}/(0.2 \text{ fm}^2)$	$2.0 \times 10^{-25} e \mathrm{cm}$	[21]
\bar{g}_0	$S_{Hg}/(0.135 \ e \ fm^3)$	2.3×10^{-12}	[5]
\bar{g}_1	$S_{Hg}/(0.27 \ e \ fm^3)$	1.1×10^{-12}	[5]
\bar{g}_2	$S_{Hg}/(0.27 \ e \ fm^3)$	1.1×10^{-12}	[5]
$\bar{ heta}_{QCD}$	$\bar{g}_0/0.0155$	1.5×10^{-10}	[22,23]
$(\tilde{d}_u - \tilde{d}_d)$	$\bar{g}_1/(2 \times 10^{14} \text{ cm}^{-1})$	5.7×10^{-27} cm	[25]
C_{S}	$d_{\rm Hg}/(5.9 \times 10^{-22} \ e {\rm cm})$	1.3×10^{-8}	[15]
C_P	$\mathbf{d}_{\rm Hg}/(6.0 \times 10^{-23} \ e {\rm cm})$	1.2×10^{-7}	[15]
C_T	$\mathbf{d}_{\rm Hg}/(4.89 \times 10^{-20} \ e {\rm cm})$	1.5×10^{-10}	see text

 $\mathbf{d}_{\mathrm{Hg}} = -2.4 \times 10^{-4} \mathbf{S}_{\mathrm{Hg}}/\mathrm{fm}^2$

Schematic layout of the He-3 nuclear magnetometer based on free spin precession

Recorded free spin precession signal

C. Gemmel et al., Eur. Phys. J. D 57, 303 (2010)

Influence of Electric field switching period

EDM uncertainty / 10^-28 ecm

15

10

5

()

6000

Results of automatic gradient compensation

(Downhill-simplex algorithm)

Spherical cell (diameter 10 cm)

filled with 30 mbar of polarized ³He

~ 10 min per iteration step

total measurement time: ~ 4 hours

$S_{He} \propto \exp($	$(-t / T_2^*)$	(∇B)
------------------------	----------------	--------------

Iteration	C _x / mA	C _y / mA	C _z / mA	C _c / mA	Spin coherence time T ₂ * / s	effective gradients
start	0	0	0	0	7499	~30 pT/cm
0	0	0.15	0	0	9758	
1	0.11	0.11	-0.30	0.11	14750	
3	0.30	0.30	-0.34	0.01	26590	
5	0.33	0.30	-0.60	0.02	35120	
13	0.30	0.40	-0.67	0.18	37686	< 10 pT/cm

Results

