First measurement of transverse single spin asymmetry ( $A_N$ ) for very forward  $\pi^0$ production in polarized p + p collisions at  $\sqrt{s} = 510$  GeV

> Minho Kim (Korea Univ./ RIKEN) on behalf of the RHICf collaboration



10 Sep. 2018 SPIN

#### $A_N$ in forward $\pi^0$ production



- Observed non-zero  $A_N$  of  $\pi^0$  ever has been interpreted in only hard process regime theoretically.
- Non-zero A<sub>N</sub> comes from an asymmetry of the partonic-level fragmentation process or spin-dependent quark-gluon correlations in the proton.

## New question to the $A_N$ of forward $\pi^0$



Smaller  $A_N$  was observed with increasing multiplicity of photons (closer to hard scattering event topology).

# New question to the $A_N$ of forward $\pi^0$



• Larger  $A_N$  was observed by more isolated  $\pi^0$  than less isolated one.

- Smaller  $A_N$  in more hard scattering-like event and larger  $A_N$  in more diffractive-like event?
- Diffractive process may have a finite contribution to the non-zero  $A_N$  of  $\pi^0$  as well as partonic-level one. 4/18

## $A_N$ in very forward $\pi^0$ production



• Once  $A_N$  of very forward  $\pi^0$  was measured by RHIC IP12 experiment. It was consistent with zero but in very narrow kinematic range.

RHICf experiment will unveil the role of the diffractive process to the  $A_N$  of  $\pi^0$  by measuring the very forward  $\pi^0$  ( $\eta > 6$ ) in wide kinematic range (0.2  $\langle x_F \langle 1.0 \text{ and } 0.0 \langle p_T \langle 1.0 \text{ GeV/c} \rangle$ .

## RHIC forward (RHICf) experiment



# **Operation summary**



- RHICf experiment was successfully operated in June 2017.
- Total 110 M events were accumulated for neutral particles (neutron,  $\pi^0$ , and single photon) during 28 hours.
- Radial polarization.
- **Higher**  $\beta^*$ : 8 m and lower luminosity: 10<sup>31</sup> cm<sup>-2</sup>s<sup>-1</sup> than usual.

## RHICf detector & $\pi^0$



Small tower: 20/20 mm Large tower: 40/40 mm

Tungsten absorber (44 X<sub>0</sub>, 1.6  $\lambda_{int}$ )

16 GSO plates for energy measurement

4 GSO bar layers for position measurement



## **Triggers of RHICf detector**



## How did we reconstruct the $\pi^0$ ?



#### How did we reconstruct the $\pi^0$ ?



#### Invariant mass of two photons



- Clear  $\pi^0$  peak is shown around 135 MeV/c<sup>2</sup> with ~10 MeV/c<sup>2</sup> width.
- Invariant mass was fitted by polynomial for background and Gaussian for  $\pi^0$ .
- Background part usually comes from coincidence of the other particles, not wrong reconstruction.

#### Energy resolution of $\pi^0$ reconstruction



■ Around 2.7% energy resolution is expected to both Type-I and Type-II.

This similar energy resolution is because energy deposit at detector is quite linear to the sum of actual photon energy regardless of the number of photons.

#### $p_T$ resolution of $\pi^0$ reconstruction



• However,  $p_T$  resolution of Type-I is much better than Type-II.

#### $p_T$ resolution of $\pi^0$ reconstruction



• However,  $p_T$  resolution of Type-I is much better than Type-II.

This different  $p_T$  resolution is because peak position is more fluctuated when two photons hit the detector than one.

## $\pi^0$ kinematics



First, we studied  $A_N$  for three different  $x_F$  ranges as a function of  $p_T$ .

•  $x_F$  and  $p_T$  resolution of RHICf detector is much better than their binning scale.

# Preliminary result of very forward $\pi^0 A_N$



- Systematic uncertainties by polarization,  $\pi^0$  azimuthal angle distribution, background  $A_N$  subtraction, and beam center was included.
- Non-zero  $A_N$  was observed even in very forward  $\pi^0$  production. Diffractive process may contribute to the  $A_N$  of  $\pi^0$ .
- $A_N$  increases by both  $p_T$  and  $x_F$ , but more sensitive to  $p_T$ .

# Preliminary result of very forward $\pi^0 A_N$



# Summary

- RHICf experiment was successfully operated in June 2017.
- $A_N$  of very forward  $\pi^0$  was measured over the kinematic range of 0.2  $\langle x_F \langle 1.0 \text{ and } 0.0 \langle p_T \langle 1.0 \text{ GeV/c.} \rangle$
- Because non-zero  $A_N$  was observed even in very forward  $\pi^0$  production, diffractive process may contribute to the finite  $A_N$  of  $\pi^0$ .
- More detailed study with other STAR detectors will precisely unveil the role of the diffractive process to the  $A_N$  of (very) forward  $\pi^0$  production.