Neutron spin structure studies at EIC

Alessio Del Dotto, (INFN LNF, Italy) Evaristo Cisbani (INFN Roma1)

contributions from Leonid Kaptari (Bogoliubov Lab. Theor. Phys), Emanuele Pace (Tor Vergara Univ. & INFN Roma 2), Sergio Scopetta (Perugia Univ. & INFN Perugia), Giovanni Salmè (INFN Roma)

SPIN 2018 Ferrara, 13/09/2018 A. Del Dotto / Neutron Spin Structure SPIN 2018 – neutron spin structure @ EIC

Outline

- Formalism (DIS / SIDIS)
- ³He as effective polarized n target
- Experimental status (g₁ⁿ, A_n, TMD ...)
- Approved "upcoming" experiments
- EIC features
- SiDIS off ³He and information on the neutron structure:
 - Recent theoretical developments in SiDIS studies including the <u>final state interaction through a distorted</u> <u>spin dependent spectral function</u>
 - "spectator" SiDIS measurements \rightarrow tagging D or pp
- Conclusions

(Spin) Neutron structure

- **Goal:** To study the inner structure of the neutron and its spin degrees of freedom (mainly by DIS and related)
- The free neutron decays in about 1000 s and has no net charge → need an "effective" polarized neutron target
- SIDIS on transversely polarized target

$$A_{UT} \equiv \frac{1}{|S_T|} \frac{d\sigma(\phi, \phi_S) - d\sigma(\phi, \phi_S + \pi)}{d\sigma(\phi, \phi_S) + d\sigma(\phi, \phi_S + \pi)}$$

 $\sigma_{SiDIS} \sim TMD(x, p_T^2, Q^2) \otimes \sigma_{\gamma^* q} \otimes FF(z, k_T^2, Q^2)$

- TMD: probability density to strike a quark with x fraction of longitudinal momentum and transverse momentum p_τ
- FF: probability density of the struck quark, with transverse momentum k_τ to fragment in an hadron carrying a fraction z of the parton momentum

³He polarized target ${}^{3}\vec{He} \simeq \vec{n}$ S

The two photons are mostly in a s=0wave.

Main idea:

- The virtual photon interacts with a single nucleon. The FSI's among the hadron, the nucleon and the (fully interacting) spectator nuclear system is disregarded
- The internal structure of the bound nucleon is the same as the free one

The key quantity to calculate the effective polarizations is the ³He spectral function S(E,p) ... it appears in DIS, SIDIS, DVCS, ...

(Ciofi degli Atti et al ., PRC48(1993)R968)

---> applied to DiS, first naive extension to Sidis

$$A_n \simeq \frac{1}{p_n f_n} (A_3^{exp} - 2p_p f_p A_p^{exp})$$

Effective polarizations:

$$p_p = -0.023$$
 $p_n = 0.878$

Dilution factor: $f_{p(n)} \simeq 0.2$

Neutron Spin Structure Function from polarized DIS

Both x<0.04 and >0.4 need neutron data! Most of the existing data at very small x taken at Q²<1

Large space for experimental improvements:

- Bjorken sum rule (a «direct» check of QCD) (more accuracy with new data)
- g₁^p+g₁ⁿ and g₁^p-g₁ⁿ at small x is related for DGLAP evolution

Need well established «baseline» to understand Higher Twist effects e.g. g₂ Both D (previous talk) and 3He targets needed to extract consistent data on neutron from non trivial nuclear effects

Nucleon spin & flavor decomposition

Extend, improve

decomposition requires data

from SIDIS π^+/π^- , K^+/K^-

(need good PID), and

different targets p,D,³He

Both D and ³He targets needed:

- D: treatment of nuclear effects somehow simpler, but difference of similar terms to extract n (g₁^d-g₁^p)
- ³He: n effective polarization but nuclear effects more complicated

FSI in ³He distorted spectral function

L. Kaptari, A.DD., E. Pace, G. Salmè, S. Scopetta., PRC 89 (2014) A.DD., E. Pace, G. Salmè, S. Scopetta, PRC95 (2017)

1) PWIA: $\langle p_n \rangle = 0.876$, $\langle p_p \rangle = -0.0237$, $\theta_e = 30^\circ$, $\theta_\pi = 14^\circ$

E_{beam} ;	x_{Bj}	ν	p_{π}	$f_n(x,z)$	$\langle p_n \rangle f_n$	$f_p(x, z)$	$\langle p_p \rangle f_p$
${\rm GeV}$		${\rm GeV}$	${\rm GeV/c}$				
8.8	0.21	7.55	3.40	0.304	0.266	0.348	-8.410^{-3}
8.8	0.29	7.15	3.19	0.286	0.251	0.357	-8.510^{-3}
8.8	0.48	6.36	2.77	0.257	0.225	0.372	-8.910^{-3}
11	0.21	9.68	4.29	0.302	0.265	0.349	-8.310^{-3}
11	0.29	9.28	4.11	0.285	0.25	0.357	-8.510^{-3}

2) FSI:
$$\langle p_n \rangle = 0.756$$
, $\langle p_p \rangle = -0.0265$, $\langle N_n \rangle = 0.85$, $\langle N_p \rangle = 0.87$, $\langle \sigma_{eff} \rangle = 71 \ mb$

E_{beam} ,	x_{Bj}	ν	p_{π}	$f_n(x,z)$	$\langle p_n \rangle f_n$	$f_p(x,z)$	$\langle p_p \rangle f_p$
GeV		${\rm GeV}$	${\rm GeV/c}$				
8.8	0.21	7.55	3.40	0.353	0.267	0.405	-1.110^{-2}
8.8	0.29	7.15	3.19	0.332	0.251	0.415	-1.110^{-2}
8.8	0.48	6.36	2.77	0.298	0.225	0.432	-1.210^{-2}
11	0.21	9.68	4.29	0.351	0.266	0.405	-1.10^{-2}
11	0.29	9.28	4.11	0.331	0.250	0.415	-1.110^{-2}

$$\mathbf{A_n} \simeq \frac{1}{p_n^{\mathbf{FSI}} \ \mathbf{f_n^{\mathbf{FSI}}}} \left(\mathbf{A_3^{exp}} - 2p_p^{\mathbf{FSI}} \mathbf{f_p^{\mathbf{FSI}}} \mathbf{A_p^{exp}} \right) \simeq \frac{1}{p_n \ \mathbf{f_n}} \left(\mathbf{A_3^{exp}} - 2p_p \mathbf{f_p} \mathbf{A_p^{exp}} \right)$$

- The usual extraction is safe in the valence region and for the Jlab kinematics
- At very low x (EIC) the FSI grows up, better to have an experimental measurement (spectator SIDIS, exclusive measurements, cross sections ...)

Progresses have

been done!

SPIN 2018

Rather evident LT asymmetries, with opposite signs, but very limited data → not clean picture, need further exp. data at broad phase space and with higher precision

Negative Sievers for π^+ (d opposite to u)? K and π^- Asymmetries negligible (not fully consistent with p and D existing data)

³He Cross section data in (unpolarized) SiDIS

PHYSICAL REVIEW C 95, 035209 (2017)

«Simple» model (at lower twist) reproduce reasonably well the main features of the data; no large higher-twists contribution in explored Q2 range

Estimated $\langle k_T^2 \rangle$ width smaller than from global analyses of other data (model based!)

Cross section data (also polarized!) valuable to quantitative estimate of:

- transverse quark motion
- FSI in light nuclei

Expected better accuracy in EIC hermetic 4pi detectors respect to fixed target, limited acceptance, experiments

"Standard" SIDIS cross sections

First measurement of unpolarized SIDIS cross section off ³He (X. Yan et al, PRC 95, 035209 (2017))

• For a similar analysis on polarized data the expected error is of order 15%

A.DD., L.P. Kaptari, E. Pace, G. Salmè, S. Scopetta, PRC 96, 065203 (2017)

- A look back at the light cone distributions:
 - The relative difference around the peak > 15%
 - The relative difference in the mean polarizations is of the order of 15%

α

Even if the spectral function is convoluted with TMDs (and structure function) the analysis can still provide valuable information with an expected accuracy on sigma at the level of 10%! (at least considering the current available data).

SPIN 2018

A. Del Dotto / Neutron Spin Structure

10

Near future experiments by ³He/³H @ JLab

Precise multidimensional 3He (polarized) (SI)DIS data at large x (an moderate Q2) in the coming decades together with experiments on H/D based targets

SPIN 2018

Spectator SiDIS

Deuteron in the final state \rightarrow g1p

pp in the final state \rightarrow g1n

$$\frac{\Delta \sigma^{\hat{\mathbf{S}}_{A}}}{d\varphi_{e} \, dx \, dy \, d\mathbf{P}_{D}} \equiv \frac{d\sigma^{\hat{\mathbf{S}}_{A}}(h_{e}=1) - d\sigma^{\hat{\mathbf{S}}_{A}}(h_{e}=-1)}{d\varphi_{e} \, dx \, dy \, d\mathbf{P}_{D}} = \\ \approx 4 \frac{\alpha_{em}^{2}}{Q^{2} z_{N} \mathcal{E}} \frac{m_{N}}{E_{N}} g_{1}^{p} \left(\frac{x}{z}\right) \mathcal{P}_{||}^{\frac{1}{2}}(\mathbf{p}_{mis}) \mathcal{E}(2-y) \left[1 - \frac{|\mathbf{p}_{mis}|}{m_{N}}\right] \qquad Bjorken \ limit$$

- Measuring g₁^p and doing a comparison with g₁^p from a proton target → test of the model for the FSI in different kinematical regions
- g^p₁, study of EMC effect (high x), shadowing and anti-shadowing effects (low x)
- g₁ⁿ of bound nucleons direct measurement SPIN 2018

A. Del Dotto / Neutron Spin Structure

EIC main features for n structure studies

- D, ³He polarized ions
- Luminosity

ົ^{10³⁹</sub>}

JLAB/CEBAF

COMPASS

HIAF-EIC

BCDMS

SPIN 2018

HERMES NMC

10

1111

SLAC

EIC

6 12

Luminosity (cm⁻² s ²⁰ cm⁻² s

10³⁶

10³⁵

10³⁴

10³³

10³²

10³

- Extended x and Q² space
- 4 pi hermetic detectors

ep Facilities & Experiments:

Past Colliders

Collider Concepts

Past Fixed Target Ongoing Fixed Target

LHeC/HE-LHC

LHeC/HL-LHC

LHeC/CDR

HERA (ZEUS/H1)

10²

1 I I I I I I I

 10^{3}

FCC-he

.

√s (GeV)

p/A

EIC Project

A. Del Dotto / Neutron Spin Structure

³He spectator SIDiS phase space

Light-cone momentum fraction of the spectators

$$\alpha_{\zeta} = \frac{A(p_{\zeta} \cdot q)}{P_A \cdot q}$$

 $e + {}^{3}He \rightarrow e' + \pi + \zeta + X$

 $\textbf{t}{=}(\textbf{p}_{_{^{3}\text{He}}}{\textbf{-}\textbf{p}_{_{^{\zeta}}}})^{2}\rightarrow \approx m_{N}^{2}$

ς=D or pp, N=p or n

Beam Momenta:

e = 10 GeV (+z)

3He = 60 GeV(-z)

Base Unit is GeV

DIS: Q2>1

SPIN 2018

(polarized) spectator (SI)DiS, possible measurements

Concluding remarks

Experimental nucleon (spin) structure functions intrinsically involved with nuclear effects:

- To "clearly" get rid of nuclear effects need to pursue different approaches: D previous talk
 ³He ... not only for "n" but also for ³He itself (e.g. EMC effect ...)
- Theoretical approaches are under refinement and extension for FSI and other low x effects (anti-shadowing ...)
- To measure (polarized) cross section (other than asymmetries) may open interesting scenario in understanding the nuclear effects (need good luminosity monitor and detector performances)
- Spectator technique (almost exclusive DIS) seems experimentally applicable to ³He as long as the D spectator tagging is too; this may represent a valuable step forward in EIC
- ³He polarimetry is probably not trivial in a collider and need a careful R&D

Hadron Asymmetry for 3He polarimetry ?

- Polarimetry of ³He ion beam is not trivial
- Precise data on An ³He(pi) cou be a potential tool

