Transverse Single-Spin Asymmetries of Midrapidity Eta Mesons at PHENIX

Nicole Lewis

23rd International Spin Symposium

9/11/18

Office of Science

Initial- and Final- State Nonperturbative Effects

Partonic Contributions

- At low p_T dominated by $gg \rightarrow gg$ and $gg \rightarrow q\overline{q}$
- $qg \rightarrow qg$ fraction increases with p_T
- $q\overline{q} \rightarrow q\overline{q}$ dominates at very high p_T , but that is beyond the scope of this measurement

(PHENIX Collaboration) Phys. Rev. D 83, 032001 (2011)

Transverse Single-Spin Asymmetries (TSSAs)

$$A_N = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R}$$

G. L. Kane, J. Pumplin, and W. Repko *Phys. Rev. Lett.* **41**, 1689 (1978) predicted that the perturbative QCD contributions to TSSAs would make them less than 1%.

Transverse Single-Spin Asymmetries

 χ_F

TSSA at Higher Energies

Transverse Momentum Dependent Nonperturbative Functions

Collinear: The parton model integrates over the internal dynamics of the proton

Transverse Momentum Dependent (TMD): functions explicitly depend on the nonperturbative transverse momentum k_T

- In order for TMD factorization to apply $k_T^2 \ll Q^2$.
- 2 scale process: for the TMD regime to be applied a measurement needs sensitivity to both k_T and Q

from Alessandro Bacchetta

Initial State Example: Sivers TMD PDF

(HERMES Collaboration) Phys. Rev. Let 103, 15002 (2009)

- Correlation between transverse spin of the proton and the transverse momentum of a quark or a gluon
- PT-odd (naïve-timereversal-odd)
- In SIDIS possible to measure both soft and hard scale and to isolate particular TMD functions
- Some indication that the Sivers asymmetry slightly larger for K⁺ than for π⁺? Larger spin-momentum correlations for strange quarks in the proton?

Final State Example: Collins TMD FF

- Correlation between quark transverse spin and unpolarized hadron transverse momentum
- Chiral odd → needs coincide with another chiral odd function like the Transversity PDF or another Collins FF

(COMPASS Collaboration) Phys.Lett. B 744 (2015) 250-259

TSSAs in $p^{\uparrow} + p$

Large TSSA in $p^{\uparrow} + p \rightarrow h + X$

- Uncovered the need for a TMD framework
- Not sensitive to soft scale $k_T \rightarrow$ Only one (hard) scale available: p_T

Higher Twist Functions

Formal definition of twist: "mass dimension minus spin" of the operator in a matrix element within the Operator Product Expansion

Twist 2: traditional PDFs and FFs only consider interactions between one parton in the proton at a time

- **Twist 3:** Quantum mechanical interference between one parton versus interacting with two partons at the same relative *x*
- Can describe spin-momentum correlations in the proton and in hadronization

Twist 3 Functions

- Multiparton correlations: quantum mechanical interference between scattering off of one versus two partons at the same x
 - Quark-Gluon-Quark (qgq) Correlation Function: scattering off of quark and a gluon versus a single quark of the same flavor
 - Three-gluon Correlation Function (ggg): two gluons versus one gluon

Daniel Pitonyak International Journal of Modern Physics A 31, No. 32, 1630049 (2016)

Twist 3 Functions

Collinear: No explicit dependence on transverse momentum k_T

- Only need to be sensitive to a single scale: hard scale $Q \sim p_T$
- Related to k_T moments of twist-2 TMD PDFs and fragmentation functions
- At very large $Q: A_N \sim \frac{1}{Q}$

STAR forward $A_N^{\pi^0}$ for $\sqrt{s} = 500~GeV$

Daniel Pitonyak Phys. Rev. D 89, 111501(R) (2014)

Relativistic Heavy Ion Collider (RHIC)

PHENIX detector

- PHENIX Central Arms
 - $\Delta \phi \sim \pi$
 - $|\eta| < 0.35$
- Electromagnetic Calorimeter used for $\pi^0 \rightarrow \gamma \gamma$ and $\eta \rightarrow \gamma \gamma$ detection
 - PbSc sectors: $\Delta \phi \times \Delta \eta \approx 0.011 \times 0.011$ $\frac{\sigma_E}{E} = 2.1\% \oplus \frac{6.2\%}{\sqrt{E}}$
 - PbGl sectors $\Delta \phi \times \Delta \eta \approx 0.008 \times 0.008$ $\frac{\sigma_E}{E} = 0.8\% \oplus \frac{5.9\%}{\sqrt{E}}$

Midrapidity Transverse Single-Spin Asymmetries at PHENIX

Limited PHENIX acceptance, so integrate over one side of the detector at a time:

$$A_N^{raw} = \frac{N_L^{\uparrow} - R \cdot N_L^{\downarrow}}{N_L^{\uparrow} + R \cdot N_L^{\downarrow}}$$

- $R = L^{\uparrow}/L^{\downarrow}$ is the relative luminosity
- Equivalent formula for the right side, but with a minus sign

Systematic Studies

• Alternative A_N formula: Square Root formula

$$A_N^{raw} = \frac{\sqrt{N_L^{\uparrow} N_R^{\downarrow}} - \sqrt{N_L^{\downarrow} N_R^{\uparrow}}}{\sqrt{N_L^{\uparrow} N_R^{\downarrow}} + \sqrt{N_L^{\downarrow} N_R^{\uparrow}}}$$

• $\sin \phi$ modulation cross check:

$$A_N^{raw} \sin \phi_s = \frac{N^{\uparrow}(\phi_s) - RN^{\downarrow}(\phi_s)}{N^{\uparrow}(\phi_s) + RN^{\downarrow}(\phi_s)}$$

- Yellow vs Blue beam asymmetry
 - Both beams have alternating transverse polarization → consider one beam polarized at a time and average over the polarization direction of the other
 - Two statistically independent measurements
 - Final measurement is the weighted average of these two results

$\pi^0 \rightarrow \gamma \gamma$ and $\eta \rightarrow \gamma \gamma$

- Using Run 2015 data
 - 60 pb^{-1} integrated luminosity
 - Mean polarization: 57%
 - Using the EMCal Rich Trigger that selects for high energy clusters
- Midrapidity π^0 and η mesons
 - Comparing π^0 to η results may provide information on potential effects due to strangeness, isospin, or mass.

$$\pi^0 = \frac{1}{\sqrt{2}} \left(u\overline{u} - d\overline{d} \right) \quad \eta = \frac{1}{\sqrt{3}} \left(u\overline{u} + d\overline{d} + s\overline{s} \right)$$

• Measuring A_N as a function of a single scale, large $p_T \rightarrow$ Twist 3 formalism applies

Background Correction for $\eta \rightarrow \gamma \gamma$

- Where $r = \frac{N_{bg}}{N_{sig} + N_{bg}}$ in the invariant mass peak region
- Peak: $480 < M_{\gamma\gamma} < 620 \ MeV/c^2$
- Background:

 $\begin{array}{l} 300 < M_{\gamma\gamma} < 400 \; MeV/c^2 \\ 700 < M_{\gamma\gamma} < 800 \; MeV/c^2 \end{array}$

Example invariant mass histogram for photon pairs in the West Arm with $4 < p_T < 5 \ GeV/c$

Results

About a factor of 3-4 increase in precision from previous PHENIX result

Results

Consistent with zero to within 0.005 at low p_T but may show a hint of a trend?

 $A_N^{\pi^0}$ at midrapidity

0. 3.4% polarization 0.005 uncertainty not included 0.05 -0.0052 6 p_{_} [GeV¹/c] ¥ -0.05 PHENIX, PRD 90, 012006 0 PH***ENIX** This Result preliminary -0.1 5 10 15 20 p_{_} [GeV/c] Consistent with zero to within 10^{-4} at low p_T

p+p→ π⁰ + X @ 200 GeV, h l<0.35

Comparing **forward** A_N^{η} to forward $A_N^{\pi^0}$

Conclusion

- Transverse single-spin asymmetries probe parton dynamics in the nucleon as well as the process of hadronization
 - Transverse momentum dependent functions
 - Twist 3
- New ηA_N at midrapidity $\sqrt{s} = 200 \ GeV$ shown
 - Factor of 3-4 higher precision than the previous PHENIX result
 - Consistent with zero
 - Will help constrain twist-3 functions
 - Sensitive to impact of strangeness to twist-3 functions

Back Up

Previous PHENIX $A_N^{\pi^0}$ and A_N^{η} Result

(PHENIX Collaboration) *PRD* **90**, 012006 (2014)

Sivers Asymmetry at COMPASS

Invariant Mass Spectrum at Different p_T

Photon pairs in the West Arm with $2 < p_T < 3 \text{ GeV}$ Photon pairs in the West Arm with $8 < p_T < 15 \ GeV$

 $A_N^{\pi^{\upsilon}}$ in $p^{\uparrow} + A$

SPIN 2018 - Nicole Lewis (UofM) 9/11/18