Transverse Single-Spin Asymmetries of Midrapidity Eta Mesons at PHENIX

Nicole Lewis
23rd International Spin Symposium

$$
9 / 11 / 18
$$

Office of Science

Initial- and Final- State Nonperturbative Effects

Partonic Contributions

- At low p_{T} dominated by $g g \rightarrow g g$ and $g g \rightarrow q \bar{q}$
- $q g \rightarrow q g$ fraction increases with p_{T}
- $q \bar{q} \rightarrow q \bar{q}$ dominates at very high p_{T}, but that is beyond the scope of this measurement

(PHENIX Collaboration) Phys. Rev. D 83, 032001 (2011)

Transverse Single-Spin Asymmetries

 (TSSAs)

$$
A_{N}=\frac{\sigma_{L}-\sigma_{R}}{\sigma_{L}+\sigma_{R}}
$$

G. L. Kane, J. Pumplin, and W. Repko Phys. Rev. Lett. 41, 1689 (1978) predicted that the perturbative QCD contributions to TSSAs would make them less than 1%.

Transverse Single-Spin Asymmetries

C. A. Aidala, S.D. Bass, D. Hasch, and G. K. Mallot, Rev. Mod. Phys. 85655 (2013).

$$
x_{F}=\frac{p_{z}}{\sqrt{s} / 2}
$$

$$
A_{N}=\frac{\sigma_{L}-\sigma_{R}}{\sigma_{L}+\sigma_{R}}
$$

TSSA at Higher Energies

(STAR Collaboration) Phys.
Rev. Lett. 101, 222001 (2008)

Yuxi Pan for the STAR Collaboration International Journal of Modern Physics: Conference Series 40, 1660037 (2016)

Transverse Momentum Dependent Nonperturbative Functions

Collinear: The parton model integrates over the internal dynamics of the proton
Transverse Momentum Dependent (TMD): functions explicitly depend on the nonperturbative transverse momentum k_{T}

- In order for TMD factorization to apply $k_{T}^{2} \ll Q^{2}$.
- 2 scale process: for the TMD regime to be applied a measurement needs

from Alessandro Bacchetta

Initial State Example: Sivers TMD PDF

(HERMES Collaboration) Phys. Rev. Let 103, 15002 (2009)

- Correlation between transverse spin of the proton and the transverse momentum of a quark or a gluon
- PT-odd (naïve-time-reversal-odd)
- In SIDIS possible to measure both soft and hard scale and to isolate particular TMD functions
- Some indication that the Sivers asymmetry slightly larger for K^{+}than for π^{+}? Larger spin-momentum correlations for strange quarks in the proton?

Final State Example: Collins TMD FF

Transversity \otimes Collins Asymmetry from SIDIS

- Correlation between quark transverse spin and unpolarized hadron transverse momentum
- Chiral odd \rightarrow needs coincide with another chiral odd function like the Transversity PDF or another Collins FF

(COMPASS Collaboration) Phys.Lett. B 744 (2015) 250-259

TSSAs in $p^{\uparrow}+p$

Large TSSA in

 $p^{\uparrow}+p \rightarrow h+X$- Uncovered the need for a TMD framework
- Not sensitive to soft scale $k_{T} \rightarrow$ Only one (hard) scale available: p_{T}

Yuxi Pan for the STAR Collaboration International Journal of Modern Physics: Conference Series 40, 1660037 (2016)

Higher Twist Functions

Formal definition of twist: "mass dimension minus spin" of the operator in a matrix element within the Operator Product Expansion
Twist 2: traditional PDFs and FFs only consider interactions between one parton in the proton at a time

Twist 3: Quantum mechanical interference between one parton versus interacting with two partons at the same relative x

- Can describe spin-momentum correlations in the proton and in hadronization

Twist 3 Functions

- Multiparton correlations: quantum mechanical interference between scattering off of one versus two partons at the same x
- Quark-Gluon-Quark (qgq) Correlation Function: scattering off of quark and a gluon versus a single quark of the same flavor
- Three-gluon Correlation Function (ggg): two gluons versus one gluon

qgq Twist-3 Initial State

qgq Twist-3 Final State

Daniel Pitonyak International Journal of Modern Physics A 31, No. 32, 1630049 (2016)

Twist 3 Functions

STAR forward $A_{N}^{\pi^{0}}$ for $\sqrt{s}=500 \mathrm{GeV}$
Collinear: No explicit dependence on transverse momentum k_{T}

- Only need to be sensitive to a single scale: hard scale $Q \sim p_{T}$
- Related to k_{T} moments of twist-2 TMD PDFs and fragmentation functions
- At very large $Q: A_{N} \sim \frac{1}{Q}$

Koichi Kanazawa, Yuji Koike, Andreas Metz, and
Daniel Pitonyak Phys. Rev. D 89, 111501(R) (2014)

Relativistic Heavy Ion Collider (RHIC)

- PHENIX Central Arms

PHENIX detector

- $\Delta \phi \sim \pi$
- $|\eta|<0.35$
- Electromagnetic Calorimeter used for $\pi^{0} \rightarrow \gamma \gamma$ and $\eta \rightarrow \gamma \gamma$ detection
- PbSc sectors:

$$
\begin{aligned}
& \Delta \phi \times \Delta \eta \approx 0.011 \times 0.011 \\
& \frac{\sigma_{E}}{E}=2.1 \% \oplus \frac{6.2 \%}{\sqrt{E}}
\end{aligned}
$$

- PbGl sectors
$\Delta \phi \times \Delta \eta \approx 0.008 \times 0.008$ $\frac{\sigma_{E}}{E}=0.8 \% \oplus \frac{5.9 \%}{\sqrt{E}}$

Midrapidity Transverse Single-Spin Asymmetries at PHENIX

Limited PHENIX acceptance, so integrate over one side of the detector at a time:

$$
A_{N}^{\text {raw }}=\frac{N_{L}^{\uparrow}-R \cdot N_{L}^{\downarrow}}{N_{L}^{\uparrow}+R \cdot N_{L}^{\downarrow}}
$$

- $R=L^{\uparrow} / L^{\downarrow}$ is the relative luminosity
- Equivalent formula for the right side, but with a minus sign

Systematic Studies

- Alternative A_{N} formula: Square Root formula

$$
A_{N}^{r a w}=\frac{\sqrt{N_{L}^{\uparrow} N_{R}^{\downarrow}}-\sqrt{N_{L}^{\downarrow} N_{R}^{\uparrow}}}{\sqrt{N_{L}^{\uparrow} N_{R}^{\downarrow}}+\sqrt{N_{L}^{\downarrow} N_{R}^{\uparrow}}}
$$

- $\sin \phi$ modulation cross check:

$$
A_{N}^{r a w} \sin \phi_{s}=\frac{N^{\uparrow}\left(\phi_{s}\right)-R N^{\downarrow}\left(\phi_{s}\right)}{N^{\uparrow}\left(\phi_{s}\right)+R N^{\downarrow}\left(\phi_{s}\right)}
$$

- Yellow vs Blue beam asymmetry
- Both beams have alternating transverse polarization \rightarrow consider one beam polarized at a time and average over the polarization direction of the other
- Two statistically independent measurements
- Final measurement is the weighted average of these two results

$\pi^{0} \rightarrow \gamma \gamma$ and $\eta \rightarrow \gamma \gamma$

- Using Run 2015 data
- $60 \mathrm{pb}^{-1}$ integrated luminosity
- Mean polarization: 57\%
- Using the EMCal Rich Trigger that selects for high energy clusters
- Midrapidity π^{0} and η mesons
- Comparing π^{0} to η results may provide information on potential effects due to strangeness, isospin, or mass.

$$
\pi^{0}=\frac{1}{\sqrt{2}}(u \bar{u}-d \bar{d}) \quad \eta=\frac{1}{\sqrt{3}}(u \bar{u}+d \bar{d}+s \bar{s})
$$

- Measuring A_{N} as a function of a single scale, large $p_{T} \rightarrow$ Twist 3 formalism applies

Background Correction for $\eta \rightarrow \gamma \gamma$

$A_{N}^{\eta}=\frac{A_{N}^{p e a k}-r A_{N}^{b g}}{1-r}$

- Where $r=\frac{N_{b g}}{N_{s i g}+N_{b g}}$ in the invariant mass peak region
- Peak:
$480<M_{\gamma \gamma}<620 \mathrm{MeV} / \mathrm{c}^{2}$
- Background:
$300<M_{\gamma \gamma}<400 \mathrm{MeV} / \mathrm{c}^{2}$ $700<M_{\gamma \gamma}<800 \mathrm{MeV} / \mathrm{c}^{2}$

Example invariant mass histogram for photon pairs in the West Arm with $4<p_{T}<5 \mathrm{GeV} / \mathrm{c}$

Results

About a factor of 3-4 increase in precision from previous PHENIX result

Results

Consistent with zero to within 0.005 at low p_{T} but may show a hint of a trend?

$A_{N}^{\pi^{0}}$ at midrapidity

$\mathrm{p}+\mathrm{p} \rightarrow \pi^{0}+\mathrm{X}$ @ $200 \mathrm{GeV}, \mathrm{l} \mathrm{l}<\mathbf{0 . 3 5}$

Consistent with zero to within 10^{-4} at low p_{T}

Comparing forward A_{N}^{η} to forward $A_{N}^{\pi^{0}}$

(STAR Collaboration)
PRD 86, 051101(R) (2012)

Conclusion

- Transverse single-spin asymmetries probe parton dynamics in the nucleon as well as the process of hadronization
- Transverse momentum dependent functions
- Twist 3
- New ηA_{N} at midrapidity $\sqrt{S}=200 \mathrm{GeV}$ shown
- Factor of 3-4 higher precision than the previous PHENIX result
- Consistent with zero
- Will help constrain twist-3 functions
- Sensitive to impact of strangeness to twist-3 functions

Back Up

Previous PHENIX $A_{N}^{\pi^{0}}$ and A_{N}^{η} Result

(PHENIX Collaboration) PRD 90, 012006 (2014)

Sivers Asymmetry at COMPASS

(COMPASS Collaboration) PLB 744, 250 (2015)

Invariant Mass Spectrum at Different p_{T}

Photon pairs in the West Arm with $8<p_{T}<15 \mathrm{GeV}$

$A_{N}^{\pi^{0}}$ in $p^{\uparrow}+A$

